
Navigation of Autonomous Vehicles in Unknown Environments using

Reinforcement Learning

Tomás Martı́nez-Marı́n and Rafael Rodrı́guez

Abstract— In this paper we propose a generic approach for
navigation of nonholonomic vehicles in unknown environments.
The vehicle model is also unknown, so the path planner
uses reinforcement learning to acquire the optimal behaviour
together with the model, which is estimated by a reduced set
of transitions. After the training phase, the vehicle is able to
explore the environment through a wall-following behaviour. In
order to guide the navigation and to build a map of the environ-
ment the planner employs virtual walls. The learning time to
acquire a good approximation of the wall-following behaviour
was only a few minutes. Both simulation and experimental
results are reported to show the satisfactory performance of
the method.

I. INTRODUCTION

Intelligent vehicles should exhibit an autonomous be-

haviour learning from experience through interaction with

the environment. Furthermore, they should learn and update

their internal dynamic models on-line and maximize its short

term capabilities. Most of the autonomous vehicles we can

find in the industry today follow a strict itinerary with a

very limited interaction with the environment. In fact, the

environment has been thoroughly adapted to the vehicles,

which is just the proof of lack of intelligence.

Car-like vehicles are widely used in industry since they

have the necessary loading capability with only a power

motor. These vehicles are nonlinear dynamic systems, whose

motion laws have been a well studied topic [1], [2], [3], [4].

However, the motion planning of car-like vehicles is a diffi-

cult task since they are nonholonomic systems. Our approach

addresses the motion optimisation, since intelligent vehicles

should provide an optimal behaviour in real scenarios with

restricted computational resources.

A number of planning algorithms have been proposed for

generating trajectories that give rise to smooth motion [5],

[6]. These trajectories are computed in open-loop, but in

real environments where a vehicle is subject to perturba-

tions and uncertainty, closed-loop action is more desirable.

Minimal length paths of simplified car-like vehicles have

been characterized in [3]. This result is proven in the

absence of obstacles and it is computed in open-loop. In

[7] a grid-based method for motion planning in the presence

of obstacles was developed. The method supposes that the

vehicle model is known and the search mechanism is open-

loop, although the method can be easily modified to work in

a closed-loop manner. Dynamic Programming (DP) provides

a closed-loop solution including obstacles [8]. Although DP

Tomás Martı́nez-Marı́n is with the Department of Physics, System Engi-
neering and Signal Theory, University of Alicante, Spain.

Rafael Rodrı́guez is with Brainstorm Multimedia, Valencia, Spain.

is efficient compared with direct search, it requires a lot of

computational resources and the vehicle model.

In this paper, we present a generic approach to learn to

navigate nonholonomic vehicles by interaction with the en-

vironment. The algorithm combines reinforcement learning

with some concepts of the CACM technique [9], which

is based on cell-to-cell mapping techniques and Bellman’s

principle of optimality for continuous dynamic systems.

Reinforcement learning (RL) methods provide a great ad-

vantage with respect to the cited approaches, since the

optimal motion law of a car-like vehicle is estimated on-line

while it is interacting with the environment. Thus, the RL

controller does not require a previous vehicle model to obtain

an optimal behaviour of the real vehicle. In this context,

there are several applications of robot motion planning by

reinforcement learning. For example, in [10] a robot docking

task was solved through RL in a visual servoing framework.

The optimal motion of car-like vehicles is slightly more

difficult since the system is nonholonomic and the dimension

of the problem is higher (3D or more).

The paper is organized as follows. Section II describes the

vehicle platform. In section III we present some basic con-

cepts of reinforcement learning. Section IV provides a brief

introduction to the Cell Mapping techniques. Implementa-

tional aspects of the new algorithm are addressed in section

V, tested in section VI and VII through simulations and

experimentation on a real vehicle, respectively. Conclusions

appear in section VIII.

II. VEHICLE MODEL

The reinforcement learning controllers have been imple-

mented in the nonholonomic vehicle shown in Fig. 1. The

vehicle is equipped with an array of infrared sensors, a laser

scanner and a CMOS camera; although the image sensor

has not been employed in this application. The vehicle is

autonomous, using a microcontroller MPC555 to process all

sensors and the RL controllers.

The state space formulation [3] of the vehicle model we

will use is the following:

ẋ = vT cos θ cos ς, (1)

ẏ = vT sin θ cos ς, (2)

θ̇ = vT sin ς. (3)

where vT is the translational velocity and ς is the steering

angle of the vehicle.

The distance between the reference point (x, y) and the

middle point of the driving wheels is 0.32 m. The orientation

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThE1.14

1-4244-1068-1/07/$25.00 ©2007 IEEE. 872

Fig. 1. The autonomous vehicle employed for the experiments.

of the car is denoted by θ. The two control variables of a

car are the velocity vT of the driving wheels and the steering

angle ς . It is important to note that the state equations are

only used in the simulations to describe the robot trajectories.

In the experiments, the model is built on-line by recording

the transitions between states and the immediate rewards.

Observing the state space equations, we can see that

the time derivatives of the state variables only depend on

the orientation variable θ. Therefore, to obtain information

about the relative motion of the car (i.e., transitions between

adjoining cells) it is enough to obtain the cell transitions only

for the third state variable, starting each transition from the

origin in the xy plane. The former is only valid if the low

level controllers can keep the specified velocities on different

surfaces. Using a transformation matrix (T) we can exploit

this property. Thus, after learning a few local trajectories the

algorithm only spends time looking for the global optimal

policy.

Although the state space of the system is three-

dimensional, some vehicle behaviours, such as wall follow-

ing, can be specified in a two-dimensional state space. In this

case, the problem is simplified by fixing the value of vT .

Then, the task is reduced to control the orientation of the

vehicle (ς) in a two-dimensional state space (d, β), where

d is the distance between the vehicle and the wall, and β
is the relative orientation of the vehicle with respect to the

wall. In our reinforcement learning experiments, we only

allow three possible actions in each state (-20, 0, 20 deg).

In this case the controllability of the system is more limited,

since the controller cannot reduce vT if major changes in the

orientation of the vehicle are required.

III. REINFORCEMENT LEARNING

Reinforcement learning methods only require a scalar

reward to learn to map situations (states) in actions [11].

As opposed to supervised learning, they do not require a

teacher to acquire the optimal behaviour, they only need to

interact with the environment learning from experience. The

knowledge is saved in a look-up table that contains an estima-

tion of the accumulated reward to reach the goal from each

situation or state. The objective is to find the actions (policy

a = π(s)) that maximize the accumulated reward in each

state. Q-learning is one of the most popular reinforcement

learning methods, since with a simple formulation it can

address model-free optimization problems. The accumulated

reward for each state-action pair Q(s, a) is updated by the

one-step equation

∆Q(s, a) = α (r + γmaxa′Q(s′, a′)−Q(s, a)) (4)

where Q is the expected value of performing action a in

state s, r is the reward, α is a learning rate which controls

convergence and γ is the discount factor. The discount

factor makes rewards earned earlier more valuable than those

received later. The action a with highest Q value at state s
is the best policy up to instant t. When t → ∞ the policy

approximates the optimal behaviour:

a∗ = π∗(s) = arg maxa′Q(s, a′) (5)

In applications with real systems Q-learning spends a long

time making hundred of thousands of trials to approximate

the optimal behaviour. To speed up the learning process

it is necessary to incorporate some planning mechanism.

Prioritized sweeping [12] and Dyna-Q include a search

control to simulate the past real experiences in a specified

order. In our simulations we will combine Q-learning with

the search mechanism proposed in the new RL algorithm.

The quality of the optimal solution has been compared with

the popular Q-learning algorithm in [13].

IV. ADJOINING CELL MAPPING

Q-learning was conceived for discrete state and action

spaces, where the state space is not necessarily metric. In

robotic applications the state space is continuous, so it is

mandatory to discretize the state space into cells. The inher-

ent discretization errors can produce a poor approximation to

the optimal behaviour in complex nonlinear systems such as

mobile robots. Cell Mapping techniques were conceived in

order to deal with the discretization problems in an efficient

way.

Cell-to-cell mapping methods are based on a discretization

of the state variables of the system, defining a partition of

the state space into cells [14]. A cell-to-cell mapping can

be derived from the dynamic evolution of the system. In [9]

the CACM algorithm for optimal control of highly nonlinear

systems is proposed. This method is based on the Adjoining

Cell Mapping (ACM) technique, whose central concept is the

creation of a cell mapping where only transitions between

adjoining cells are allowed [15].

The adjoining property states that the distance Dk between

the current cell and the previous cell is equal to some integer

value k equal or greater than 1. For our RL controller, we

will define the adjoining property in terms of the continuous

states x and x
′ as follows:

ThE1.14

873

Dk(x,x′) = max
j
|
xj − x′

j

hj

| = k, (6)

where xj indicates the j-th component of the state x and hj

is the cell size of the j-th dimension.

In Q-learning the transitions between states are evaluated

at fixed sample times, while with our RL controller the

transitions have to satisfy the adjoining distance condition

in order to be evaluated. By appropriate selection of this

distance with respect to the number of cells, it is possible

to minimize quantization effects and better approximate the

optimal behaviour of the system.

V. THE RL ALGORITHM

The new algorithm has been implemented as a model-

based reinforcement learning method, where the back-ups

are made by simulation following the shortest path search

backward in time, starting from the goal state. In direct

reinforcement learning, the back-ups are only made by

experimentation, which is suitable when the back-up time

for experimentation compared with simulation is not very

high. In general, model-based reinforcement learning find

better trajectories and manages changes in the environment

(e. g. obstacles) and the goals more efficiently than direct

reinforcement learning.

The RL algorithm deals with several data structures for

organizing the available information and storing the partial

results of the learning process. These structures are the

following:

• Q(s, a): is the Q-value table where the accumulated

reward for the (s, a)-pair is saved. From this table, the

optimal policy is obtained according to 5.

• M(k, x, a): is the local vehicle model. It contains an

average of relative transitions of the car transformed

to local coordinates during the learning process. The

transitions have to satisfy the D− k adjoining property

to assure a good approximation to the optimal policy.

• Queue: contains the states to be updated in the correct

order to find the optimal policy in only one sweeping.

• policy(s,M,Q): selects a ǫ-greedy policy to estimate

the model (M) and to exploit the best policy acquired

(Q).

• dist(s, s′): is the maximum norm between states s and

s′.

The RL algorithm that implements the concepts described

above is presented in Fig. 2(see [11] for notation details).

The state is represented in the algorithm by a real valued

vector x, which is converted to the discrete state s (integer

index) by the function cell(). In our experiments, uniform

discretization was used with 41 cells per variable (see

Table I for full details of the RL parameters). The function

Dk−adjoining() is used to determine whether the adjoining

property has been satisfied. The index s is used to update the

Q-table, and x is used to update the function M . Since the

controller uses noisy data from an image sensor, the function

Initialize Q(s, a), M(k, x, a) and

first(Queue)← goal

x← current state

s← cell(x)
IF s = sink or goal

THEN reactive(x)

ELSE a← policy(s,M,Q)
Execute action a
Observe resultant state x′ and reward r
IF Dk-adjoining(x, x′)

THEN FOR k = 1, 2, ...,K

M(k, x, a)← x′, r
k = min{K, dist(goal, s)}
s′ ← first(Queue)
FOR all (s, a) that led to s′

x̄←M(k, x′, a)
s← cell(x̄)
Update Q(s, a) using Eq. 4

Insert s in Queue
sorting by maxaQ(s, a)

UNTIL N times

If Queue is empty:

first(Queue)← goal

UNTIL training terminated

Fig. 2. Reinforcement Learning Algorithm.

M() estimates the state of the system by filtering before

storing it. In our experiments an average filter was used.

For the wall following behaviour the aim of the controller

is to move the vehicle from any initial position inside the

region of interest to a goal position (an objective distance

from the wall) through a minimum-time trajectory. A trial

finishes when the vehicle moves outside of the state space

(sink cell) or when it enters in the goal. Then, the function

reactive() moves the vehicle in the opposite direction, until

some starting position inside the state space is reached.

The function policy() selects an action for each transition

of the system. The RL controller selects the actions randomly

to explore most of the state space during training. By

changing the function policy() it is possible to implement

other controllers. In the update rule 4, the learning rate α
is variable, falling inversely with the number of transitions

and the discount factor is fixed to γ = 1.

The vehicle should move forward and backward to avoid

possible obstacles in the way. For that reason, during the

training phase two RL controller are built: one for forward

motion and the other for backward motion. Thus, employing

both controllers the vehicle is able to avoid obstacles and

turn around (see experimental results in Fig. 4) in a natural

manner. This controller is suitable to explore unknown envi-

ronments creating a vehicle model and a map which later can

use a three-dimensional RL controller or a CACM controller

[13]. In this way, the path planning can be improved using

a control architecture with two levels of abstraction. On the

other hand, the vehicle can reach any position and orientation

ThE1.14

874

State variables: 2. x1: -1 ≤ d ≤ 1 m. Cells: 41

(1661 states) x2: -100 ≤ β ≤ 100◦. Cells: 41

Objective state: (d, β) = (0 m, 0◦)
Control variables: 2. u1: -0.2 ≤ vT ≤ 0.2 m/s.

(3 actions) (u2: -20 ≤ ς ≤ 20◦.)

Sampling time: Ts: 0.1 sec.

Reward: r = 100 if goal

r = -20 if sink

r = -n (Ts) otherwise

Adjoining distance: D-2

TABLE I

PARAMETERS IN THE RL ALGORITHM ON THE REAL VEHICLE.

using the virtual wall concept. A virtual wall is created by

manipulating the vehicle sensors in such a way that although

the RL controller remain unchanged, the vehicle can navigate

on a free space without any physical guide.

VI. SIMULATION RESULTS

The algorithm proposed has been tested in simulation

using the vehicle model given in section II. The state

space needed to learn the wall following behaviour is two-

dimensional (d, β). The variables values and parameters are

depicted in Table I.

The optimal behaviour of the RL controller is depicted in

Fig 3. We can observe that the controller approximates the

time-optimal behaviour: bang-bang control with the classical

switching curve in the centre. The training time was 100

seconds for all simulations. This short learning time was

enough to obtain a very good approximation of the optimal

motion behaviour for the RL algorithm. In Fig 4 the wall

following behaviour of the vehicle is shown. In particular, we

can see that when the vehicle reaches a corner it cannot turn

around without hitting the wall. Instead, it has to go back

in order to correct the orientation. This simple mechanism

allows the vehicle to follow walls with corners and avoid

obstacles.

VII. EXPERIMENTATION RESULTS

In this section we will present the experiments carried

out on the real vehicle described in section II. The first

step was to train the vehicle along a wall to acquire the

optimal behaviour. The training time was 5 minutes. In order

to reduce the computation time the steering actions have been

limited to three (−20◦, 0◦, 20◦).
To test the performance of the proposed method on a real

autonomous vehicle, we have considered moving the vehicle

in a closed corridor. When the vehicle reaches the obstacle,

which closes the corridor, it has to turn back in a very narrow

space. To succeed, it uses two different controllers, one to go

forward and the other to go backward. Fig. 5 shows some

images of the vehicle trajectory. The former task is quite

difficult, since the steering range of the vehicle is extremely

narrow (−20◦ ≤ ς ≤ 20◦). The vehicle can also turn back in

the corridor without any physical wall, as shown in Fig. 6,

where the corridor is closed by a virtual wall.

Fig. 3. State space (d, β) showing the controllable trajectories.

Fig. 4. Wall following behaviour. The vehicle goes from the starting
position (top-left) to the final position turning clockwise.

VIII. CONCLUSION

The new RL approach has been successfully employed

for navigation of nonholonomic vehicles. The vehicle learns

in a few minutes a wall-following behaviour to explore the

environment. In contrast with conventional RL techniques

(Q-learning, Dyna-Q, Prioritized Sweeping), the algorithm

does not need to use function interpolation to find a close to

optimal behaviour in continuous state spaces. Furthermore,

this approach provides a closed-loop solution in the presence

of obstacles including forward and backward motion. The

result provides a good approximation of the optimal motion

ThE1.14

875

Fig. 5. Sequence of images showing the wall following behaviour learned on the real vehicle.

Fig. 6. Sequence of images showing the wall following behaviour with a virtual wall closing the corridor.

through the adequate selection of the adjoining distance.

This controller proposed is suitable to explore unknown

environments creating a vehicle model and a map of the

environment that can use a three-dimensional RL controller.

Thus, the path planning can be improved using a control

architecture with two levels of abstraction.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer Academic, 1991.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion. MIT Press, 2005.

[3] J. A. Reeds and R. A. Shepp, “Optimal path for a car that goes both
forward and backward,” Pacific J. Math, vol. 145, no. 2, pp. 367–393,
1990.

[4] D. Gu and H. Hu, “Neural predictive control for a car-like mobile
robot,” Int. J. of Robot. and Autonomous Systems, vol. 39, no. 2-3, pp.
73–86, 2002.

[5] F. Lamiraux and J. P. Laumond, “Smooth motion planning for car-like
vehicles,” IEEE Trans. Robot. Automat., vol. 17, no. 4, pp. 498–502,
2001.

[6] T. Fraichard and J. M. Ahuactzin, “Smooth path planning for cars,”
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Seoul,
2001, pp. 21–26.

[7] J. Barraquand and J. C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, pp. 121–155, 1993.

[8] ——, “On nonholonomic mobile robots and optimal maneuvering,”
Revue d’Inteligence Artificielle, vol. 3, no. 2, pp. 77–103, 1989.

[9] P. Zufiria and T. Martı́nez-Marı́n, “Improved optimal control methods
based upon the adjoining cell mapping technique,” Journal of Opti-

mization Theory and Applications, vol. 118, no. 3, pp. 657–680, 2003.
[10] T. Martinez-Marin and T. Duckett, “Fast reinforcement learning for

vision-guided mobile robots,” in Proc. IEEE Int. Conf. on Robotics

and Automation (ICRA), Barcelona, 2005.
[11] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.

MIT Press, 1998.
[12] A. Moore and C. Atkeson, “Priortized sweeping: Reinforcement

learning with less data and less time,” Machine Learning, vol. 13,
pp. 103–130, 1993.

[13] T. Martinez-Marin, “On-line optimal motion planning for nonholo-
nomic mobile robots,” in Proc. IEEE Int. Conf. on Robotics and

Automation (ICRA), Orlando, 2006, pp. 512–517.
[14] C. Hsu, “A discrete method of optimal control based upon the cell

state space concept,” Journal of Optimization Theory and Applications,
vol. 46, no. 4, 1985.

[15] P. Zufiria and R. Guttalu, “The adjoining cell mapping and its recursive
unraveling, part i: Description of adaptive and recursive algorithms,”
Nonlinear Dynamics, vol. 4, pp. 204–226, 1993.

ThE1.14

876

