
An Information Theoretic Vehicle Following System

Teck Chew Ng†, Martin Adams♮ and Javier Ibañez-Guzmán♭

†Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore.

♮School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore.
♭Renault - Research Division - Electronics Systems Department, France

†tcng@SIMTech.a-star.edu.sg, ♮eadams@ntu.edu.sg, ♭javier.ibanez-guzman@renault.com

Abstract— Vehicle following can be achieved by minimizing
the relative information (Kullback-Leibler or K-L distance),
between the estimated poses of leader and follower vehicles.
To achieve successful vehicle following, a Bayesian formulation
for the system has been derived, and two probabilistic distrib-
utions, one for each vehicle’s pose, can be obtained. Based on
the assumption that the two pose distributions are Gaussian
functions, the K-L distance of the vehicle following system
can be computed with these two computed distributions. With
a series of achievable actions, such as steering and velocity
commands, for the follower vehicle at each pose prediction step,
and by minimizing the K-L distance, an optimized action for
the follower vehicle can be obtained. The information theoretic
vehicle following algorithm has been tested under a simulated
environment by analyzing the performance of the follower
vehicle when the leader vehicle undergoes various kinds of
maneuvers. The simulated experimental results validate that
the follower is able to trail the trajectories of the leader vehicle
satisfactorily and at the same time maintain a safe following
distance.

I. INTRODUCTION

Information theoretic frameworks have been used exten-

sively in mobile robotics applications. Typical applications

are the surveillance system in Unmanned Aerial Vehicle

(UAV) [1] and active exploration of an area for Unmanned

Ground Vehicle (UGV) [2]. These systems aim to maximize

the knowledge, or information, gained by the robot, through

the optimized control actions [4][5][6]. The strategy also

aims at minimizing the uncertainties of the system state

through the selection of a sequence of control actions. More-

over, information theoretic frameworks have been used in the

machine vision community as a tool in image association.

For example, the K-L distance was used as a measure for

feature selection such that the feature was classified by

maximizing the K-L distance between target classes [3].

To achieve autonomous vehicle following function, data

regarding the states of both the follower and leader vehicles

are necessary. Data such as the dynamics and poses of the

leader vehicles are commonly transmitted to the follower

via the inter-vehicle communication system [7][8]. Beside

using the inter-vehicle communication system, other vehicle

following systems use on board sensors, such as laser scanner

and cameras, as the main source of perception tools [9][10].

However, handling of the uncertainty or noises inherent

in the sensors is a challenge in vehicle following system.

The sensor data uncertainty may affect the reliability of the

vehicle following system if it is not addressed properly. In

anticipation of the above challenge, this paper focuses on

the control of a follower vehicle in pursing a leader vehicle,

taking into consideration the uncertainty in the measurement

data obtained by the follower vehicle. The control commands

to the follower vehicle are computed based on the minimiza-

tion of the relative information (K-L distance) between the

two vehicles. By formulating the vehicle following system

in a Bayesian representation, we obtain two probabilistic

distributions describing the uncertainties of the states of the

leader and the follower vehicles. Before issuing an action

to the follower vehicle, a series of reachable actions is

identified. With this series of reachable actions as the input

to a pose estimation filter of the follower vehicle, a set of

expected predictions of uncertainty for the follower vehicle

can be obtained. By computing the relative information based

on this series of expected uncertainties with respect to the

uncertainty of the state of the leader vehicle, a desired action

for the follower vehicle can be obtained by selecting the

action that yield a minimum relative information for the

system.

Relative Information

As the relative information formulation will be used in

this paper, a summary of the concept is included here.

Relative information (K-L distance) [11] is a matrix that

quantifies the closeness of two probability density functions.

The K-L distance is defined as:

Rp,q =

∫

Q(x) · log
Q(x)

P (x)
dx (1)

and in discrete form:

H(Q‖P ) =
∑

xi

Qxi
· log(

Qxi

Pxi

) (2)

where Q and P are the two distributions to be compared. If

the two distributions are similar, then their K-L distance will

be close to zero. [H(Q‖P ) ≥ 0 with equality if and only if

Q = P ].
K-L distance is a measure for the goodness of fit or

closeness of two distributions. As compared to information

gain measure, whereby the change in entropy only quantifies

how much of the probability distributions changes, the K-L

distance represents a measure of how much the distribution
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has moved. For example, if P and Q are the same distri-

butions, translated by different mean values, the change in

entropy (ie., information gained), is zero whereas the relative

entropy is not.

For the case of two Gaussian distributions [12][13],

H(Q‖P ) =
∑

xi

Qxi
· log(

Qxi

Pxi

)

=
1

2
log

|ΣP |

|ΣQ|

+
1

2
Tr{Σ−1

P (ΣQ − ΣP )}

+
1

2
(µQ − µP )T Σ−1

P (µQ − µP ) (3)

where (µP , ΣP ) and (µQ, ΣQ) are the mean and covariance

matrices pair for distributions P and Q respectively. The

first term on the right hand side, of the second line, of

equation 3 represents the information gained, the second

term represents mutual information and the last term is

actually the Mahalanobis distance of the two pdfs. From

equation 3, if the uncertainties of the two distributions to

be compared are of the same magnitude, the K-L distance is

exactly the same as the measure of the Manalanobis distance.

Whereas, in the case of the two distributions having the same

mean values, the K-L distance measures the information

gained and the mutual information. Hence, the K-L distance

formulation compares both the mean and covariance of the

two distributions under consideration.

II. PROBLEM FORMULATION

A. Bayesian Formulation for Vehicle Following System

For vehicle following systems, the poses, of the follower

and leader vehicles with respect to a known reference frame,

or the relative poses of the vehicles, are needed. Math-

ematically, the complete vehicle following system can be

formulated as a probability density function (pdf)1:

P (xF,k,xL,k|Uk,Zk) (4)

where xF,k and xL,k are the poses of the follower and leader

vehicles respectively at time k, Uk = (u0, u1, ...., uk) is

the history of the control inputs (for example, the speed

and steering angle commands) of the follower vehicle, and

Zk = (z0, z1, ...., zk) is the history of sensor measurement

data collected up to, and including, time instant k. For

a tractable solution to the vehicle following problem, the

following usual assumptions are made:

• The vehicle following function is a Markov process and

the current measurement zk is independent of Zk−1

and Uk, when conditioned on the pose of the follower

vehicle. Hence,

P (xF,k,xL,k|Uk,Zk)

∝ P (zk|xF,k,xL,k)P (xF,k,xL,k|Uk,Zk−1) (5)

1The lowercase notation, eg xk denotes the current state and the up-
percase notation, eg Xk denotes the entire history of the state up to and
including time k.

• Two separate sensors may be used in the pose estimation

process. For example, odometry may be used for the

localization of the follower vehicle whilst a range sensor

may be used to acquire the pose of the leader vehicle.

Hence, the measurement vector Zk may be expressed

as two independent measurement vectors, when condi-

tioned on the pose of the follower:

Zk = (zp
0, z

r
0, z

p
1, z

r
1, ...., z

p
k, zr

k) = (Zp
k,Zr

k) (6)

where Z
p

k = (zp
0, z

p
1, ..., z

p
k) and Zr

k = (zr
0, z

r
1, ..., z

r
k)

are the proprioceptive sensor measurement vector and

range sensor measurement vector respectively, obtained

up to, and including, time k. Hence,

P (zk|xF,k,xL,k)P (xF,k,xL,k|Uk,Zk−1)

= P (zp
k, zr

k|xF,k,xL,k)

×P (xF,k,xL,k|Uk,Z
p
k−1,Z

r
k−1)

= P (zp
k|xF,k,xL,k)P (zr

k|xF,k,xL,k)

×P (xF,k,xL,k|Uk,Z
p
k−1,Z

r
k−1) (7)

• As the sensor measurement, z
p
k will be used for the

estimation of the pose of the follower vehicle, it will

not be affected by the pose of the leader vehicle. Then

z
p
k can be assumed to be independent of xL,k, when

conditioned on the current state of the follower vehicle.

Hence,

P (zp
k|xF,k,xL,k) = P (zp

k|xF,k) (8)

• In the vehicle following function, a control command

(e.g steering angle and velocity), to be issued to the

follower vehicle, has to be computed based on the pose

of the leader vehicle. This, will affect the future pose

of the follower vehicle. Thus, the state of the follower

vehicle is statistically independent of the state of the

leader, when conditioned on the history of the inputs

to, and observations made from, the follower vehicle.

Hence,

P (xF,k,xL,k|Uk,Z
p
k−1,Z

r
k−1)

= P (xF,k|Uk,Z
p
k−1,Z

r
k−1)

×P (xL,k|Uk,Zr
k−1) (9)

By consolidating equations 4 to 9, the formulation for the

vehicle following model can be factored as:

P (xF,k,xL,k|Uk,Zk)

∝ P (zp
k|xF,k)P (xF,k|Uk,Z

p
k−1)

︸ ︷︷ ︸

localization of follower

×P (zr
k|xF,k,xL,k)P (xL,k|Z

r
k−1)

︸ ︷︷ ︸

Tracking of leader vehicle w.r.t follower (10)

Thus, we can conclude that the joint posterior for the vehicle

following system can be factored into two separate estimation

processes, one for the localization of the follower whilst the

other is used to track the leader vehicle.
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B. Information Theoretic Vehicle Following

The formulation proposed in equation (10) relies on the

accuracy of the localization of the leader and follower

vehicles. If this is to be implemented, two main issues need

to be considered:

• Sensor uncertainty, which affects the performance of

the vehicle following system. The uncertainty in the

pose estimates of the leader vehicle must be considered

by the follower when determining its next control ac-

tion. Furthermore, possible consequences due to sensor

uncertainty that might cause vehicle following operation

failure has to be considered during implementation.

• Vehicle Constraints: Typically, a command is sent to

the follower vehicle so it can maneuver towards the

pose of the leader vehicle at time t. This is based on

the estimations of the leader pose from the follower

vehicle (c.f. figure 1). In practice, the alignment of the

follower vehicle at time t+1 may not allow it to attain

the pose of the leader vehicle at time t, mainly due to

the kinematic constraints.

Follower Vehicle

at time t

Leader Vehicle

at time t

Follower Vehicle

at time t

ICR

Leader Vehicle

at time t

Follower Vehicle

at time t+1

Follower Vehicle

at time t

(a) (b)

Fig. 1. Demonstration of vehicle kinematic constraints. a) At time t, the
follower vehicle observes the leader vehicle and estimates its pose. A control
command is generated based on the relative poses of both vehicles and the
follower vehicle kinematics. b) At t + 1 the vehicle follower reaches the
expected position. This may not match that of the leader vehicle at time t
due to the kinematic constraint of the vehicle.

To minimize the effects of sensor uncertainty and vehicle

kinematic constraints, the concept of relative information is

used to determine the control actions for the follower vehicle

to follow the leader vehicle closely. This has been made

possible by equation 10. Two probabilistic distributions,

representing the uncertainty of the poses of the vehicles, can

be obtained in the recursive estimation process and be used

in the computation of relative information.

III. GENERALIZED INFORMATION THEORETIC VEHICLE

FOLLOWING IN A FINITE TIME WINDOW

In general, the vehicle following algorithm can be formu-

lated in a finite time horizon [k, k + N − 1], where k is the

current time step and N is the finite time window size in the

time horizon. Suppose that the follower vehicle is controlled

by a set of actions at each time step denoted by

at = {ak, ak+1, ..., ak+N−1} (11)

where at for t = k, k + 1, ..., k + N − 1 is the vector

of actions specifying the control command issued to the

follower vehicle at time t. At every time step, the follower

vehicle makes observations about the leader vehicle. The

observation is denoted as

bt = {bk, bk+1, ..., bk+N−1} (12)

Let U
f
t and Ul

t denote the sets of uncertainty terms and

mean control values, for all time steps t defined earlier,

for the follower and leader vehicle, affected by the set of

follower actions and observations of the follower vehicle, in

the referred time horizon as follows:

Ul
t = {ul

it(ak, ak+1, ...., ak+N−1)|i = 1, 2, ....., nt} (13)

U
f
t = {uf

it(ak, bk, ak+1, bk+1, ...., ak+N−1, bk+N−1)

|i = 1, 2, ....., nt} (14)

where nt denotes the number of uncertainty terms at time

step t. The terms u
f
it and ul

it denote the ith uncertainty term

at time step t. The information theoretic vehicle following

problem can now be formulated as follows:

a =

arg min
a

C(H(Uf
j+1‖U

l
j)|j = k, k + 1, ..., k + N − 1) (15)

subject to the constraints

g(X(k),X(k + 1), ....,X(k + N − 1),

ak, ak+1, ...., ak+N−1) ≤ gth (16)

where C(.) is the composite scalar function representing

the K-L distance, H(.) is the K-L distance computed at

time j, X is the augmented state vector of both the leader

and follower vehicles, g(.) is the nonlinear constraint vector

function and gth is a constrainted threshold vector. The

constraints include the maximum allowable steering angle

of the vehicle, safe following distance and the allowable

following speed.

Equation 15 provides an unique decision-theoretic solution

to the vehicle following problem. In general, a control

command, such as velocity or steering angle, for the fol-

lower vehicle can be generated by analyzing the relative

information between the two vehicles over a certain time

horizon. However, optimization of equation 15 involves

complex computation, which involves multiple iterations of

optimization, which in turn consumes large computation

power, thus hindering the real-time control of the follower

vehicle. Hence, for implementation, the look-ahead time

horizon for optimization is limited to one time step, which

is also known as the greedy method.

A. Greedy Algorithm for Information Theoretic Vehicle Fol-

lowing

From equation 10, under the Gaussian distribution assump-

tions, it is possible to obtain the estimated poses of the

follower and leader vehicles by using recursive filters such

as the Extended Kalman Filter. At time t, let N(Xf
t , Qt)
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and N(X l
t, Pt) denote the normal distribution functions of

the estimated poses of the follower and leader vehicles

respectively. Qt and Pt are the covariances for the follower

and leader vehicles respectively. It is possible to predict the

pdf, at time t + 1, of the follower vehicle based on the

control command to be issued to the follower vehicle at time

t. Let Nc(t)(X
f

t+1|t, Q
f

t+1|t) denotes the predicted pdf of the

follower vehicle at t+1 based on a certain vehicle command

c(t). The aim of the greedy algorithm is to determine a

control command,ak, to be sent to the follower so it yields

a minimum K-L distance between the two distributions,

N(X l
t, P

l
t ) and Nc(t)(X

f

t+1|t, Q
f

t+1|t). Assuming that both

distributions are Gaussian, the K-L distance between them

can be computed as:

H(p‖q) =
1

2
log

|P |

|Q|

+
1

2
Tr{P−1(Q − P )}

+
1

2
(Xf

t+1|t − X l
t)

T P−1(Xf

t+1|t − X l
t) (17)

The optimization step for computing the control actions

for the follower vehicle is:

c = arg min
c

H(N(X l
t)‖Nc(t)(X

f

t+1|t, Q
f

t+1|t)) (18)

under the vehicle constraint of

αmin ≤ c(t) ≤ αmax (19)

where αmin and αmax denote the minimum and minimum

steering angle of the follower vehicle.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The simplified block diagram in figure 2 shows the two

feedback loops in the vehicle following system. The inner

loop comprises a motion controller that maintains the stable

traction of the vehicle. The outer loop guides the vehicle to

follow the estimated trajectory of the leader vehicle.

ControlControl

Vehicle
Following
Controller

VehicleVehicle

FollowingFollowing

ControllerController

Position
Speed

Dynamics

Position

Speed
Dynamics

VehicleVehicleActuationActuation
Tracking

Data
Tracking

Data

Virtual Trailer

model
Virtual Trailer

model

Operation

Commands
Operation

Commands

Vehicle Follower Controller

Reconstructed Model
Lead Vehicle

Reconstructed Model

Lead Vehicle

Lead

Vehicle
Lead

Vehicle
ControlControl

Vehicle
Following
Controller

VehicleVehicle

FollowingFollowing

ControllerController

Position
Speed

Dynamics

Vehicle

Model

VehicleVehicleActuationActuation
Tracking

Data
Extroceptive

sensor

Virtual Trailer

model
Virtual Trailer

model

Operation

Commands
Operation

Commands

Start/Stop

Vehicle Follower Controller

Reconstructed Model
Lead Vehicle

Reconstructed Model

Lead Vehicle

Lead

Vehicle
Lead

Vehicle

Odometry &
gyro data

Range/bearingState of leader veh.

Pose of
VT.

State of follower veh.

Fig. 2. Control block diagram for the proposed vehicle following system.

The follower vehicle is assumed to have on board sensors

that enable it to estimate the pose of the leader vehicle with

respect to the follower vehicle reference frame. The process

of implementing the vehicle following system can be sub-

divided as follows:

• Localization of the follower vehicle. For vehicle fol-

lowing system, a common reference is needed. In our

implementation, the odometry data and the information

from gyroscope were use to localize the follower vehi-

cle.

• Detection and tracking of the target vehicle. The pose of

the leader vehicle can be detected using a laser scanner.

To ensure a reliable and safe following distance, the use

of a virtual trailer (VT) link model has been proposed

by the authors [14]. In this model, the vehicle following

system is formulated as if the leader vehicle is pulling

a trailer. It was shown that, a VT containing at least 2

links of equal length is necessary for a follower vehicle

to be able to exactly execute the identical path of the

leader vehicle. It was also shown that a two link trailer is

a sensible choice, since increasing the number of links

would reduce the string stability of the platoon [15].

It is thus possible to command the follower vehicle to

safely follow the path of the virtual trailer link. The

purpose of this formulation is to improve the accuracy

and safety of vehicle following.

• Following the leader vehicle. The greedy method pre-

sented in III-A was implemented to determine the

control actions for the vehicle following function. First

the pose of the virtual trailer link model is estimated

based on the results of the localization and observation

acquired by the follower model. Next a series of possi-

ble steering commands are used as input to the compute

the predicted poses of the follower vehicle at the next

time step. The K-L distances are then computed and the

control action with the minimum K-L distance is then

selected.

A. Experimental Setup

The proposed method was validated using simulation

techniques. For this purpose, a well known simulator, the

USARSim (Urban Search and Rescue Simulator), developed

at Carnegie Mellon University [16], was used. This is

based on the industrial game engine Unreal Engine 2004

(www.unrealtournament.com). The Unreal Engine has been

deployed for the development of networked multi-player 3D

games, and, has solved many of the issues related to mod-

elling, animation and rendering of the virtual environment.

Furthermore, to some extend, the dynamics of the various

entities (e.g. our vehicles) can be handled by the in-built

Karma physical engine [17].

For experimentation purposes, two similar mass market

vehicles are simulated. An open test area on which the

vehicles can be run a different speed was built as shown

in Fig.3.

The leader vehicle was controlled by a standalone program

during the simulation. Its position was recorded as ground
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Fig. 3. Scenario built using the Unreal Game Engine. Both vehicles are
equipped with a 2D laser scanner attached to their front bumper.

truth. The follower vehicle was controlled by the K-L algo-

rithm embedded in the program.

To test the feasibility of the new vehicle following theory,

a S-Curve trajectory for the leader vehicle is generated. This

trajectory involved moving the leader vehicle in a straight

path, right turn, left turn followed by another left turn.

The trajectory represents constraint found in typical road

conditions whilst trying to challenge the controller response.

1) Performance Analysis: The purpose of this experiment

is to test the feasibility of the proposed vehicle following

algorithm. The leader vehicle is commanded to manoeuvre

in a straight path for about 150 time steps, make a right turn

for another 150 time steps and finally left turn for about 300

time steps. Figures 4 to 7 show the results of the run.

0 20 40 60
0

20

40

60

80

X (m)

Y
 (

m
)

Vehicle Ground Truth 
Follower
Leader

Fig. 4. S-Path Trajectory. The ground truth of vehicle trajectories.

In Figure 4, the error between the two trajectories are

rather small despite the trajectory following error as esti-

mated by the filter as shown in figure 4. As our algorithm

uses 1-step look ahead for vehicle following, this is effec-

tively a relative pose vehicle following. The small following

0 20 40 60
0

20

40

60

80

X (m)

Y
 (

m
)

Filter Output (Trajectory)
Follower
Leader

Fig. 5. S-Path Trajectory. Trajectories estimated by the filter.

0 200 400 600 800
−1

0

1

2

3

4

Time Step

A
n
g
le

 (
ra

d
)

Follower/Leader orientation

Follower
Leader
Virtual
Trailer Ang

Fig. 6. Orientations of the leader vehicle, the virtual trailer and the follower
vehicle as estimated by the filter.

0 200 400 600 800
−20

−10

0

10

20

30

40 Performance

Time Step

U
n
it
s

KL
distance(m)
Angle Diff (deg)

Fig. 7. Comparison of the KL distances with respect to the inter-vehicle
distance and the orientation difference.
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error as shown in figure 5 has suggested that the information

theoretic based vehicle is robust to cope with various kind

of maneuver.

In Figure 6, the orientation error, for time steps up to 150,

when following the leader trajectory, is almost close to zero

as expected for any vehicle following system moving in a

straight path. At time step 180, the leader vehicle started to

make a curve maneuver. From figure 6, we observed that

the orientation of the follower vehicle still maintained in

the straight moving angle for a period of time despite the

curve maneuver of the leader. This is the effect of the virtual

trailer link model as described in section IV. This is an

important observation as we do not want the follower vehicle

to start making turns when the leader vehicle has started the

curve maneuver, as there will always be latency between the

systems due to the vehicle inter distance and kinematics. The

result of the virtual trailer link model yield a better following

performance and hence prevent the follower vehicle from

hitting obstacles such as road curbs. There are, however,

orientation differences when the vehicles are maneuvering

on the curve path. This error is also expected as the two

vehicles should not be aligned in the same orientation when

they are travelling along a curve, the priority in this case is

to maintain a constant inter vehicle distance.

Figure 7 shows the performance of the information theo-

retic vehicle following algorithm. The inter-vehicle distance

is relatively constant throughout the run. Initially, from time

steps 0 to 50, the inter-vehicle distance increases in time.

This is mainly caused by the initial relative position of the

two vehicles. After the initialization of the vehicle following

algorithm, the inter-vehicle separation increases with time

until it reaches a separation equivalent to the total length

of the virtual links (4m for our case). As the separation

increases, the K-L distance increases. However, there exist

an acceleration period for the follower vehicle from the start

of the algorithm, hence, K-L distance increases with respect

to the inter-vehicle separation. This is due to the vehicle

dynamics, inertia needs to be overcome as the follower

vehicle moved and hence the increase in latency. Note that

the orientation difference between the leader and follower

vehicle increases from approximately 0o to 20o from time

step 150 to 200. This is the effect of virtual trailer link

effect. As the leader vehicle is starting to make the curve

maneuver, the follower vehicle is still in the straight moving

path, hence, the angle difference increases.

Overall, the K-L algorithm is able optimized the control

actions for the follower vehicle in achieving a close following

of the leader vehicle and at the same time maintaining a safe

following distance between the two vehicles.

V. CONCLUSIONS

An autonomous vehicle following system, that aim to

achieve close pursuing of a leader vehicle, has been formu-

lated by using an information theoretic framework. The aim

of this framework is to select an optimized control input

for the follower vehicle so as to minimize the pose error

between the follower and the leader vehicles. Under this

framework, the relative information (or K-L distance)has

been used as a matrix to evaluate a sequence of control

actions, to be input to the follower vehicle. Simlation results

have shown that the information theoretic vehicle following

system is robust and safe to implement. The system is robust

as the uncertainties of the poses of both of the vehicles are

considered during the execution of the vehicle following. A

safe following distance has been maintained throughout the

vehicle following process. However, in our experiment, only

the steering control of the follower vehicle is considered. In

order to optimize the system performance, multiple control

actions need to be considered as shown in figure 2. If there

is a priori information in the form of a digital road map, this

can be used as an additional observation and hence enhance

the information contend for the follower.
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