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Abstract— Vehicles will be in the next future equipped with
V2V telecommunication means to exchange data, such as the
presence of an obstacle on the road, or an emergency braking
notification. Vehicles are also more and more equipped with
perception systems (cameras, laser scanners, radars) that enable
them to explore the immediate environment, including other
vehicles. We propose in this paper an on-board optical vehicle
identification system to enable telecom and perception systems
to cooperate. The optical identification identifies which vehicle,
in the scene captured by the perception system, is sending
information via telecom.

I. INTRODUCTION

Using vehicle to vehicle telecoms to extend the perception

of local on-board systems like vision [5], laser scanners [4]

or radars [8] is an attractive idea. For example (see Fig. 1), a

collision mitigation application using stereovision techniques

can take advantage of information about the braking power of

the followed vehicle or an emergency brake event notification

via telecoms [6]. But to be relevant in a complex road

scene, where several vehicles are involved, the information

has to be localized, otherwise we have the knowledge of a

vehicle’s behaviour (speed, braking action) but are unable

to determine which vehicle of the scene is doing so. If

the followed and the following vehicles are accurately and

reliably localized, it is possible for the following vehicle to

match, in the scene captured by perception sensors, which

vehicle is sending relevant data. Unfortunately, GPS based

localization is not accurate enough to discriminate between

vehicles on different driving lanes, and if it were (differential

GPS), it would not be reliable since the GPS signal is masked

by tunnels, dense trees or urban canyons. So the need for

an optical identification system, that delivers the localized

identification of vehicles directly in the perception sensors

captured scene is strong.

For now, the main systems developed use automatic li-

cense plate recognition [1], or spatial pattern based tech-

niques [3]. These systems are limited by the accuracy of

vision sensors (which induces a range limitation). Other

systems use infrared light to extract the ID information from

the view. But they use simple, often binary ID symbols to

classify types of vehicles, rather than to individually identify

them [10]. A more suitable technology has been tested, that

combines two IR beacons with a common signaling protocol

by means of radio-communication to identify vehicles [9].

But this system is impeded by both the facts that it is
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vulnerable to partial occultation, and that it needs a radio

support signal to work. A system using two IR beacons at

the rear of vehicles to measure inter-vehicle distances uses

an optical identifier protocol (spatial and frequential), but the

purpose is to match the two corresponding beacons on each

vehicle [2]. So, a robust, vision-only, and long-range system

does not, to our knowledge, exist.

Fig. 1. Combining perception and telecoms.

In this paper we present an optical identification sensor

that enables middle to long-range identification, does not

rely on high resolution cameras and is not vulnerable to

partial occultation. In part II we give a description of our

sensor, from hardware to detailed software. Part III gives

some experimental material. Finally, in part IV we present

applications of the sensor to three cooperative perception

systems.

II. OPTICAL VEHICLE IDENTIFICATION

A. General Overview of the Sensor

1) Working Principles: The goal is to identify vehicles, or

more generally objects, in the road scene and localize them

in the reference system of the receiver-equipped vehicle. The

need to identify vehicles in a camera captured scene, without

having to detect spatial patterns, leads to a near IR solution.

The proposed system is a cooperative sensor, composed of

two parts: the emitter and the receiver.

Let us consider a car following another car and wanting

to identify it. Both cars have telecom means.

On the leading car, we attach a led-based infrared emitter,

which codes, using time-frequency digital coding (i.e. blink-

ing) the unique identification number of the car, for example,

its IP address. Time-frequency signals are more robustly and

farther perceptible by a vision sensor than spatially coding

signals, who are vulnerable to both partial occultation and

vision sensors resolution.
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Fig. 2. Overview of the identification algorithm.

On the following vehicle, we use a low-resolution,

high-frequency, infrared band pass filtered digital camera,

which detects and decodes the signal, and localizes it in

the same reference system as the perception systems. Thus,

each detected vehicle can be identified and the information

from radio-communication and optical sources can be

merged. An overview of the complete process, from image

acquisition to delivery of the identified objects to other

perception applications is presented on Fig. 2.

2) The emitter: The emitter (Fig. 3) is composed of a

panel (named the lamp) of infrared emitting leds (SFH 484-

2 emitting at peak 880nm in our prototype), an electronic

command controller that generates the coding signal, and a

power controller delivering the necessary electrical power.

The leds could easily be integrated in the rear lights.

Fig. 3. Prototype of the emitter lamp.

The digital coding signal conforms to a protocol (Fig. 4).

A cycling frame is emitted permanently, containing a start

sequence (4 bits), the usable code (identifier, as many bits

as necessary), a 0 and a parity bit.

. . . Start Code Id Code ’0’ parity . . .

Fig. 4. Emitter signal protocol.

3) The receiver: The receiver is a high-frequency digital

camera which captures the image of the road scene, and a

processing algorithm which decodes and localizes the signal

from the emitter. The camera is equipped with a bandpass

near infrared filter.

B. Low-level Detection Algorithm

A low-level algorithm (Fig. 2-a) processes the input image

to extract the spots corresponding to emitters. Most false

detections (other infrared sources like sky, vegetation) are

eliminated by shape analysis. The order of operations is:

1) IR-filtered image is acquired. Emitters appear like

bright round spots (Fig. 5-b).

2) Image is binarized using a threshold, so that only the

brightest pixels are kept (the most IR emitting sources)

(Fig. 5-c).

3) Regions are made more consistant, less fragmented,

using morphological dilatation.

4) White pixels are clustered: each connected region is a

labelled cluster (Fig. 5-d).

5) Regions are accepted or rejected depending on their

size and roundness. Large regions, corresponding to

the sky, and regions which don’t look like a spot,

for example pieces of vegetation, are rejected. The

algorithm used to determine the roundness of a region

computes the rate of pixels of the region inside its

circumcircle.

Accepted spots are named targets. Some objects, like solar

reflections or vehicle or traffic lights appear like spots and

are then accepted. We will see in the next paragraph that they

are eliminated by the high-level tracks filtering algorithm.

Fig. 5. Low-level Image Analysis.

C. High-Level Filtering, Tracking and Decoding

A high-level algorithm (Fig. 2-b) tracks detected targets

over time (in successive images) to follow their movement

and analyze their logical state (0=extinct, 1=lit). In the

following, a tracked target is named a track.

The tracking is based on a very simple neighborhood

prediction. The neighborhood in which a track is expected in

the next image is a region around the last position where it

was seen. As long as the track is extinct, the neighborhood

is growing, faster horizontally than vertically, because the

horizontal movement of the followed vehicle in the image is

obviously greater than its vertical movement. When the track

appears again, the neighborhood is reduced to the center of
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this new observation. A Kalman approach should improve

the results and will be explored in the future.

The observed states of each track are translated into bits,

which are recorded into a FIFO. This resulting bitstream is

continuously decoded as a message. Besides, a confidence

is attached to each track. A new track starts with maximum

confidence, and during the tracking, this confidence is man-

aged as follows (Fig. 2-c):

• If the message does not conform to the communication

protocol (Fig. 2-e), or if the parity bit of the message is

incorrect (Fig. 2-f), the track either is a false detection or

has a temporary communication error and is marked as

incorrect. It will continue to be tracked. Its confidence

keeps decreasing as long as the problem remains.

• If the track has been too long incorrect, i.e. the confi-

dence has reached zero, it is deleted and ignored in the

next images.

• If the message conforms to the communication protocol

and the parity bit is ok (Fig. 2-g), its code (identifier)

and localization in the image are attached to it. If the

track was incorrect before, its confidence increases, but

it remains incorrect as long as the confidence has not

reached its maximum value. The confidence increase is

quicker than the decrease, to avoid accumulating too

much delay when a track is temporarily incorrect due

to short masking for example. Of course, The track will

continue to be tracked in successive images.

False tracks, created by solar reflections or vehicle and

traffic lights that passed the low-level image analysis, are

here eliminated because they don’t blink, or they blink

without conforming to the communication protocol (random

blinking).

Finally, valid tracks are output (Fig. 2-h) to the absolute

localization algorithm (Fig. 2-d) with their position in the

image coordinate system and their identification number.

Figure 6 shows three tracks. One, in thick white, is a

valid track and two, in thin grey, are invalid tracks. They

correspond to the front lights of a vehicle coming on the

opposite lane and are rightly rejected.

Fig. 6. Two bad tracks (thin) and one valid (thick).

D. Absolute Localization

Once the emitter-equipped objects have been detected,

identified and localized in the identification image, they have

to be localized in the coordinate systems of the other sensors

of the vehicle, in order to be shared (Fig. 2-d). For that

purpose, an absolute coordinate system Ra is defined. As

all sensors are rigidly linked to the car frame, they can all

refer to Ra. Therefore, whichever sensor is used, the absolute

localization problem finally consists in an inverse mapping

of the identified tracks into Ra. The position of the tracks

can then be transferred into any sensor’s coordinate system.

The only 2 camera coordinates (Uid, Vid) are not sufficient

to solve this 3 variable problem. This issue adds a new

constraint on the emitter: its height YL, relative to the road

surface, is supposed to be known. That constraint is not so

strong, since the height of the emitter can be coded into the

identifying code itself.

1) Geometrical Description: The geometry of our

receiver is presented on figure 7. The sensor is a video

camera represented by a pin-hole model whose behaviors

are: αu

id
and αv

id
, respectively the focal length measured in

pixels horizontally and vertically (pixels are rectangular),

and (U0
id

, V 0
id

) the projection of the optical center among

the image plane. The camera is placed in Ra on the

(X0
id

, hid, Z
0
id

) position. Yaw and roll angles are considered

null and constant. The pitch angle is θid.
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Fig. 7. Geometry of the identification sensor in the absolute coordinate
system.

2) Coordinate Transform: The easiest approach to local-

ization relies on a plane world assumption. Indeed, con-

sidering that the road surface is the (Xa, 0, Za) plane, and

according to the projection equations of the pin-hole model,

the coordinates (Xa, Ya =Yl, Za) of the emitter in Ra can

be easily computed using equation system 1.














Za = Z0
id

+
(YL+hid)(αv

id
cos θid−(Vid−V

0

id
) sin θid)

(Vid−V 0

id
) cos θid+αv

id
sin θid

Xa = X0
id

+
(Uid−U

0

id
)((YL+hid) sin θid+(Za−Z

0

id
) cos θid)

αu

id

(1)

In operation, hid and θid parameters can change signifi-

cantly, due to vehicle pitch. Thus, a pitch sensor is required

for a correct coordinate transform. For this purpose, any

inertial sensor could be efficient. Stereovision is also well

designed for that application. Indeed, as described in [5], the

height and pitch of the stereoscopic sensor can be retrieved

using the v-disparity approach, by analyzing the near road
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surface. hid and θid are then immediately deduced, because

the stereoscopic sensor is rigidly linked to the identification

sensor.

So, even if it is not mandatory, the use of a separate

stereoscopic sensor for the estimation of these parameters is

an interesting solution. Moreover, it may be used in parallel

for obstacle detection.

III. EXPERIMENTAL RESULTS

A. Scenarii

Here are the parameters which have an effect on the

experiments:

• speed of receiver-equipped vehicle

• camera iris aperture of the receiver. In all the following

test scenarii, we use an auto-iris, to have optimal iris

aperture for our application

• meteorological (light) conditions. A cloudy day has best

light conditions, and a sunny day, the worst ones

• camera framerate of the receiver (related to exposure

time), expressed in fps (frames per second)

• camera resolution of the receiver

• emitter frequency, expressed in Hz, equivalent to

bits/s. The ratio between the camera and the emitter

frequencies gives the number of acquired images per

bit emitted. This ratio, because of Shannon’s theorem,

must be greater than 2

Here are the features of the system that we wanted to

evaluate. They are:

• static identification range: maximum range where a

correct identification of the object is possible. Measured

on static emitter-equipped object, with static receiver.

We placed an emitter-equipped vehicle at the end of a

long straight portion of road, and we placed a receiver

at different longitudinal positions on the road until we

found the limit detection range.

• identification time: time between first detection of the

emitter and correct identification. Measured on static

emitter-equipped object, with static receiver. We chose

an optimal position for the receiver.

• false detection rate: number of false detections per

minute or km. Moving receiver (vehicle). We drove a

receiver-equipped vehicle on public roads with normal

to heavy traffic, during a reasonable time.

• non detection rate: number of emitter-equipped objects

not detected. Moving receiver. Measured on the here-

after explained dynamic scenario.

• dynamic identification range: same feature as the static

one, but measured on the dynamic scenario hereafter

explained. Static emitter (road sign), moving receiver.

• localization accuracy: measured by placing an emitter

on a vehicle moving away on a straight road. The

results of the absolute localization (among Za axis) are

compared to a reference, measured using a lidar, with

centimetric precision.

Dynamic scenario on test track: we placed emitter-

equipped road signs on the roadside, driving a receiver-

equipped vehicle at various known speeds. Despite the sys-

tem is mainly a vehicle identification sensor, we designed

the scenario with static emitters, in order to control the

previously listed parameters. And how could static emitters

be better employed than being attached to road signs? But

we also tested the system while following a car.

Begin

end

12

6

1

9

7

500 m

Fig. 8. Experimental Scenario.

Figure 8 shows the test track, and the positions of the

emitter-equipped road signs. Each road sign was emitting

an identifying code (number) which is shown on the figure.

The various positions of the emitters ensured that the receiver

detected them with various light expositions.

B. Results

In all experiments, we used a Pulnix greyscale high speed

CCD camera, in binning mode (320x120) to increase the

acquisition framerate and lower the CPU consumption. This

low resolution is sufficient because we do not detect spatial

patterns, but bright spots. The focal length was 12mm.

The computer ran a Pentium D 940 with 1Gb RAM, on

Windows XP. The emitters used 16 bit frames, including

start code and parity bit.

1) Static experiments: The main parameters here are a

null speed of the receiver and the emitter (static), a variable

camera framerate, thus a variable emitter frequency (accord-

ing to Shannon’s theorem). We tested the features with two

values of the meteorological conditions parameters: cloudy

and sunny day. The images per bit value is here a measured

value (during a calibration procedure), and not the theoretical

ratio between camera and emitter frequencies. The difference

is due to discretization artefacts and threshold effects.

TABLE I

STATIC EVALUATION OF THE PERFORMANCES.

Camera Frame rate 410 514 595 650

Camera exposure time (µs) 1000 500 250 100

Emitter frequency (Hz) 175 210 250 275

Images per bit 2.29 2.36 2.32 2.17

Id. range - Best case (m) 360 400 378 83

Id. range - Worst case (m) 65 110 107 62

Theoretical min Id. time (ms) 90 73 62 53

Id. time (ms) 105 100 76 65
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We can see on table I that the receiver has an optimal

identification range with an exposure time of 500µs, which

gives the best contrast between emitters and environmental

IR sources.

The theoretical identification time is given by the formula:

tth
id

= n ∗ ib/fc, where n is the total number of bits of a

message, including parity bit and start code sequence, ib is

the number of images per bit acquired, and fc is the camera

framerate. The experimental identification time is always

slightly greater than the theoretical one because the emitter

and the receiver are not synchronized.

The measured identification time for our optimal config-

uration is 100ms, which is a value that enables to identify

objects moving very fast, or to identify static objects while

driving very fast by.

So for the next presented experiments, we used following

combination of parameters: cameraframerate = 514fps,

emitterfrequency = 210Hz. The receiver algorithm

always runs in real-time, consuming an average 20% CPU.

2) Dynamic experiments: Table II shows the false de-

tection rate for a scenario on public road without emitter

equipped cars, by sunny weather (bad condition). We had a

few false detections due to solar reflections, with very little

duration.

TABLE II

FALSE DETECTIONS ON PUBLIC ROADS (WORST CASE).

Total scenario duration 16 min

Total scenario length 21 km

False detection occurrences 5

Total false detections duration 138 ms

Average false detection duration 28 ms

False detection rate (nb/minute) 0.31

False detection rate (nb/km) 0.24

For other dynamic features, we used the formerly pre-

sented scenario with emitter-equipped road signs on our test

track. The main parameters were: variable speed of receiver

(from 50 to 110km/h), cloudy day (good condition), and

emitters’ positions as shown on figure 8.

On table III, you can see the list of identified road signs:

#12, 6, 1, 9, 7 and the average identification range when

we drove along at different speeds. The standard deviation

from the average value is very low, so we only report here

the average values. This means that the tested features have

similar values at all different speeds.

TABLE III

RESULTS OF THE DYNAMIC EVALUATION.

road sign ID 12 6 1 9 7

avg. id. range (m) 282 109 42 170 236

non detections 0

false detections 0

The ranges depend on the location of the road signs. Road

signs #12 and 7 are seen from far away (Fig. 8) because they

are located on straight road portions. #1 appears on the image

just after the tight turn, so the range is short.

Figure 9-top shows what we call a chronogram of the

scenario and represents the identification code detected ver-

sus time. So you can see the history of the scenario: the

time a road sign is detected, the duration of the correct

detection (i.e. its identification range, knowing the speed of

the vehicle). It shows how the id ranges and times are related

to the positions of the road signs on the track.

Fig. 9. Chronograms of the scenario at speed = 90 km/h (top), and
following a vehicle (bottom).

Figure 9-bottom is another chronogram of the same sce-

nario, but this time we followed an emitter-equipped vehicle.

The interdistance varied between 5m and 100m. You can

see that the vehicle is continuously detected and identified,

apart from a short period of time in the tight turn, near

T ime = 12 (due to camera field of view). A short break in

the identification of road sign #12 appears after Time = 8,

because the road sign is momentarily masked by the leading

vehicle.

In a multi lane scenario, multiple leading cars were

correctly identified and tracked.

Other tests with this scenario were performed with less

optimal meteorological conditions (sunny weather). The id

ranges for road signs located on straight lines were reduced,

but remained compatible with the scenario and let us drive

the receiver at the same speeds, up to 110km/h.

Finally, we have similar results at different speeds of the

receiver-equipped vehicle, and the ranges are relatively high,

allowing interesting applications, as explained in part IV.
3) Localization Accuracy: The performances of the lo-

calization algorithm have been assessed using stereovision

as a height/pitch sensor (two 1/4 PAL video cameras, with

8.5mm lens, baseline 1m). Figure 10 gives the results of the

process among the Za axis.

The localization algorithm gives satisfying results on short

ranges (until 25m). For longer ranges, the accuracy decreases
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Fig. 10. Results of the absolute localization step in Za, compared to a
reference measured with a lidar.

because of the low vertical accuracy of each pixel. As ex-

pected, the accuracy is better when the identification camera

is configured in binning mode 2-2 (320*240 pixels) than in

binning mode 2-4 (320*120 pixels), but with no spectacular

improvement.

IV. APPLICATIONS TO COOPERATIVE

PERCEPTION

A. Telecom-Enriched Cooperative Detection

Let us consider a vehicle equipped with an obstacle

detection system that provides relative position and speed.

V2V telecom can provide high level information such as

event notifications, masked obstacle alerts or characteristics

of vehicles. As presented in figure 11, thanks to our iden-

tification system, the localized identifiers can be associated

with the corresponding detected objects. Then, the telecom

messages can be matched with their detected senders.

Fig. 11. Telecom enriched detection: a) a car is detected thanks to the
lidar and a message is received from vehicle 8. b) an object identified as
8 is perceived and localized in the scene. c) both detections are associated:
the car in front is sending an emergency brake message.

Besides, irrelevant messages can also be discarded by

filtering the identifiers outside the driving lane, using lane

marking detection or any path prediction algorithm.

The enriched perception system is adapted to design a

collision anticipation application. By extension, when apply-

ing this system to a pool of vehicles in a driving lane, it is

possible to dramatically reduce the global time of reaction

on a road event [6].

B. Cooperative Road Sign

If an emitter is placed on a road sign, you can detect and

recognize it with the onboard receiver in vehicles. This is

an alternative to other sign recognition systems, based on

vision, GPS and maps or WiFi tags.

C. Long Range Cooperative Detection

As our optical identification sensor is able to detect

equipped vehicles up to 300m, it can be used for long range

obstacles detection. A basic approach consists in just localiz-

ing the identified tracks in Ra. This kind of detection is not

precise enough for driving assistance purposes, but provides

seeds for more accurate vision systems. For example, when

stereovision is also in use in the vehicle, the identified tracks,

localized in Ra can be used to define a region of interest in

the stereoscopic images. Then, the distance to the obstacle is

more precisely measured by stereovision. Moreover, using a

confirmation strategy [7] can lead to a very robust detection,

extending or replacing lidar capabilities.

V. CONCLUSION

This paper has presented a vision-only identification sys-

tem, which is long-range and computation cost effective. It

has proved to be efficient in many road scenarii. It enables

to combine V2V telecoms with shorter range perception

systems to make possible applications like extended or

enriched perception. Besides, other applications like smart

road signs have been successfully tested. Future works will

deal with the improvement of the localization algorithm in

case of non plane roads. Afterwards a complete evaluation

of the performances of the sensor will be driven.
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