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Abstract— Path planning procedures belong to the key soft-
ware elements for advanced driver assistance systems includ-
ing vehicle following, lane-keeping, lane-changing, or collision
avoidance. One approach to realize an integrated driver assis-
tance on the guidance level is based on an elastic band immersed
in a potential field hazard map. This paper presents an exten-
sion of this elastic band path planning method, incorporating
the vehicle dynamics in the elastic band. It is shown that this
measure enhances the drivability of the planned paths.

I. INTRODUCTION

In the near future, drivers will more and more share vehicle

guidance with assistance systems. For these advanced driver

assistance systems, path planning modules are among the key

software modules.

To date, various path planning and motion planning ap-

proaches have been proposed for automotive applications,

depending on the type of maneuver for which they are

provided. For example in [1] a behavior-based approach for

autonomous driving is chosen. Therein, the trajectories to

execute a lane-change maneuver are computed from a linear

bicycle model. Likewise, in [2] a behavior-based approach

is developed. However, the trajectories are generated by

applying geometric path planning with simple functions like

sinusoids. An advanced geometric path planning concept is

proposed in [3], for example. Along the corridor in front

of the host-vehicle points are fixed, which fulfill the geo-

metric constraints. Two-dimensional splines of the order five

interpolate between neighboring points. By using the Bezier-

method the course can be locally adapted to sudden changes

in the environment. For collision-avoidance maneuvers, [4]

uses a kinematic path planning. The trajectory for evasion

maneuvers follows from the kinematic relation between the

lateral acceleration and the curvature and the assumption

of a sinusoid variation of the lateral acceleration. The path

planner in [5] generates possible paths from a smoothed

version of a given base trajectory, but with varying lateral

offsets to avoid collisions with static obstacles. The lateral

offsets are computed from a bicycle model. To select the best

path, constraints like the imposed corridor or the number of

obstacles under the path are evaluated.

Another choice to address path planning tasks are potential

field methods. In robotics, potential field based methods
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for motion planning, introduced by [6] and [7], are well

established, see for example [8]. In [9], and in [10] a potential

field based path planning approach using elastic bands is

proposed. The advantage of this path planning approach

among other approaches like geometric path planning is,

that traffic objects directly influence the path planning in

a temporally and spatially predictive manner. It includes the

extrapolated motion of traffic objects in the path planning

and does not restrict the planned path to a certain geometric

function. However, a measure of drivability, that contributes

in shaping the path is not included yet.

To rid the method of this shortcoming, an additional

internal potential is introduced within the potential field

framework of the elastic band method. This potential in-

fluences the path to minimize the predicted tire forces that

would be necessary to follow the path. After an overview

over the existing method of elastic bands, in a first step the

(inverse) vehicle dynamics are analyzed for a given path to

determine the expected necessary forces at the tires. Then an

additional internal potential V dyn is defined and integrated in

the method of elastic bands, to plan a drivable path based on

the previously mentioned analysis of the inverse dynamics.

Finally, simulation results are presented.

II. ELASTIC BAND PATH PLANNING

The method of elastic bands is a potential field method for

collision-free path planning in the presence of obstacles, haz-

ards and obstructions, see [10]. The elastic band is comprised

of discrete nodes that are interlinked with springs as shown

in Fig. 1. It represents the planned path for the vehicle. The

velocity is controlled by the driver. The vehicle’s velocity

is extrapolated assuming a constant acceleration based on

the current driver input. This information is included in the

path planning for example with regards to the extrapolated

positions of the obstacles.
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Fig. 1. Concept of elastic bands
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The environment, that is the road borders and obstacles,

is represented by a potential field hazard map, further also

called external potential V ext. An example of such a hazard

map for a straight road with two static obstacles is shown in

Fig. 2. A high potential signifies a high potential hazard, a

low potential a low hazard.

Fig. 2. Example of potential field hazard map (right: contour plot)

The external potential results as the sum of individual

potential for the right and left border of the road, V Br
i

and

V
Bl

i , and all obstacles Oj , V
Oj

i

V ext ( r
Pi , r

Br , r
Bl , r

Oj , t) = V Bl ( r
Pi , r

Bl) +

V Br ( r
Pi , r

Br) +

jmax∑

j=1

V Oj ( r
Pi , r

Oj , t) , (1)

where r
Br , r

Bl denote the position vectors to the corre-

sponding points on the right and left border of the road and

r
Oj the position vector of the relevant point on the obstacle

Oj . The motion of the obstacles is extrapolated based on

their dynamic state. For more details refer to [10].

All external potentials are defined logarithmically:

V Br ( r
Pi , r

Br ) = −kBr · ln (‖ r
Pi − r

Br‖) , (2)

V Bl ( r
Pi , r

Bl) = −kBl · ln (‖ r
Pi − r

Bl‖) , (3)

V Oj ( r
Pi , r

Oj ) = −kOj · ln (‖ r
Pi − r

Oj‖) . (4)

The external potential “pushes” the elastic band away from

hazards and guarantees a collision-free trajectory. The re-

pelling force F
ext

i
on each node Pi caused by these external

potentials is defined as the gradient of the potential

F
ext

i
= −∇

r
Pi V

ext. (5)

Besides the external potentials, there exist also internal

potentials, the spring-potentials of those springs interlinking

the individual nodes of the band. These potentials prevent

the band from “diverging” and ensure a “smooth” path. The

internal spring potential of the spring between the nodes Pi−1

and Pi is defined as

V spring

i ( r
Pi , r

Pi−1 ) =
1

2
kspring (‖ r

Pi , r
Pi−1‖ − l0)

2
, (6)

where l0 denotes the relaxed spring length. The total internal

potential V int results as the sum of all individual spring

potentials

V int =

N∑

i=1

V spring

i
. (7)

The internal force caused by this potential is computed

analogously to the external forces as the gradient of the

potential

F
int

i
= −∇

r
Pi V

int. (8)

The solution to the motion planning problem, i.e. the

planned path, is now defined as the equilibrium solution for

the elastic band, where

F =

N∑

i=0

( F
int

i
+ F

ext

i
) = 0 (9)

for all Pi, with i ∈ {0, N}.

III. INVERSE VEHICLE DYMANICS

The goal of this section is to analyze the vehicle dynamics

and to calculate the necessary inputs and all tire forces for

the vehicle to follow a certain desired path. For this purpose,

a linear single-track model is used.

A. Vehicle Model

In order to derive the inverse dynamics, a linear single-

track vehicle model is used. Here, the two tires of one axle

are collapsed to one single tire in front and one in back. The

center of gravity CG is assumed to lie on the road surface.

Therefore, roll and pitch degrees of freedom are removed.

The model is displayed in Fig. 3 and 4. The forces and

velocities are depicted in Fig. 3, the used reference frames

are shown in Fig. 4.

d

d

lR

lF

c
.

V

V xeV ye

Fx

WF*

Fy

WF*

F

P WF*
v

aWF

aWR

F t

P CG
v

F

P WR*
v

Fy

WR*

Fx

WR*

Fig. 3. Single-track model: forces and velocities

The planning-fixed reference frame 6-P is an inertial ref-

erence frame and remains fixed during the path-planning.

The vehicle-fixed reference frame 6-V lies in CG with its x-

axis pointing in longitudinal vehicle direction and the y-axis

pointing to the left. In difference to 6-V, 6-F is rotated about

the side-slip angle β, such that the vehicle’s velocity with

regards to 6-P has the form

P
v

CG = P

V
vCG

x V
e

x
+ P

V
vCG

y V
e

y
= P

F
vCG

F
e

t
. (10)

The distances from CG to the front and rear axle are denoted

lF and lR, respectively. The width of the car is given by d.
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Further, the steering angle δ and the slip angles αWF and

αWR are indicated. The guidance reference frame 6-G lies

on the desired path Pd where the distance to the vehicle’s

center of gravity CG is minimal such that the
G
e

n
-axis points

towards CG. The resulting equations of motion read as




mV 0 0
0 mV 0
0 0 ΘCG

z









P

V
v̇CG

x

P

V
v̇CG

y

χ̈





︸ ︷︷ ︸

inertiaterms

+





−mVχ̇
P

V
vCG

y

mVχ̇
P

V
vCG

x

0



 =

︸ ︷︷ ︸

gyroscopic terms

selfdynamics

F WR*

y





0
1
−lR





︸ ︷︷ ︸

non−controllable term

+

steer and selfdynamics

F WF*

y





− sin δ

cos δ

lF cos δ





︸ ︷︷ ︸

couplingterm

+ (11)

brake, accelerate and steer



F WR*

x
+ F WF*

x
cos δ

F WF*

x
sin δ

lF F WF*

x
sin δ





︸ ︷︷ ︸

controllable term

.

The tires are modeled linearly, such that the lateral forces

become

F γ*

y
= −Cγ

α
αγ , γ ∈ {WF, WR} , (12)

with the slip angles being

αWF = arctan

(
P

V
vCG

y
+ χ̇lF

P
V
vCG

x

)

− δ, (13)

αWR = arctan

(
P

V
vCG

y
− χ̇lR

P
V
vCG

x

)

. (14)

B. Kinematics

After deriving the vehicle model that tells us how certain

inputs influence the path of the vehicle, now the inverse way

shall be taken to see what variables are given if a certain

path is to be followed. The basic requirement is that the

center of gravity CG moves on a given trajectory Pd. For

this case the reference frames 6-F and 6-G are identical. By

a given trajectory, among others, the following inputs are

given: The velocity of CG, P

F
vCG

d
(s) = P

v
CG

t
(s)

F
e

t
, the

desired acceleration of CG P

F
v̇

CG

d
(s), the desired curvature

κCG

d
(s), and its derivative κ̇CG

d
(s). Based on this it is possible

to give a relation between the angular velocity of the center

of gravity CG of the vehicle and the curvature and velocity

given by the trajectory,

P

F
vCG

d Fet = −
(

χ̇ + β̇
)

Fez × R
CG Fen

=
(

χ̇ + β̇
) 1

κCG
d

Fet. (15)

Reformulating 15 leads to
(

χ̇ + β̇
)

= P

F
vCG

d
κCG

d
. (16)

The derivative of 16 reads
(

χ̈ + β̈
)

= ( P

F
v̇CG

d
κCG + P

F
vCG

d
κ̇CG) . (17)

Equation 16 and 17 can now be used to eliminate χ̇ and

χ̈ from 11 (3 equations) and 13 and 14, to be substituted in

12 (2 equations).

C. Necessary Inputs and Tire Forces

Now there are four known variables in five equations to

account for eight unknown variables:

P

F
vCG

d
, P

F
v̇CG

d
, κCG

d
, κ̇CG

d
⇒ β, β̇, β̈, δ, F WF*

x
, F WR*

x
, F WF*

y
, F WR*

y
.

Therefore, further simplifications are necessary. In order to

reduce the number of unknowns, steady-state cornering with

a constant velocity is assumed. Thus, β̇ and β̈ are zero

and are henceforth eliminated, leaving six unknown and two

known variables:

P

F
vCG

d
, κCG

d
⇒ β, δ, F WF*

x
, F WR*

x
, F WF*

y
, F WR*

y
.

The equations are linearized for small angles β and δ. In

addition, a relation between the longitudinal forces at the

front and rear axle is introduced as sixth equation, rendering

six equation for an equal number of unknown and two known

variables

−mV

P

F
vCG

d

2
κCG

d
β = CF

α
(β + κCG

d
lF − δ) δ +

F WR*

x
+ F WF*

x
, (18)

mV
P

F
vCG

d

2
κCG

d
= − CR

α
(β − κCG

d
lR) +

δ F WF*

x
−

CF

α
(β + κCG

d
lF − δ) , (19)

0 = lR CR

α
(β − κCG

d
lR) +

lFδ F WF*

x
−

lF CF

α
(β + κCG

d
lF − δ) , (20)

F WF*

y
= −CF

α
(β + κCG

d
lF − δ) , (21)

F WR*

y
= −CR

α
(β − κCG

d
lR) , (22)

F WR*

x
= a F WF*

x
. (23)

The distribution a of longitudinal forces between the front

and rear axle posted in 23 can be chosen arbitrarily with
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a ≥ 0. For a four-wheel driven vehicle it could be chosen

a ≈ 1.

Solving 18 to 23 for the steering angle δ, the side-slip

angle β and the tire-forces F
γ∗

x, y
results in

β =

(

lR −
lF mV

CR
α

(lF + lR)
P

F
vCG

d

2

)

κCG

d
(24)

δ =

(

(lF + lR) +
( CR

α
lR − CF

α
lF) mV

CF
α

CR
α

(lF + lR)
P

F
vCG

d

2

)

κCG

d
(25)

F WF*

x
=

1

(1 + a)

(
CF

α
lF

2 + CR

α
lR

2
)
mV

2

CF
α

CR
α

(lF + lR)
2

P

F
vCG

d

4
κCG

d

2
(26)

F WR*

x
=

a

(1 + a)

(
CF

α
lF

2 + CR

α
lR

2
)
mV

2

CF
α

CR
α

(lF + lR)
2

P

F
vCG

d

4
κCG

d

2
(27)

F WF*

y
=

lRmV

(lF + lF)
P

F
vCG

d

2
κCG

d
(28)

F Wr*

y
=

lFmV

(lF + lF)
P

F
vCG

d

2
κCG

d
. (29)

IV. INTERPOLATION OF PATH

In the previous section, the path was assumed to be given

in a continuous form. For the motion planning with elastic

bands, however, this is not the case. Here, the path is given

by a number of discrete nodes. Therefore, the question

arises how to determine the velocity and curvature from

this discrete representation of the path. These quantities only

have to be known at these nodes, not in between, since the

additional potential V dyn shall be defined only at each node.

The curvature at one node can be calculated from the

radius of the circle that is defined by itself and its two

adjacent nodes. This is illustrated in Fig. 5.

r
Pi-1 1/

i
k

P
iP

i-1

P
i+1

P xe

P ye
P

r
Pi r

Pi+1

r
Ci

Fig. 5. Curvature approximation over 3 nodes

The general equation for the circle reads

( r
x
− rCi

x
)
2

+
(

r
y
− rCi

y

)2
= R2, (30)

where R is the radius of the circle, r
Ci denotes the position

vector to the center of the circle and r is any point on the

circle. If now three nodes (Pi−1, Pi, Pi+1) are assumed to

be on the circle, we have three equations for three unknowns

(R, r
Ci
x

, r
Ci
y

). Thus we can solve for the curvature

κCG

d,Pi
= κ

i
=

1
√

(
r

Pi
x − r

Ci
x

)2
+

(
r

Pi
y − r

Ci
y

)2
. (31)

The velocity-profile is given by the driver. Based on the

current inputs to the brake and acceleration pedal, a constant

acceleration (positive or negative) is assumed (up/down to

a certain maximum or minimum velocity, of course). From

this, the velocity along the arc length s can be calculated.

Hence, the velocity at each node is known.

V. INTEGRATION OF VEHICLE DYNAMICS IN

ELASTIC BAND PATH PLANNING

Based on the calculations above and the noted simpli-

fications and assumptions, it is possible to determine all

necessary dynamic quantities for the single-track model

for a given trajectory to be followed. Further it has been

demonstrated how to calculate parameters like curvature and

velocity from a discrete representation of a path. These

results shall now be used to integrate the vehicle dynamics in

the motion planning such that the adhesion potentials at the

tires are maximized and more drivable paths result. For this

purpose, an additional internal potential for the method of

elastic bands is defined. The idea bases upon Kamm’s circle

as picture for the adhesion limit at each tire, as depicted in

Fig. 6.

Fx

Fy

mh xF

Adhesion Limit

Fres

Fmax

Fig. 6. Kamm’s circle

According to Kamm, the adhesion limit is given by a

radius of Fmax which depends on the tire load Fz and the

road-tire friction coefficient µh, as can also be seen in Fig.

6. Therefore, the total force Fres (geometric sum of x- and

y-components) at each tire must be smaller than Fmax, i.e.

it must remain inside Kamm’s circle

F γ∗

res
=

√

F γ∗

x

2 + F γ∗

y

2 ≤ µh F γ∗

z
= F γ∗

max
,

γ ∈ {WF, WR} . (32)

The tire loads at front and rear tire result from a static

equilibrium (since CG is assumed to be on the road surface

and no pitch degree of freedom exists). They are given by

F WF*

z
=

lR

(lF + lR)
mV g (33)

and

F WR*

z
=

lF

(lF + lR)
mV g, (34)

where mv denotes the vehicle’s mass and g the gravitation.

At this point we can already evaluate a planned path with

a given velocity profile with regards to its drivability by

calculating the necessary forces and comparing them with

the maximum forces from Kamm’s circle.
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The next step is to enhance the motion planning itself

in order to achieve more drivable paths by introducing

an additional internal potential. The new internal dynamics

potential V dyn shall be defined based on the ratio of the

necessary total force at each axle and the possible maximum

force. At each node Pi it is defined as

V dyn

i
= kdyn

[(
F WF*

res,i

F WF*
max,i

)n

+

(
F WR*

res
, i

F WR*
max,i

)n]

= kdyn





√

F WF*
x,i

2 + F WF*
y,i

2

F WF*
max,i





n

+

kdyn





√

F WR*
x,i

2 + F WR*
y,i

2

F WR*
max,i





n

. (35)

This potential is illustrated in Fig. 7.
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Fig. 7. Internal vehicle dynamics potential

Therefore, the total dynamics potential results as the sum

of the potentials at all nodes Pi

V dyn =
N∑

i=0

V dyn
i

, (36)

and the resulting dynamics force
P
F

dyn

i
that excites the

elastic band at the node Pi is defined analogously to the other

potentials of the method of elastic bands as the gradient of

the total dynamics potential

F
dyn

i
= −∇

r
Pi V

dyn. (37)

In order to integrate this newly defined potential into the

method of elastic bands, only 7 has to be redefined to

V int :=

N∑

i=1

V spring

i
+

N∑

i=0

V dyn

i
. (38)

The rest of the procedure to calculate collision-free and

drivable trajectories remains unaltered.

VI. RESULTS

The presented improvement has been implemented in the

method of elastic bands. The results for the path-planning

are shown for an example scenario with a straight, two-lane

road and one static obstacle about 50 meters in front of the

P xe

P
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P ye

V xe
V

*

V ye

200 m

1
,7

5
m

3
,5

m

50,01 m
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2
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k = 1000
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P CG

F dv = 10 m/s

= 20 m/s

= 30 m/s

Fig. 8. Example scenario with one static obstacle

host vehicle, as illustrated in Fig. 8. The trajectory is planned

for different constant velocities, 10 m
s

, 20m
s

, and 30m
s

.

For this example scenario the method of elastic bands

is used first without and then including the new internal

dynamics potential. Fig. 9 shows the resulting path(s) without

V dyn. As can be seen, the path is always the same and does

not depend on the velocity of the host vehicle.

8

x [m]

y [m]

Elastic Band for 10, 20 und 30 m/s
Obstacle
Planning Area

Fig. 9. Elastic band without new potential for different velocities

Based on 26 to 29, the necessary tire-forces can now be

calculated for this planned path. This is shown in Fig. 10.

The figure also indicates the maximum total tire force for

the front and rear tire of the single-track model according

to Kamm’s circle. The resulting curves are not very smooth,

since they consist of discrete values only for each node of

the elastic band.

It can be seen that the necessary force exceeds the max-

imum for higher velocities. This indicates, that the path is

not drivable as it is planned. The exceedingly high necessary

forces occur mainly around the position of the obstacle. In

addition, a short high peak can be seen at the very beginning.

This peak is due to the fact that the first two nodes are fixed

during the path-planning which results in a sharp bend at

the second node. Without further modifications this cannot

be prevented.

When introducing the newly defined internal dynamics

potential, the planned paths result as shown in Fig. 11. The

most obvious difference is that now the paths depends on

the vehicle’s velocity. The faster the host vehicle, the lower

the curvature of the planned path. This can be seen more

precisely in Fig. 12, where again the curvature and tire forces

are shown for the planned paths.
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Fig. 11. Elastic band with new potential for different velocities

It can be seen that the necessary forces around the obstacle

have been reduced, creating a more drivable path.

VII. CONCLUSIONS AND FUTURE WORKS

Now it is possible to estimate the drivability of a certain

path that is given either in continuous form or as a set

of discrete points. Further a method has been shown to

integrate the vehicle dynamics into the motion planning with

elastic bands and therefore enhance the drivability of the

planned paths. Thus, the mentioned disadvantage that the

method of elastic bands had until this point has been greatly

reduced. Due to some assumptions that had to be made along

the way (road-tire friction coefficient, tire-loads, single-track

model, stationarity, constant velocity) this method is not

exact. However, it can provide a good first estimate to reject

paths that do not seem to be drivable at all or to enhance the

planned motion within the planning method.

For the future, enhancements are planned to overcome

the initial peak-curvature and to study the effects this new

potential has when included in the overall assistance system.

Further, the equilibrium position of the elastic band is

given by a system of nonlinear equations (9). The solution

of this equation requires an iterative numerical procedure.

Unfortunately, the introduction of the new dynamics potential

has increased the number of necessary iterations. Therefore,

future efforts also have to aim at a reduction of the number of
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Fig. 12. Curvature and forces with new potential for different velocities

iterations and calculation time to reach a real-time capability.
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