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Abstract— We address the problem of determining the path of
a vehicle on a given vector map of roads, based on tracking data
such as that obtained from onboard GPS receivers. We describe
a method that is based on a piecewise matching of track
segments to map features. A notable feature of our method
is that it is applicable to a large class of existing methods.
We discuss metrics for evaluating the output of map-matching
methods and briefly describe our implementation of a map-
matching system based on our methods.

I. INTRODUCTION

The map-matching problem is, in general, the problem

of correlating the path of a vehicle to a vector map of

roads or other features. There are several variants of this

problem, based on the kinds of input data and the desired

output. On the output side, we may be interested in either the

instantaneous (current) position of a vehicle or a sequence

of recent or historical positions. On the input side, we may

use data from sources such as onboard GPS receivers, dead-

reckoning systems, and computer vision systems [12], [8].

For concreteness, we focus on GPS data in this paper;

however, our method is also applicable to other systems.

In the case of GPS-based map-matching, the dynamic

input consists of a sequence of time-stamped geo-coordinates

(track points), which we shall henceforth call the trajectory

data. The static input consists of a map of geographical

features in geocoded vector format, henceforth simply map.

Intuitively, our task is that of plotting the trajectory on

the map. This problem is nontrivial because the trajectory

data is typically subject to considerable errors, often with

magnitudes much larger than the distance between geo-

graphical features in the map. Thus, the 90% confidence

region surrounding a track point may encompass several map

features. Further, an implicit requirement is that the vehicle

path produced as output be consistent with topological and

other constraints induced by the map features. For example,

the path cannot jump from a highway to a local road unless

there is a suitable connection between the two, such as

an exit ramp. Similarly, travel along local roads must be

consistent with their interconnections. Thus, although the

distance between two parallel roads may be very small, the

path cannot transition from a position on one road to that on

the other if there is no connecting cross street.

There are two major sources of errors in the trajectory

data. The first is GPS measurement error, which arises
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from the inherent limitations of GPS methods. Typically,

measurement error in time and the three spatial dimensions

is modeled using random variables with a Gaussian dis-

tribution. The positional accuracy may be described using

a bivariate normal distribution corresponding to the two

horizontal spatial dimensions, as depicted by Fig. 1. The

standard deviation of this distribution provides a measure of

the accuracy. Although the standard deviation can be quite

low in the best case, around 3 meters, it can increase several-

fold due to tree cover, urban canyons, and other problems.

The second source of errors in the trajectory data is the

limited sampling rate. A vehicle moving at highway speeds

may cover a considerable distance between two consecutive

readings from the GPS receiver, often crossing multiple

features in a map.

Early methods for map-matching may be broadly classified

into those based on geometry and those based on topology.

The former use primarily geometric calculations of distance

and orientation to determine a vehicle’s path on a map.

Although intuitively appealing, these methods are known

to suffer from significant drawbacks because they do not

consider the topological constraints induced by a map [6].

Topological methods use the topology of map features to

constrain the set of potential matches for a track point.

For example, given prior positions on a road, several ge-

ometrically close roads may be removed from consideration

because there is no way to go from one to the other or,

more generally, because the shortest route from one to the

other is longer than some threshold based on vehicle speed

and other factors. Although these methods are less likely

to generate topologically infeasible paths, they suffer from

two related problems: First, determining a globally consistent

and optimal (best match) path using such methods is very

resource-intensive and often practically infeasible. Second,

when used in a local manner (to improve efficiency), these

methods may not always yield a solution unless unlimited

backtracking is allowed, in which case the methods are again

likely to be very resource-intensive. For example, consider a

road that splits into two almost parallel, but slowly diverging

roads, as suggested by Fig. 2. An initial error of choosing the

wrong road can remain undetected for a long time, until the

distance between the diverging roads grows large, requiring

unbounded backtracking for a guaranteed solution. An actual

case produced by our map-matching system is depicted in

Fig. 3.

For efficiency reasons, many methods for map-matching,

whether based on geometry, topology, a combination, or

other hybrid techniques, operate on the trajectory in a piece-
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Fig. 1. Positional accuracy model. The horizontal axes are labeled x and y,
with x being the direction of travel. The ellipse outlines a 90% confidence
region. A projection of the bivariate Gaussian probability density function
on the y = 0 plane is suggested by the dashed lines.

Fig. 2. The need for unlimited backtracking due to topological constraints.
The bifurcated line represents roads diverging from a fork and the arrow
denotes the general direction of travel. Triangles represent track points while
circles represent map points. The filled triangle represents the most recent
track point. Although this point lies very close to the upper fork of the road,
a topology-guided method may be forced to map it to a point in the lower
fork (filled circle) well outside the elliptical error region (solid ellipse) of the
track point due to an erroneous decision much earlier, when the two forks
were well within the error region (dashed ellipse). The situation cannot be
remedied in a topologically consistent manner without backtracking that
changes the earlier choice of the upper fork.

wise manner. For example, a geometry-based method may

compute the best fit between trajectory points and map roads

based on trajectory pieces that are limited using trajectory

points (e.g., 10 points) or the induced distance (e.g., 100

meters). In this manner, the complexity of computing a best

fit can be controlled. Similarly, a topology-based method

may limit the complexity of the combinatorial process of

matching points to line segments in a map by computing the

match 10 points at a time. We shall henceforth refer to such

pieces of the trajectory as segments.

In this paper, we do not propose a new, stand-alone method

for map-matching. Instead, we propose a method that can be

used to improve many existing segment-based methods, as

well as other methods adapted to segments. Although our

modification is applicable to a variety of such methods, for

concreteness, we shall present our work in the context of

one specific method: a simple incremental method that uses

a combination of geometric and topological ideas.

The rest of this paper is organized as follows. Section II

describes two simple, point-wise methods for mapping a

trajectory to paths in maps. The first method is based on

making decisions by examining one track point at a time

while the second uses a limited amount of look-ahead. Our

main purpose in presenting these methods is to establish a

Fig. 3. A screenshot of a portion of the display area of the GeoTrackMapper
system (Section V) illustrating a real case similar to the conceptual example
of Fig. 2. The solid line represents the path of actual travel. The dashed line
that meanders around this solid line is trajectory of track points. The thicker
dashed line is the map path computed by our method when used without
backtracking. We note the large error near the top right: The computed path
wanders off into an area that is very far from the nearest track points. This
error is caused by the topological constraints induced by the road network.
The incorrect choice was made at an earlier point in the path: the crowded
corner near the top left.

concrete context for describing our segment-based improve-

ments. These improvements are the topic of Section III,

which describes a static segmented path-matching method

followed by a dynamic version that enables the underlying

map-matching method to update accuracy estimates based

on partial results. Section IV addresses the topic of measur-

ing the quality of a map-path produced by map-matching

methods by quantifying its divergence from the real path, if

known, and the input trajectory. Our implementation of the

GeoTrackMapper system based on these ideas is described

briefly in Section V. Related work is described in Section VI

and Section VII summarizes our work and outlines ongoing

work.

II. MAP-MATCHING

In this section, we describe a simple map-matching

method that is based on a measure of similarity defined

between track points and candidate edges, where candidate

edges are the line segments that represent the roads of a

map. Briefly, the similarity between a point and an edge

is composed of two parts. The first quantifies how close

the point is to the edge, while the second quantifies the

similarity in orientation (direction). The specific details of

these calculations, which are found in prior work [11], [7],

are immaterial for our purposes, and we therefore skip them

in this paper. For our purposes, all that is needed is an

encapsulation of the similarity measure between a track point
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x and a map feature f in a function SIM(x, f).

Using the similarity function SIM, we can match each track

point x in a path P = P [1], P [2], . . . , P [m] in order by

selecting the candidate feature that maximizes the similarity

score. The candidate features are those that are connected

to the feature matched to the previous track point. This

procedure is summarized as POINTMATCH in Listing 1. In

that listing, P is the input trajectory (sequence of track

points), G is the map, i is the index of the track point to

be matched, and M is an array storing the matching. That

is, the feature matched to track point P [i] is stored in M [i].
The function CONN(f) returns the set composed of the given

feature f along with all features connected to it, based on

the topology of the underlying map. For example, if a track

point P [3] is matched to a road r, then CONN(M [3]) returns

r and all roads connected to r. As is the case with SIM,

our method does not depend on the details of how CONN is

implemented. The implementation may be a simple test for

connectivity or a more sophisticated test that incorporates

direction and other attributes. If there is no previous track

point, or if the feature matched to the previous track point

is unavailable, then the candidate features are those within a

distance T from the track point. Such features can be located

efficiently using standard techniques [25].

Listing 1 Match the ith point in path P to a feature in

map G, storing results in M .

1: procedure POINTMATCH(P,G, i,M )

2: P = P [1] . . . P [m]; M [0] = ⊥
3: if M(P [i− 1]) 6= ⊥ then

4: C ← CONN(M(P [i− 1]))
5: else

6: C ← {f ∈ G | d(P [i], f) < T}
7: end if

8: M [i]← argmaxf∈C SIM(P [i], f)
9: end procedure

Procedure POINTMATCH considers each track point only

once. The CONN function is implemented to run in time

proportional to the number of connected features [9]. Over

the entire run of POINTMATCH, each connection is accessed

at most twice (once from either end). Thus the total time

required by CONN is O(|G|), where |G| denotes the size

of the map. We can locate the features as indicated on

line 6 using multi-dimensional orthogonal range queries

in O(log |G| + |C|) time using a data structure that uses

O(|G| log1+ǫ |G|) space [2]. Here |C| denotes the size of

the result, as on line 6, and is expected to be small. The

time spent on line 8 is m · |C| times the time required by

the similarity function SIM. (Recall that m is the number of

track points in the input path P = P [1], P [2], . . . , P [m].)
Thus, the overall running time is O(m · log |G|+m · |C| ·S),
where S is the time required by an invocation of SIM.

Although POINTMATCH provides a simple method for

matching track points to map features, it does not provide

satisfactory results on typical real data. Intuitively, the main

problem is that it matches each point almost individually,

considering only the feature matched to the immediately

preceding point, if any. In particular, it does not consider

the ramifications that matching a point to a feature has on

the feasible matchings of later points. As indicated by our

example in Fig. 2, a locally optimal choice may force the

choice of a poor solution later in the trajectory.

Listing 2 summarizes a method that matches a track point

to a map feature using a strategy of limited look-ahead.

Instead of simply picking the feature that maximizes the

point-wise similarity function, as done by POINTMATCH, the

for loop of line 11 recursively computes, for each candidate

feature f , the aggregate similarity of matching the next l
track points, subject to the assumption that the current point

is matched to f . The matching M ′ is used to hold a working

copy of M during these computations and the final choice

of a feature to match P [i] is the one, f∗, that yields the

maximum aggregate similarity. Although we compute the

aggregate similarity by assuming a matched feature for each

of the next l points, only the matching of the point P [i] is

finalized. That is, the points are still matched one at a time.

Listing 2 Match the ith point in path P to a feature in map

G, storing results in M and using a lookahead of l points

in the path. The function returns the similarity between the

matched point and the track point.

1: function LOCALMATCH(P,G, i,M, l)
2: P = P [1] . . . P [m]; M [0] = ⊥
3: M ′ ←M
4: if M ′(P [i− 1]) 6= ⊥ then

5: C ← CONN(M ′(P [i− 1]))
6: else

7: C ← {f ∈ G | d(P [i], f) < T}
8: end if

9: f∗ = ⊥
10: v∗ = −∞
11: for all f ∈ C do

12: M ′[i]← f
13: v ← SIM(P [i], f)
14: v ← v + LOCALMATCH(P,G, i + 1,M ′, l − 1)
15: if v > v∗ then

16: v∗ ← v
17: f∗ ← f
18: end if

19: end for

20: M [i] = f∗

21: return v∗

22: end function

In offline map-matching, the entire trajectory is available

and the LOCALMATCH method can be applied directly as

described above. In online map-matching, the trajectory is

available as it develops in real time. In this case, we may

interpret the limited lookahead as an option for limited

backtracking by reversing the direction of the lookahead.

That is, instead of examining the next l track points to
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determine the matching of the current one, we reexamine the

last l track-points to determine if we should alter an earlier

match based on the newly arrived track points. Using an

analysis similar to that for POINTMATCH, we can determine

that the running time of LOCALMATCH is at most l times

that of POINTMATCH.

III. SEGMENT-WISE MATCHING

The description of the previous section implicitly assumed

that map-matching benefits from considering more than one

point at a time. When the track points in the input have

very similar positional accuracy, this assumption is valid.

However when, as is often the case, the positional accuracy

of track points varies significantly over the trajectory, this

assumption is not valid. For example, it is very common

for the positional accuracy to drop significantly (i.e., the

standard deviation to rise significantly) when a vehicle enters

an area with tall buildings or dense tree cover. In such cases,

a look-ahead that includes the low-accuracy track points may

degrade the quality of the solution by causing mismatches for

near-by high-accuracy track points. Intuitively, we would like

to strike a balance between using a larger number of track

points (larger look-ahead) of, in general, lower accuracy and

using a smaller number of more accurate track points.

Our segment-based matching methods build on the above

idea. We use a function SCORE to encapsulate the varying

effectiveness of track points for the purpose of accurate

matching. As with functions SIM and CONN of the previ-

ous section, our methods do not depend on any specific

implementation of the SCORE function. A simple version

of this function assigns to each track point a score that is

inversely proportional to its positional accuracy. However,

a more sophisticated version of this function may also use

other factors that affect the likelihood of a correct match,

such as the sampling frequency and the number of candidate

features. For instance, a track point with a low positional

accuracy may nevertheless be assigned a high score because

there is only one candidate feature in its vicinity. A track

point on a remote highway with dense tree cover, and a

resulting low positional accuracy, may thus receive a high

score because there are no other roads nearby and therefore

no risk of matching it to the wrong road.

We refer to a sequence of contiguous track-points as a seg-

ment. The main idea of segment-based matching is to match

track-points belonging to high-score segments before those

belonging to low-score segments. In contrast, the methods of

the previous section match track points in sequential order

by time.

The first of these methods is summarized as procedure

SEGPATHMATCH in Listing 3. This procedure uses a heap

(priority queue [9]) Q to organize segments of length K
in nonincreasing order of aggregate scores. The first part

of the procedure computes the aggregate scores and builds

the heap Q and the second part matches all points in each

segment as it is removed from Q in heap order. The MATCH

function is very similar to the LOCALMATCH function of

Listing 2, with a lookahead of K. The main difference is that

while one invocation of LOCALMATCH results in matching

only one track point (although others are considered), a

single invocation of MATCH matches all track points in the

given segment. A simple option is to implement MATCH

by invoking LOCALMATCH (Listing 2) K times. However,

SEGPATHMATCH does not assume such an implementation;

therefore, MATCH may also be implemented using other

methods, such as one that determines the geometric best-fit

of the K points in the segment to the underlying map.

Listing 3 Segmented Path Matching (Static) Match trajec-

tory P to map G by matching segments of K track points in

order of nonincreasing segment scores.

1: procedure SEGPATHMATCH(P,G)

2: P = P [1] . . . P [m]
3: S[0]← 0
4: for all i = 1 . . . m do

5: S[i]← SCORE(P [i], G)
6: end for

7: v ← 0
8: for all i = 1 . . . K − 1 do

9: v ← v + S[i]
10: end for

11: for all i = K . . . m do

12: v ← v − S[i−K] + S[i]
13: Q.INSERT(v, i)
14: end for

15: T [1 . . . m]← 0 . . . 0
16: for all j = 1 . . . ⌈m/K⌉ do

17: repeat

18: n← Q.DELETEMAX()
19: until T [n] = 0
20: T [n]← 1
21: MATCH(P [n−K + 1 . . . n], G)
22: end for

23: end procedure

Lines 3 through 14 build the heap Q linear time by making

two passes over the track points P [1] . . . P [m]. The first

pass (first for loop) computes the score of each point while

the second pass (second and third for loops) computes the

weight
∑B

i=B−K+1 Score(P [i], B) for B = K . . . m by

maintaining a running total, and uses it as a key for inserting

segment P [B − K + 1] . . . P [B] (identified by B) in the

heap. Lines 15 through 22 repeatedly dequeue and match

the unmatched segment with the largest weight. Unmatched

segments are identified using the array T .

Other than line 21, the running time of Procedure SEG-

PATHMATCH is dominated by the heap operations on lines

13 and 18, which are invoked O(m) times. Given the

standard O(log |m|) implementation of heaps, we have

O(m log m) plus the time spent in MATCH as the total

running time. Our implementation of a segment-based match

is very similar to that of procedure LOCALMATCH of the
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previous section, and each track point is considered only

once. Thus the overall running time is O(m · log m + m ·
log |G|+m · |C| ·S), where, as before, S is the time required

by an invocation of SIM.

As suggested earlier, a sophisticated SCORE function,

which is used to gauge the expected accuracy of matching a

track point, may depend on not only the positional accuracy

of a track point, but also other factors. Some of these factors

may depend on the partial matching of track points to map

features. In such cases, computing the scores of all track

points at once, before any matches have been made, as

done in Listing 3 is not suitable. Instead, we use a dynamic

segment-wise matching method as summarized in Listing 4

as the recursive procedure DYNSEGPATHMATCH. In this

procedure, we first determine a segment with maximum

aggregate score. We use a different score function, SCORE2,

to indicate that the scores now depend on the current

partial matching M , which is its third argument. Similarly,

the maximum-score segment is matched using a function

MATCH2 that takes the partial matching as an argument.

After the segment is matched, the portions of the trajectory

before and after the segment, if nonempty, are matched recur-

sively. On average, we may expect the recursive invocations

of DYNSEGPATHMATCH on lines 22 and 25 to occur on

trajectories of roughly half the size of the parent invocation.

Thus, this modification to SEGPATHMATCH adds at most a

factor of log m to the expected running time. In worst case,

it may add a factor of m.

IV. METRICS

One measure of the quality of the solution produced by a

map-matching method is, intuitively, the closeness between

the input trajectory, or real trajectory, if known, and the

output path. To quantify this idea, we use the idea of

a distance between the two curves representing the input

trajectory and the output path. Several definitions of such a

distance have been proposed in prior work [4]. An obvious

choice is the Hausdorff metric between two paths, using the

Euclidean space as the underlying metric space. Intuitively,

the Hausdorff distance between paths p1 and p2 is the small-

est number d such that every point in p1 is within a distance d
of some point in p2. We may think of the Hausdorff distance

as the thickness of the padding that we must add to each path

so that the other will lie completely inside the padded area.

More precisely, the Hausdorff distance between paths p1 and

p2 is given by

dH(p1, p2) = sup
x1∈p1

inf
x2∈p2

d(x1, x2)

where d(x1, x2) is the Euclidean distance between points x1

and x2.

Although the Hausdorff distance is popular, it is not

ideal for map-matching applications because, intuitively, it

does not take the position along the paths into account.

For example, consider the two paths suggested by Fig. 4.

It is clear that every point on the path AB is at most

Listing 4 Dynamic Segmented Path Matching. Match

trajectory P to map G segment-wise, as in Listing 3, but

with updates between segment matches.

1: procedure DYNSEGPATHMATCH(P,G,M )

2: P = P [1] . . . P [m]
3: S[0]← 0
4: for all i = 1 . . . m do

5: S[i]← SCORE2(P [i], G,M)
6: end for

7: v ← 0
8: for all i = 1 . . . K − 1 do

9: v ← v + S[i]
10: end for

11: v∗ ← −∞
12: i∗ ← 0
13: for all i = K . . . m do

14: v ← v − S[i−K] + S[i]
15: if v > v∗ then

16: v∗ ← v
17: i∗ ← i
18: end if

19: end for

20: M ←M ∪MATCH2(P [i∗ −K + 1 . . . i∗], G)
21: if i∗ > K then

22: DYNSEGPATHMATCH(P [1 . . . i∗ −K], G,M)
23: end if

24: if i∗ < m− 1 then

25: DYNSEGPATHMATCH(P [i∗ + 1 . . . m], G,M)
26: end if

27: end procedure

0.5m from the nearest point in path CD, and vice versa;

thus, dH(AB, CD) = 0.5. However, the two paths are very

dissimilar to each other for map-matching purposes.

The above shortcoming of the Hausdorff distance may be

addressed by using the Frechet distance, which takes the

position along paths into account. Intuitively, the Frechet

distance between two paths is the length of the shortest

possible rope that could be tied between two cars while

permitting the cars to travel on the two paths, respectively,

moving only in the forward direction. That is, the cars can

adjust their speeds to try to accommodate for the rope, but

they cannot move backward along the path at any time. More

precisely, the Frechet distance between paths p1 and p2 is

given by

dF (p1, p2) = inf
m1,m2:[0,1]→[0,1]

max
t∈[0,1]

d(m1(t),m2(t))

where the paths p1 and p2 are parameterized using t and the

infimum ranges over all possible reparameterizations m1 and

m2, for p1 and p2, respectively, and where d is, as before,

the Euclidean distance. The reparameterizations m1 and m2

are required to be continuous and nondecreasing, and to map

the points 0 and 1 to themselves.

Returning to the two paths suggested by Fig. 4, it is clear
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Fig. 5. A screenshot of the visualization component of the GeoTrackMapper map-matching system. The window shows a map of streets in Falmouth,
Massachusetts. The path composed of thick edges, near the bottom right corner of the screenshot, depicts a trail that has been correctly mapped based on
track points.

A B

C

D

1m

Fig. 4. Dissimilar paths AB and CD with low Hausdorff distance and high
Frechet distance.

that the Frechet distance is much higher than the Hausdorff

distance. For example, if the dotted line represents a rope

of length approximately 5m, then the two circles represent a

configuration in which no car can make forward progress

without breaking the rope. It is sometimes useful to use

a variant of the Frechet distance, called the weak Frechet

distance, in whose definition the reparameterizations m1 and

m2 are not required to be nondecreasing. In the intuitive

interpretation of a car traveling along each paths with a rope

connecting the cars, this variant permits the cars to back

up along the paths in order to accommodate the rope. Other

variants, such as the average Frechet distance, have also been

proposed [7]. Although not obvious from the definition, the

Frechet distance between paths p1 and p2, with n1 and n2

points, respectively, can be computed in O(n1n2log
2(n1n2))

time [3].

V. IMPLEMENTATION

Based on the methods described in this paper, we have

built a map-matching system called GeoTrackMapper. The

implementation uses pure Java and therefore runs on any

platform supported by the Java2 SE 5.0 runtime environment.

The graphical features use the standard Swing libraries,

and some file formats are supported using the GeoTools

libraries [10]. The system has a modular design that supports

multiple uses, ranging from time-sensitive in-vehicle map-

matching to large batch simulations using a combination

of real and synthetic datasets. For example, not only can

the system evaluate various map-matching methods on real

map datasets, but it can also transform those datasets in

various ways in order to test the sensitivity of the methods to

properties such as road-segment lengths, number and density

of intersections, ratio of road-segments to intersections, and

the resolution of lines modeling the roads.

For our testing, we have made extensive use of real road

data provided by a number of U.S. agencies. For example,

Fig. 5 depicts a screenshot of a map dataset from the

MassGIS collection, which contains detailed road data for

the major towns in Massachusetts [20]. We have found some
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of the map-transformation features of GeoTrackMapper to

be quite useful in dealing with some problematic features

of such real data. For instance, we found that in order to

properly model intersections so that topology-based match-

ing methods work properly, it was useful to smooth the map

dataset by merging the endpoints of features that are closer

than a specified threshold.
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Fig. 6. Matching error as a function of trajectory length.

Figure 6 summarizes the results of some experiments using

GeoTrackMapper. For this set of experiments, we used the

map of Falmouth, Massachusetts, depicted in Fig. 5, as

the basis. Trajectories were generated by first generating

a path in the network of roads and then perturbing the

geo-locations of this path using a random variable with a

Gaussian distribution of varying parameters. To generate

a path in the road network, we first randomly select an

intersection in the network using a uniform distribution.

Edges (road segments) are added to the path one at a time

by randomly selecting one edge among those incident on

the current intersection, with a uniform distribution with one

exception: If the edge selected is the one that was taken

to arrive at this intersection then we make another random

selection, up to a total of five times. This correction generates

paths that reflect real trajectories more accurately than paths

selected uniformly at random, because the latter tend to have

a very high degree of redoubling. To obtain a sequence of

geo-locations from a path, the path is sampled with 10 × l
points uniformly separated along the path, where l is the

number of edges in the path.

For each trajectory thus generated, we find a matching

path in the network using three methods: POINTMATCH of

Listing 1, LOCALMATCH of Listing 2, and SEGPATHMATCH

of Listing 3. For each resulting path, we compute the error

as the sum of the distances between the trajectory points,

before addition of Gaussian errors, and the mapped points.

The scaled error, which is plotted in Fig. 6, is obtained by

dividing the error by the number of trajectory points. We note

that, in general, the scaled error decreases with increasing

trajectory lengths. This behavior is expected, because the

aggregate errors are typically caused by a few large errors,

whose effect is larger for shorter trajectories. We also note

that the segmented method exhibits an improvement in

accuracy and that this improvement is more pronounced for

longer trajectories. This result is also expected, because the

potential for large errors in non-segmented methods is greater

for longer paths. That is, once a non-segmented method

makes a matching decision, the longer the path, the greater

the likelihood that that decision leads to a very large error

later in the trajectory. For the segmented method, on the other

hand, the errors are limited by segment length and, further,

the ordering of segment-matching by the score functions

helps reduce the likelihood of errors.

VI. RELATED WORK

An early paper by Bernstein and Kornhauser provides a

good introduction to the general problem of map-matching

[6]. A more recent survey appears in Quddus’s thesis [22].

As indicated in Section II, we have presented our segment-

based method in the context of a simple local-matching

method proposed by Brakatsoulas, Pfoser, Salas, and Wenk

[7], which in turn uses similarity measures described by

Greenfeld [11]. Alt, Erfat, Rote, and Wenk describe a method

for the efficient evaluation of the Frechet distance discussed

in Section IV [5]. Alstrup, Brodal, and Rauhe describe

methods for multi-dimensional orthogonal range queries in

O(log |G|+ |C|) time and O(|G| log1+ǫ |G|) space [2]; these

allow efficient location of map features in the proximity of

track points, as required for bootstrapping the map-matching

method of Section II.

Aigong, Voon, and Look describe the use of map-matching

in a GPS/GIS ERP system in Singapore [1]. Quddus, Noland,

and Ochieng study the effect of map quality on map-

matching algorithms [23]. As noted in Section V, our imple-

mentation of the GeoTrackMapper system allows us to study

such issues by performing various transformations, such as

smoothing and reduction of detail, on real [20] and synthetic

maps. The modular design of GeoTrackMapper is suitable

for use in real-time vehicle-location problems, as studied by

Jagadeesh, Srikanthan, and Zhang [15].

Quddus, Ochieng, Zhao, and Noland describe an appli-

cation of map matching that monitors vehicle performance

and emissions [24]. Their algorithm combines GPS data with

data from low-cost dead reckoning sensors using an extended

Kalman filter. Pyo, Shin, and Sung use a multiple-hypothesis

technique that consists of generating pseudo-measurements

on roads in the vicinity of the location indicated by a

GPS measurement, along with a Kalman filter to estimate

the bias errors . They report experimental results indicating

consistent performance despite signal degradation in urban

environments. Lamb and Thiebaux describe a method that

uses closely coupled Kalman filters and Markov models .

The former are used to process the metric aspects of the map-

matching problem, while the latter is used for the topological

aspects. The output of the Kalman filters is used to update

the belief states of the Markov model. In turn, the Markov
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model provides a probability distribution for over the Kalman

filters. Hummel and Tischler present a map-matching method

based on a Bayesian classifier that incorporates a Hidden

Markov Model in order to model topological constraints of

the road network [14]. Their method is based solely on GPS

data, without inputs from addition in-vehicle sensors, but

nevertheless has been shown experimentally to be robust in

urban environments that are challenging for GPS. It should

be interesting to combine probabilistic methods such as these

with the segment-based scheme we describe in this paper.

As suggested earlier, there is a trade-off between the length

of a segment and the average score of its constituent points.

In general, the longer the segment, the lower the average

score, which could lead to lower-quality results. On the other

hand, longer segments provide for more look-ahead, so that

it is possible to make locally nonoptimal decisions that result

in better overall results. We may achieve a judicious trade-

off by selecting segments in order of nonincreasing density,

where the density of a segment is defined as the average

score of track points in that segment. It is possible to use

recent work on efficient computation of maximum-density

substrings for this purpose [18], [17], [13], [19].

VII. CONCLUSION

We presented techniques for modifying existing meth-

ods for map-matching based on the idea of segment-wise

matching, where a segment is contiguous sequence of track

points. Track points and segments are assigned scores that

quantify the expected accuracy of matching them to map

features. A notable feature of our techniques is that they

do not make strong assumptions about the specific low-

level methods used for matching points to features. For

concreteness, we described our work in the context of a

simple map-matching method based on geometric and topo-

logical matching. However, the ideas apply to other, more

sophisticated methods as well. We briefly discussed some

issues related to quantifying the quality of the output of

map-matching methods based on the Frechet distance. We

also briefly described the GeoTrackMapper map-matching

system that we have implemented based on the methods

of this paper. We have tested our work on several real

and synthetic datasets, such as those from MassGIS [20].

In continuing work, we are adding additional map-mapping

methods to GeoTrackMapper and evaluating its performance

on additional datasets, both real and synthetic. In particular,

we are investigating the effect of non-Gaussian noise and

nonuniform sampling.
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