
 
 

 

  

Abstract— This paper deals with the problem of finding the 
optimal roadway segment configuration for road-based 
surveillance technologies to estimate route travel times 
accurately. This problem is inherently a space discretization 
problem regardless of which travel time estimation function is 
used. The ad-hoc solution to this problem is the equidistant 
segment configuration, such as every half-mile, every one-mile. 
It is shown in this paper that the space discretization problem 
can be expressed as the common clustering problem. The 
novelty of the proposed approach is the use of preliminary 
vehicle trajectory data to obtain statistically significant traffic 
regime at the study route. Clustering of sample space-time 
trajectory data is proposed as a viable methodology for solving 
the optimal roadway segment configuration problem. 

I. INTRODUCTION 
CCURATE route travel time estimation is essential for 
two different aspects of traffic management and 

planning. First, travel time estimates are often used in travel 
time prediction algorithms as a benchmark value, as 
discussed in [1][2][3]. Second, these estimates are 
invaluable for determining off-line performance measures 
for various policy applications. For example, travel time 
variability is an emerging performance measure increasingly 
used by decision makers and transportation planners in 
many transportation investment decisions. Accurately 
estimated travel times are especially useful for quantifying 
such performance measures [4][5][6]. 

Traffic surveillance is currently conducted by using two 
distinct approaches. These are (a) road-based surveillance 
technologies, such as in-road detectors, road-side detectors, 
and (b) vehicle-based surveillance technologies, such as 
probe vehicles, automatic vehicle location (AVL) systems, 
automatic vehicle identification (AVI) systems.  

Both surveillance technologies have several advantages 
and disadvantages as described in detail by [7]. Vehicle-
based technologies are useful for measuring travel times 
accurately; however, they are not widely used because of 
high implementation costs. The use of road-based 
technologies, on the other hand, is still prevalent. Their 
implementation costs are also high, mostly owing to the 
need for multiple units within the area of interest.  

This paper is motivated by the importance of determining 
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how many traffic road-based surveillance units (RBSU) 
should be deployed and where to be deployed along a given 
route to obtain travel time estimations with least errors.  The 
ad-hoc approach to this problem has been the equidistant 
segment configuration (e.g. every quarter-mile, half-mile or 
one-mile intervals). 

RBSU deployment problem: Given a route with known 
traffic characteristics find the optimal number and location 
of roadway segments for RBSU deployment that will 
minimize the estimation error of a selected travel time 
function.  

Proposition: There may be various other reasons for 
adopting the ad-hoc deployment for many possible 
applications. Within the travel time estimation context, it is 
argued in this paper that given the traffic and geometric 
conditions there exists an optimal segment configuration of 
a highway route that gives better travel time estimates than 
those of the ad-hoc deployment.  

Novelty of Proposed Methodology: The use of preliminary 
route data for determining the number and locations of 
roadway segments for RBSU deployment. With the use of a 
simplistic travel time estimation function, the space 
discretization problem can be solved using known clustering 
techniques.  

II. RELATED WORK 
The focus of the road-based surveillance technology 

literature has been to improve (a) the accuracy of detector 
readings [8][9], (b) the accuracy of travel time estimation 
between two traffic detectors [10][11][12][13] (c) the 
accuracy of route travel time prediction algorithms that rely 
on travel time estimations between predefined segments 
along a route [1][2][3]. 

Relatively little research has been conducted to investigate 
the RBSU deployment problem. Thomas [14] investigated 
the relationship between several selected travel detector 
locations and the link travel characteristics on a 3-mile 
arterial road in Arizona using CORSIM simulation software. 
This study reported network specific correlations between 
the four loop detector outputs and the link travel 
characteristics.  

Oh et al. [15] used a hypothetical CORSIM simulation 
network to investigate the optimal loop detector locations 
based on various numbers of roadway lanes, link lengths, 
speed limits, green signal times, and traffic volumes. They 
searched for the optimal detector locations based on the 
proximity of the speed values read by loop detectors and the 
average link speed. They concluded that the optimal detector 
location is related to link length and green time.  
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Ozbay et al. [16] investigated the effect of sensor location 
on the travel time estimation during recurrent and non-
recurrent congestion on I-76 in southern New Jersey 
highway network. Ozbay et al. [16] reported that increasing 
the number of RBSU does not always improve the accuracy 
of travel-time estimation during non-recurrent congestion. 
They also reported that the accuracy of travel time 
estimation during an incident vary considerably with (a) 
Incident Characteristics: These include location, duration, or 
severity degree; (b) Locations of surveillance units: 
Depending on the vehicle-speed profile along the route, a 
different selection of sensor, detector locations yield 
different results; and (c) Travel-Time Function: Different 
travel-time estimation functions yield different results. 

Optimal segment configuration problem is certainly not 
restricted to road-based traffic surveillance technologies. 
Since the cost of deploying these technologies is almost 
prohibitive for large scale networks, the similar problem 
exists in the deployment of vehicle-based technologies, 
where one often needs to decide, for example, how many 
AVI stations to deploy and where to deploy. Sherali et al. 
[17] studied the problem of determining the optimum 
number of AVI readers to obtain maximum travel time 
variability. Yang and Miller-Hooks [18] approached the 
problem on a network level without specifying any category 
of surveillance technology.  

There is no commonly accepted methodology for the 
RBSU deployment problem. The simulation approach as 
employed in Oh et al. [15], Ozbay et al. [16] and Thomas 
[14] can only supply network specific results. Moreover, 
their results depend highly on the validity of the developed 
simulation model. The methodologies presented in Sherali et 
al. [17] and Yang and Miller-Hooks [18], on the other hand, 
are specific to determining travel time variability, where 
travel times can be determined by VBSU accurately.  

III. FORMULATION OF RBSU LOCATION PROBLEM 
It is often desired to obtain space-time trajectories of 
vehicles using discrete approximation in cases where this 
information is not fully available. The idea is to represent 
space-time trajectory in steps of a small interval, Δ . Clearly, 
once a function is discretized, a certain loss of information is 
introduced. Furthermore, the higher the magnitude of Δ , the 
more the loss of information is.  The lack of continuous 
space-time trajectories restricts us to observe the function 
values only at discrete points. 

Suppose that the study route of length L  is divided into 
n  number of infinitesimal intervals of size Δ , where 

nL /=Δ . Each location n1j ...=  along the route is a 
candidate location for RBSU deployment. Each RBSU shall 
be associated with one disjoint roadway segment s , 
defined by segment boundary locations 1sb −  and sb , where 

k1s ...=  and nb1 s ≤≤ , and k is the number of available 
RBSU for deployment  

Fig 1 demonstrates the definitions of the variables on a 
sample roadway scheme. The figure shows two RBSU with 
their corresponding two disjoint roadway segments.  The 

first segment 1s =  and the second segment 2s =  are 
defined by the boundaries ][ , 10 bb and ]( , 11 bb , respectively. 
The lengths of segment one and two can be calculated by 

Δ− )( 01 bb  and Δ− )( 12 bb , respectively. 

Fig 1. A sample roadway scheme with corresponding variables 

Suppose that space-time trajectory information of m 
randomly selected vehicles is available at each location 
j along the route. Let ijy denote the inverse instantaneous 

speed of vehicle i at location j . Then it , the actual travel 
time of vehicle i , can be approximated as follows: 

∑
=

Δ≅
n

1j
iji yt          (1) 

Suppose that there exists only one RBSU available for 
deployment. There are n  possible deployment locations 
along the route. Let ijt̂ denote the estimated travel time of 

vehicle i . ijt̂  is based on the information collected at 
location j , and can be calculated by a simplistic travel time 
estimation function, such as Lyt ijij .ˆ = . Let ijε denote the 
squared travel time estimation error of vehicle i  at 
location j . Then, ijε can be written as, 

2
ij

n

1j
ij

2
ijiij nyytt )()( Δ−Δ=−= ∑

=

ε       (2) 

Note that Δ= .nL . Let us define the variable iy , which is 
the inverse of the harmonic mean of observed speeds of 

vehicle i along the route, given by nyy
n

1j
iji /∑

=

= . Then (2) 

can be rewritten as in the following form. 
2

iji
2

ij yyL )( −=ε        (3) 

It is assumed that travel time estimation errors ijε  of m 
randomly selected vehicles observed at location j  are 
independent. Thus, the average of ijε , denoted by jε  is an 
unbiased estimate of the mean error at location j . jε is 
given by, 

myyL 2
ij

m

1j
i

2
j /)(∑

=

−=ε        (4) 

Let jp  represents the probability of location j being 
selected out of n  possible locations for deployment. In other 
words, each location j  is assigned with a probability value 
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that is drawn from a discrete probability function selected 
for the route. Then, the average travel time estimation error, 
ε , along the route can be presented as follows. 

myypL
n

1j

m

1i

2
ijij

2 /)(∑∑
= =

−=ε       (5) 

Let us now suppose that there are k number of RBSU 
available. Because each RBSU shall be associated with a 
disjoint roadway segment, there are k  segments that need to 
be monitored along the route. Let sjp denote the probability 
of location j  being selected for deployment within segment 
s , where k1s ...= . Therefore, (5) can be rewritten as 
follows. 

∑ ∑ ∑
= = =

− −Δ−=
−

k

1s

2
iji

b
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s
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Suppose that sjp is drawn from a uniform probability 
distribution function. Namely, each location j within a 
given segment s  has equal chances of being selected for 
deployment. Then, sjp can be expressed by the term 

)/( 1ss bb1 −− . Consequently, in (6) the term 

myyp 2
iji

b

bj

m

1i
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s

1s

/)( −∑ ∑
−= =

  

can be changed to ∑ ∑
−= =

−−−
s
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1ss

2
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Rearranging the summation signs in this term, (6) becomes, 

∑∑ ∑
= = =
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−
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Δ
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Note that the term  

∑
−=

− −−
s

1s

b

bj

2
iji1ss yybb )()(  

is the Euclidean sum of squared distances of ijy of vehicle i  
along the segment ],[ s1s bb −

1. Since the variables Δ  and m  
are constants, (7) represents the total Euclidean sum of 
squared distances for m  vehicles.  

It can be observed in (7) that ε  can be minimized by 
dividing the route into k  segments within which individual 
vehicles’ inverse speeds dispersed closely in space with 
respect to each other.  Namely, the solution can be found 
where the within-segments Euclidean sum of squares of ijy  
is minimized. The objective function in (7) is similar to that 
of common clustering algorithm, which is based on 
minimum within-group distance criterion.  

Remark: It is clear that minimization of ε  in (7) is not 
defined when the vehicles’ speeds are zero. Such cases are 

 
1 Sum of squared errors (SSE) of n independent samples is 

2s1nSSE )( −= , where 2s  is the variance of the n samples. Euclidean sum 
of squared distances between n points is equal to   n. SSE.  

often expected during heavy congestion. Simple adjustments 
to data points can be done for avoiding such problems. It is 
obvious that these coarse shifts in data points would result in 
loss of data. Therefore, they should be sufficient enough to 
make (7) valid, and small enough prevent high loss of 
information. 

A. Discussion of Modeling Assumptions 
The two major assumptions are used in the formulation of 
the RBSU deployment problem. These assumptions are 
discussed as follows.  
1) ijt̂  is based on the information collected at location j , and 
can be calculated by a simplistic travel time estimation 
function, Lyt ijij .ˆ = . This estimation function assumes a 
uniform speed trajectory for each vehicle over space.  

Such simplistic speed trajectory functions have been 
extensively used in the literature [9][13][3]. As mentioned 
previously, finding the optimal segment configuration that 
minimizes travel time estimation error is a space 
discretization problem. Using this assumption the problem 
can be converted to the common clustering problem. In the 
lack of the first assumption, other available mathematical 
techniques need to be sought for solving this problem.  

2) sjp denote the probability of location j  being selected 
for deployment within segment s , where k1s ...= . It is 
assumed that sjp is drawn from a uniform probability 
distribution function. In practical applications, RBSU are 
usually deployed approximately in the middle of predefined 
segments. See [11], for example. In this case, the selection 
of Gaussian probability distribution along each segment is 
well suited for sjp . The problem can be further performed 
based on this distribution. In this case, clustering can still be 
performed where each data point ijy has varying weights. 
This task is left as a future work. 

IV. NUMERICAL ANALYSIS 
This section is intended to demonstrate the potential benefits 
of identifying roadway segments using the proposed 
approach. These benefits are quantified based on the 
minimization of travel time estimation errors as shown in 
(7).  

Due to the lack of space-time trajectory ground truth data, 
the proposed approach is tested using simulated traffic data 
obtained from a hypothetical freeway route modeled in 
PARAMICS micro-simulation software. It should be noted 
that the proposed methodology does not rely on simulation 
results. The simulation model here is merely used to obtain 
travel times and space-time trajectories of vehicles under 
given traffic conditions.  

A. Study Network 
The study route is shown in . It consists of nine origin-
destination (OD) zones and three interchanges. The route of 
interest is between OD pair (1,2). It is approximately 12.5 
miles (20 km). The distances between each monument as 
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TABLE III 
SEGMENT BOUNDARIES OF SELECTED OD PAIRS BASED ON EQUIDISTANT 

APPROACH 
OD Pair Segment Boundaries 
(1,2) [1,200], (200,400], (400,600], (600,800] and 

(800,1000] 
(1,9) [1,220] and (220,440] 
(1,4) [1,170], (170,340], (340,510], and (510,680] 
(9,2) [622,811] and (811,1000] 

TABLE II 
SEGMENT BOUNDARIES OF SELECTED OD PAIRS  

BASED ON CLUSTERING APPROACH 
OD Pair Segment Boundaries 
(1,2) [1,340], (340,429], (429,599], (599,679] and (679,1000] 
(1,9) [1,340] and (340,440] 
(1,4) [1,340], (340,429], (429,599] and (599,680] 
(9,2) [622,679], (679,1000] 
 

TABLE I 
DISTANCES BETWEEN MONUMENTS 

Location Distance 
1-A 2.52 miles 
A-B 1.49 
B-C 1.45 
C-D 2.22 
D-E 0.78 
E-2 3.97 

labeled in Fig 2 are shown in Table 1. The network is loaded 
with hypothetical OD demand matrices that lead to 
congested traffic along the route. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Study route modeled in PARAMICS 
 

Only the traffic flow in the westbound direction of the study 
route is considered. The OD pairs with high traffic volumes 
are (1,4), (1,9), (4,2) and (9,2). There are two distinctive 
congestion patterns on this study route. (a) Delay before 
exit E: This is due to the high demand destined to zone 4 
and the high through traffic demand destined to zone 2. (b) 
Delay before exit C: This is because of vehicles (mostly 
vehicles between (1,9) weaving to change lanes to the take 
the exit to zone 9. Considering the high through traffic 
volume at this location i.e. (1,4), (1,2), (8,2) and (8,4), long 
queues are observed before exit C.  
 

B. RBSU Location Problem 
Suppose that there are 5 RBSU available for traffic 
monitoring along this given route. The question is then how 
to deploy these available units so that travel time estimation 
error is minimized. The analyses in this section include not 
only the entire route i.e. OD pair (1,2), but also the 
intermediate OD pairs as well, i.e. OD pairs (1,9), (1,4), 
(9,2) and (4,2) as shown in Fig 2. 

The following questions are addressed in this section. (a) 
What is the sufficient number of probe vehicle data for 
statistically significant estimation of segment boundaries? 
(b) What is the optimum number of segments for RBSU 
deployment?  

1) Configuration of Segments 
The main route between OD pair (1,2) is divided to n=1000 
discrete locations, where Δ =20 meters. Vehicles’ speed data 
are collected at intervals of Δ =20 meters using the 
PARAMICS application programming interface (API).  

A random set of vehicle trajectory data collected from 
various simulation runs is selected to better represent most 
of the possible traffic states. Different random numbers in 
simulation runs result in different number of vehicles 
released from the zones, different vehicle release times, 
vehicle characteristics, etc.  Different demand profiles 
change the demand within user-defined intervals and result 
in fluctuation in demand over time. 

The study route is simulated with different random seed 
values and demand profiles until the average network travel 
time is within 99% confidence interval with 1% relative 
error. The confidence interval is obtained as [11.9 – 12.1 
minutes]2.  

From the collected vehicle data of multiple simulation 
runs, 50 independent vehicle trajectories traveling between 
OD pair (1,2) are selected. This data set is used for the 
clustering analysis. The global k-means clustering analysis 
proposed by [19]is performed based on the minimization of 
the objective function given in (7).  

Table 2 summarizes the clustering results.  
 
Note that some segment boundaries are different for the 

intermediate OD pairs because they are adjusted based on 
the location of exit points C and D in Fig 2. 

The solution considers the roadway connecting the OD 
pair (4,2) as one segment although it is approximately 4-
miles. Further clustering of the dataset indicates that this 
roadway should be considered as a complete segment even 
after the tenth clustering solution. This result can be 
attributed to the fact that the clustering analysis based on the 
minimization of the objective function in (7) focuses on the 
segments where there are higher variances in traffic 
characteristics.  

The expected boundaries based on equidistant approach 
are shown in Table 3.  

 
These values are determined simply by equally 

partitioning the selected OD pairs. The purpose of analysis 
is to show the differences in travel time estimation error 
 

2 Average network travel time is the average of travel times of all 
vehicles simulated in the network. 
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TABLE IV 
REDUCTION IN TRAVEL TIME ESTIMATION ERROR USING THE PROPOSED 

APPROACH 
Simulation 

Run 
Percent Reduction in 

Total Travel Time Estimation Error 
OD pair (1,2) (1,9) (1,4) (9,2) 

1 46.2 % 38.6 % 48.8 % 14.7 % 
2 56.2 57.9 51.4 17.8 
3 56.1 60.7 48.1 13.2 
4 45.0 55.6 58.3 27.9 
5 59.6 58.6 48.2 23.7 
6 53.7 43.6 45.9 16.3 
7 56.7 47.5 60.5 16.9 
8 49.9 41.3 51.8 21.0 
9 56.0 67.9 49.5 20.6 
10 58.8 50.1 60.5 12.2 

TABLE V 
COMPARISON OF ABSOLUTE DIFFERENCES BETWEEN THE ACTUAL  

AND ESTIMATED TRAVEL TIMES 
 OD pair 
 (1,2) (1,9) (1,4) (9,2) 
Equidistant Approach  11.5 min 7.8 9.9 13.9 
Clustering Approach 8.2 5.5 6.9 12.5 

TABLE VI 
SEGMENT BOUNDARIES OF CLUSTERING ANALYSIS  

FOR VARIOUS DATASETS 
 

Dataset 
1b  2b  3b  4b  

1 338 431 600 680 
2 342 430 576 679 
3 339 429 564 678 
4 343 429 597 679 
5 342 432 580 679 
6 343 429 601 680 
7 320 451 616 679 
8 336 431 598 680 
9 353 430 592 679 
10 346 430 601 680 

Average 340.2 432.2 592.5 679.3 
97.5 % 
C.I. 

[333.3- 
347.1] 

[426.8- 
437.6] 

[580.2- 
604.8] 

[678.8- 
679.8] 

Relative 
Error 

0.0204 0.0126 0.0207 0.0008 

with the same number of segments between each OD pair, 
but with different segment configuration approaches. For 
example, clustering analysis results in two segments 
between the OD pair (1,9). Therefore, for the equidistant 
approach the route between this OD pair is divided into 2 
equally distant segments.  

2) Comparison of Travel Time Estimation Error 
Travel time estimation errors of the segment configurations 
shown in Table 2 and Table 3, are compared using a total of 
approximately 7500 vehicle records collected in various 
simulation runs. 

Table 4 shows the percentage reduction in the travel time 
estimation error owing to the proposed approach as 
compared with the equidistant deployment approach. 

 
Table 4 indicates that there is substantial reduction in travel 
time estimation error using the segments defined by the 
clustering approach. 

The average of the absolute differences between the 
actual travel times and the estimated travel times are shown 
in Table 5. The values given in Table 5 are simply the 
square root of ε in (7) between the selected OD pairs. It can 
be seen that the clustering approach to RBSU deployment 
problem results in better travel time estimations than the ad-
hoc approach. 

3) Determining the Vehicle Trajectory Sample Size 
One should test the sensitivity of the clustering analysis 
results with respect to sample vehicle trajectory data. The 

question is how much the segment boundaries would change 
if different sets of vehicle data were chosen. Table 6 shows 
the results of the clustering analysis based on 10 different 
sets of 50-vehicle trajectory data between the OD pair (1,2).  

Table 6 shows that the results of segment boundaries with 
respect to different sample sets do not considerably vary 
much. It is assumed the boundary points obtained based on 
different datasets follow a Gaussian distribution. 
 Then, the results show that 99% of all possible 4-
boundary points will be within less than 2-3% of the real 

boundary points. If Student-t distribution were used, then 
the relative errors would vary only by 0.026.   

The assumption of a probability distribution of boundary 
points for different datasets is an essential leeway in 
estimating the sufficient number of space-time trajectories. 
Utilizing basic statistical methods, a sequential approach can 
be applied to define a statistically sufficient number of 
sample set based on a postulated relative error ( β ) and a 
confidence level (α ).  

One could easily determine the sufficient number of 
datasets using the data given in Table 6. For instance, 
following the results of the first two datasets, i.e. 100 probe 
vehicles in total, one could deduce a 97.5% confidence 

interval of the boundaries with a 5% relative error as 
[334.8,345.2], [429.2,431.8], [557.1,678.2], [678.2,680.8]. 
The average boundaries based on the first two datasets are 
[1,340], (340,430], (430,588], (588,680], (680,1000]. In 
other words, based on the first two data sets, it is expected 
that with p=0.975 probability, the actual boundaries would 
fall within the confidence intervals. In fact, it can be 
observed that the averages of 10 datasets given in Table 6 
are very close to the average of first two datasets. 

4) Determining the Optimum Number of Segments 
It is often required to determine the optimum number of 
segments, namely the number of RBSU that will yield the 
minimum travel time estimation error. The clustering 
approach is also well suited for this purpose. Clustering 
procedure can be terminated when the cumulative gain from 
clustering becomes minimal. Fig 3 demonstrates the 
cumulative gain versus the number of segments between OD 
pairs (1,2), (1,4),  (1,9) and (9,2).  

A flattening at the OD pair (1,2) curve begins at the 4-
cluster solution (88.9%), and the line is essentially flat after 
the seven-cluster solution (97.8%). Therefore, the graph 
implies 4 but at most 7 segments within the dataset for the 
OD pair (1,2). 

It can also be noticed that the flattening of the cumulative 
gain curves for the OD pairs (1,4), (1,9) and (9,2) are faster 
than the flattening of the curve for the OD pair (1,2). For the 
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OD pair (1,4) the curve becomes almost flats at the 4-cluster 
solution. For the OD pairs (1,9) and (9,2), it starts at the 2-
cluster solution. 

For the OD pair (1,2), if the ad-hoc solution were chosen 
where RBSU were deployed for example at every half-a-
mile, the solution would yield approximately 25 surveillance 
units. It can be observed in Fig 3 that the relative gain 
between the seven-cluster solution and the 15-cluster 
solution is only 1.5%, if the surveillance units were 
deployed based on clustering results. One could easily argue 
that the marginal return from the extra units is not scalable. 
For the study route, ad-hoc approach results in a costly 
solution to the RBSU deployment problem. 

 
Fig 3. Cumulative Gain in Clustering 

V. CONCLUSIONS 
It is implied in this paper that the direction in investigating 
the travel time estimation problem should not be only 
towards the development of complex estimation algorithms 
and vehicle trajectory functions, but should be towards 
finding the segments where travel time estimation errors are 
minimized for a given estimation function. It is shown in 
this paper that with the use of a simplistic travel time 
function, the RBSU deployment problem can be expressed 
as a clustering problem. The novelty of the proposed 
approach is the use of preliminary traffic data to observe the 
possible traffic regimes of the study route. Clustering 
analysis of this dataset gives the optimal RBSU deployment 
for the route of interest. 

The proposed clustering approach not only finds the 
segments for the RBSU deployment, but also determines the 
optimum number of segments using the percent-gain of 
clustering approach. The ability of estimating the sufficient 
number of segments to monitor for better travel time 
estimation is of great importance in freeway traffic 
management.  

An example problem of the RBSU deployment problem is 
investigated. Clustering of vehicle trajectory data is used to 
determine the number of segments to monitor. Necessary 
vehicle trajectory dataset is obtained from hypothetical 
highway network developed PARAMICS simulation 
software. The travel time estimation errors of the clustering 
approach and the equidistant approach are also compared. 

It is also shown that the number of vehicle trajectory data 
can be approximated assuming a Gaussian distribution of the 
cluster boundaries of each dataset. Non-parametric statistics 

can also be applied to determine the sufficient sample data 
size for this application See [20] for details. 
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