
 
 

 

  

Abstract—Digital cameras are increasingly used in 

automotive applications. As these cameras are integrated into 

active safety systems, image quality becomes ever more 

important. The captured image information is limited not only 

by the sensitivity and signal-to-noise ratio of the image sensor, 

but also by such image capture conditions as ambient lighting, 

camera-object distance, and relative camera-object velocity. For 

example, the detection of a pedestrian at night might be further 

impeded by the headlights of oncoming traffic. Image quality 

performance characterizes the ability of the imaging system to 

capture vital image information under application-typical 

capture conditions. Characterizing objective image quality 

performance requires clearly defined image quality attributes 

and metrics.  

This paper introduces the basic concepts of objective and 

subjective image quality, reviews existing image quality metrics 

and standards that have been developed for digital still and 

video applications, and explores their applicability for 

automotive uses where image information is interpreted by a 

human observer or machine vision application. The automotive 

photospace is introduced as a useful tool to characterize the 

automotive image capture conditions, and distinguish them 

from other still and video applications. As automotive imaging 

becomes more widespread, early standardization of image 

quality is important. This will enable automotive camera 

suppliers and the automotive industry to communicate in a 

common language when specifying imaging systems so that 

sufficient image quality under application conditions is ensured. 

I. INTRODUCTION 

UTOMOTIVE video cameras with low-cost CMOS image 
sensors are increasingly used in automotive vision 

systems. The applications range from driver assistance with 
forward and rear view images displayed on a dashboard 
screen to active safety systems where the video footage is 
analyzed by software. Driver assistance video aids the driver 
with additional image information in situations where 
visibility is poor (night vision) or obstructed (side or rear 
vision). Even though traffic volume at night is just one-fifth 
of daytime volume, about 46% of fatalities occur at night [1]. 
If driver assistance systems can successfully reduce the 
overall number of accidents occurring, then the total number 
of fatalities may also be reduced. However, the successful 
operation of any vision-based safety system depends first and 
foremost on the camera’s imaging performance, its ability to 
deliver images that are “useful” [2] for the display- or 

 
Manuscript received January 15, 2007.  
D. W. Hertel is with the Vision Sensing Dept. of Sensata Technologies, 

Inc., Cambridge, MA 02138 USA (phone: 617-715-6619; fax: 617-661-
7601; e-mail: dhertel@sensata.com).  

E. Chang is with the Vision Sensing Dept. of Sensata Technologies, 
Inc., Cambridge, MA 02138 USA (e-mail: echang@sensata.com). 

software-based detection of vital scene information. Failure 
to deliver “useful” images will compromise the function of 
the safety system and could even lead to accidents with 
possible serious consequences to the health of the driver and 
others, with the potential for costly litigation. 

The environmental, stress, and reliability test requirements 
of the automotive industry do not directly address image 
quality performance. It is not possible to predict image 
quality performance from basic design specifications such as 
pixel count, pixel size, bit depth or frame rate. It is also 
difficult to predict it from characterization parameters such 
as responsivity, dynamic range, quantum efficiency, spectral 
range etc. Comparisons based on such parameters are only 
meaningful under narrowly defined lab conditions [3]. 

The characterization of image quality performance 
requires measurement of the characteristic functions of tone 
reproduction, modulation transfer, and noise. A framework 
of ISO standard test charts and metrics [4] is available for 
measuring these functions on digital still cameras, and can be 
applied to single video frames. This quantifies the peak 
quality under narrowly defined laboratory conditions and 
thus predicts the system’s image quality capability. 
However, automotive video footage is captured under a wide 
range of conditions, with e.g. scene illuminance or camera-
object distances varying from one extreme to the other [5]. 
These factors, also referred to as “photospace”, lie beyond 
the control of the system designer but they substantially 
influence the performance of the imaging system [6] and 
thus determine the yield of images that are usable for the 
intended purpose of detecting image information. For 
example, the visibility or detectability of a pedestrian at 
night is impeded by low illuminance levels in the presence of 
strong headlights. The identification of traffic signs is 
impacted by distance and motion blur. A camera-based 
active safety system can only perform reliably if the imaging 
yield under photospace conditions meets or exceeds some 
minimum quality criterion.   

Initial comparisons of single frames and video taken by 
automotive cameras from different manufacturers indicate 
that despite being qualified for automotive use, their image 
quality performance differs significantly, especially under 
critical photospace conditions. The lack of comparable 
image quality standards for automotive imaging makes 
comparisons impossible and product decisions difficult. This 
underlines the need for a standard-based image quality 
testing and performance evaluation system that enables 
automotive camera manufacturers, image analysis software 
developers, and the automotive industry to develop product 
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specifications and thus make qualified comparisons. For this 
to happen, major players in automotive imaging must work 
together to leverage existing image standards, test methods 
and image evaluation techniques in order to develop an 
image quality testing program and metrics, and to identify 
requirements for new image quality standards specific to 
automotive cameras. This could be modeled on an initiative 
that was recently launched by the International Imaging 
Industry Association (I3A) to improve the image quality of 
camera phones [7].  

This paper develops the methodology to measure image 
quality performance for automotive vision applications. 

II. THE AUTOMOTIVE PHOTOSPACE 

Photospace is a quantitative description of the image 
capture conditions. The term was first introduced by 
Eastman Kodak to quantify the picture taking preferences for 
a particular imaging system. The photospace distribution 
PSD(L, d) is the statistical description of the frequency of 
image capture as a function of the primary photospace 
coordinates object luminance level L and camera-object 
distance d. Photospace information can be used as a design 
tool to maximize the image quality for the intended usage 
conditions [6].  

The ability of an automotive camera to correctly render 
the luminance ratios of natural scenes in both daylight and at 
night will depend on the image sensor’s sensitivity and 
dynamic range. Since the luminance ratios within natural 
scenes can be as high as 107, this requires image sensor 
technology that extends the dynamic range, commonly 
referred to as high dynamic range (HDR).  

The ability of a camera to render the scene sharply 
depends on the lens’ focus and aperture, a sharp image only 
being possible within a limited range of camera-object 
distances determined by the depth of field at the fixed focus 
point and aperture. The combination of exposure time and 
velocity will determine the amount of added motion blur.  
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Fig. 1.  Initial automotive photospace data with clusters for light sources 
and illuminated surfaces.  

Fig. 1 shows photospace distributions PSD(L) measured 
from a selection of automotive daytime and night scenes. 
The distributions show clusters that represent light sources 
(reflections of sun, vehicle lights, street lights,  traffic lights) 
at high luminance levels, and illuminated surfaces (road 

surface, traffic signs and traffic participants) at the low 
luminance end of the distributions. The distributions show 
that the luminance ratio within night scenes (106) is typically 
much higher than that of daylight scenes (104-105), which is 
due to the much lower luminance of illuminated objects at 
night.   

Figs. 2 and 3 show the imaging performance of different 
cameras under typical photospace conditions.    

 
Fig. 2.  Daylight scene captured with linear (left) and Autobrite [8] HDR 
image sensor (right). The linear sensor fails to detect the oncoming car in 
the highlight image area.  

 
Fig. 3.  Night scene captured with HDR sensors of different technologies.  
The Autobrite [8] sensor (right) better distinguishes between different 
headlights, and between elements of the illuminated road surface. 

The obvious differences in imaging performance indicate 
that camera-based active safety systems would perform 
differently under critical conditions. This underlines the 
necessity for characterizing image quality performance. 

III. OBJECTIVE IMAGE QUALITY 

The images from different cameras in typical automotive 
photospace conditions clearly show the necessity of actually 
capturing enough image information from the original scene, 
before it can be viewed and analyzed either by a human 
observer on a video display, or by feature detection software. 
Inadequate capture of image information at an initial stage 
cannot be compensated for at a later stage, and results in 
decreased photographic yield.  

A. The Task of Detail Reproduction 

The capture of image information can be described by the 
model illustrated in Fig. 4 where a large area of the sensor 
receives a background exposure E, and a small portion of 
this area receives an additional exposure of ∆E. The two 
image density levels D0 and D0+∆D, corresponding to the 
two exposure levels, must be distinguishable for the image 
information to be retrievable [9]. This requires that the two 
exposure levels fall within the operating or dynamic range of 
the sensor where the gradient of its characteristic curve 
dD/dE is > 0.  Signal detection becomes more difficult the 
smaller the initial signal (exposure difference ∆E) and the 
lower the gradient. Image noise σD leads to a variation of the 
image densities D0 and D0+∆D around their mean levels, and 
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Fig. 4 shows that the broader the overlapping probability 
distributions of density are, the less the two levels are 
discriminable. In addition, reproducing detail becomes more 
difficult as detail size decreases, and will be further 
compromised by image spread from lens blur and crosstalk.  

 
Fig.  4. Detail reproduction: Image signal ∆E transferred by characteristic 
curve, and its detection compromised by image noise σD [10].    

  
Fig.  5. Small image signals, original (left), and after transfer by a blurry 
and noisy imaging system (right). The detectability decreases with 
decreasing signal (top-bottom), decreasing detail size (left-right), and 
increasing noise.  

Fig. 5 illustrates that transfer noise can limit the detection of 
an image signal that is small in exposure difference and 
spatial size. 

B. Objective Image Quality Characterization 

The ability of an imaging system to reproduce detail can 
be fully described using the following three functions [10]: 
Characteristic Curve of tone reproduction, Noise Power 
Spectrum (NPS), and Modulation Transfer Function (MTF). 
These three ‘basis characteristics of image quality’ are 
measurable and can also be calculated from structural 
parameters using statistical models [11]. They describe the 
ability of the imaging system to reproduce locally variant 
luminance distributions. Originally defined for photographic 
image sensors, they have been successfully applied to the 
characterization of digital imaging systems, and form the 
basis of ISO standards for characterizing digital camera 
image quality.    

1) Characteristic Curve of Tone Reproduction 

The Characteristic Curve, conceived and first measured 
for photographic materials by Hunter and Driffield in 1880 
[12], describes the relationship between exposure and the 
resulting image value (be it in terms of density or any other 
image units), characterizing how the imaging system 

transfers large-area image details of varying luminance. ISO 
14524 [13] determines this characteristic from standardized 
test charts for digital still cameras as the Opto-Electronic 
Conversion Function (OECF). Parameters that characterize 
image brightness, contrast, and the reproduction of details in 
the highlights or shadows of the scene can be calculated from 
the measured OECF. The OECF characterization of HDR 
cameras for automotive use presents a challenge since 
conventional standard reflection test charts only cover 
contrast ranges up to 160:1. Fig. 6 shows the recently 
developed transmission test chart that contains 20 test 
patches simultaneously covering a luminance range of 5⋅104. 
When this is combined with an integrating sphere illuminator 
where the peak luminance levels can be adjusted over a 
range of 104 [14], an overall luminance range of over 108 can 
be covered in a measurement series. 

 
Fig.  6. Transmission test chart for combined measurement of OECF (ISO 
14524) and noise (ISO 15739) [14], [15]. 

2) Noise Power Spectrum 

Imaging system components such as pixel array or analog 
image signal processing add unwanted noise to the signal. 
The NPS measures the local amplitude variation of noisy 
sine waves as a function of spatial frequency. The utility of 
NPS to describe granularity noise in photographic systems 
was first demonstrated by Fellgett [16] and Jones [17] in the 
1950s. ISO 15739 [15] proposes the simultaneous 
measurement of NPS as a function of exposure from the 
OECF test chart. Parameters that characterize sensitivity, 
signal-to-noise ratio (SNR), dynamic range, and visual noise 
can be calculated from the measured OECF and NPS curves. 

3) Modulation Transfer Function 

MTF is the frequency-dependence of the change in 
amplitude of sine waves after transmission by one of the 
imaging system components such as lens, pixel array, or 
image signal processing algorithm. Linear modulation 
transfer allows the cascading of component MTFs in an 
imaging chain. The utility of the MTF for describing the 
recording of spatial information on photographic materials 
was first demonstrated by Frieser in 1935 [9], [12].   

ISO 12233 [18] determines the MTF for digital still 
cameras from standardized test charts. Parameters that 
characterize image sharpness and resolution can be 
calculated from the measured MTF.  

The MTF characterization for automotive cameras 
represents a challenge because ISO 12233 uses a high-
contrast edge target whereas the most critical features to be 
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detected in automotive scenes are often of low contrast. 
Recent developments address this issue by proposing a test 
chart with low-contrast edges [19], see Fig. 7. 

 
Fig. 7.  Reflection test chart with low-contrast edges suggested for the 
measurement of digital camera MTF [19]. 

IV. IMAGE QUALITY COMPARISON 

The ideal comparison criterion would be a single number 
that characterizes image quality, but due to the complexity of 
imaging systems such criterion does not yet exist. A direct 
comparison of the above-mentioned characteristic functions 
for different imaging systems does not necessarily predict 
differences in their image quality performance. For example, 
the better MTF of one camera may be offset by a 
deterioration of the luminance reproduction (OECF). There 
are two concepts of calculating comparison criteria from 
measured characteristic functions [10]: The first one uses the 
informational SNR as the criterion that characterizes the 
system’s capability to detect information. The second one 
calculates integral image quality criteria from the basis 
functions, using specific weighting functions that model the 
processing of image information by the human observer or 
detection software. 

A. Criteria of information detection 

The ability of an imaging system to detect small, low-
contrast image details is quantified by the photographic SNR 
q, which is defined in general by the quotient of the image 
density difference ∆D (signal S), and the standard deviation 
σD of the density fluctuation (noise N): 

NSDq D /≈∆= σ  (1) 

Biedermann and Frieser [20] approximate the 
photographic SNR for small signal modulations m0 from the 
measured basis functions of image quality 

fDfN

DfMmD
Dfq

⋅

⋅⋅
≈

),(

),()(
),( 0γ

, (2) 

where γ(D) is the gradient of the characteristic curve, M(f,D) 
the MTF, and N(f,D) the NPS at a given image density D. 
This can be utilized to estimate ranges of exposure (dynamic 
range) and spatial frequency (detail size) where q exceeds a 
minimum detection threshold of 1. Higher thresholds are 
expected to be necessary to ensure the reliability of 
applications such as feature detection algorithms.   

B. Integral image quality criteria 

Integral image quality criteria require weighting functions 
that model the detection of image information. This 
methodology shall be explained for the viewing and 
evaluation of the image by a human observer, but can also be 
applied to software-based image interpretation. The 
methodology requires image attributes and metrics that 
calculate correlates of these attributes from the measured 
basis characteristics. The image quality performance is then 
estimated by photospace weighting of the metrics’ values.  

1) Image Quality Attributes 

The goal for automotive image quality can be seen as a 
balance between naturalness and usefulness, see Fig. 8 [2]. 
The former strives to produce images with clearly 
recognizable features, and the latter manipulates images to 
maximize discriminability of those features presented in the 
image. For example, a natural image should contain 
recognizable signal colors or traffic signs. The same image 
optimized for usefulness might exaggerate local contrast, 
colors and sharpness to ‘see more’ features such as a 
pedestrian on a dark street.  

 
Fig. 8:  Image quality goals for different applications (after [2]). 

In order to produce a natural image, certain basic 
expectations of image quality have to be met: The tonal 
values (luminance ratios) of the original scene must be 
reproduced so that the overall image brightness matches that 
appearance of the original scene, and tonal image detail is 
recognizable. Memory colors, especially those of signals and 
traffic signs must be reproduced so that they can be 
recognized unambiguously. Spatial image detail must be 
reproduced so that it is clearly recognizable without being 
compromised by image blur or noise.  

The image attributes corresponding with these important 
aspects of image quality expectations are brightness, 
contrast, color saturation, sharpness and noisiness. 

2) Image Quality Metrics 

Perceptual image quality metrics are designed to correlate 
with image attributes. They can be calculated from the 
measured basis characteristics of image quality [21], [22]. 
These metrics are based on weighting functions that model 
important aspects of the human visual system such as the 
contrast sensitivity functions E(f) that describe the visibility 
of spatial detail in the luminance and chrominance channels 
as a function of spatial frequency [15], or noise sensitivity 
functions that describe the relative visibility of noise over 
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luminance and chrominance components of the image [23]. 
ISO 15739 proposes a visual noise metric that performs 
contrast sensitivity-weighted integration of the measured 
NPS over spatial frequency, 
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Image quality metrics are important since they reduce the 
complexity of image quality functions to a single number 
whilst factoring in important aspects of not only the human 
visual system but also of image display and viewing 
conditions. Similarly it would be possible to design metrics 
that evaluate the usefulness of an image for automatic feature 
detection by defining weighting functions that model 
important aspects of the feature detection algorithm.  

3) Photospace Weighting 

In order to use objective measurements to predict image 
quality performance under application conditions, the image 
quality metrics must be applied to a series of test images that 
sample the application photospace. An example of 
photospace weighting of sharpness measurements on mobile 
phone cameras over a wide range of scene illuminance levels 
is shown in a previous paper [24]. Similarly, the measured 
distributions of visual noise over photospace dimensions 
σ(L, d) can be weighted with the photospace distribution 
PSD(L, d) to yield photospace averages of  visual noise. 

V. EXPERIMENTAL 

The following example compares the detection 
capabilities of two automotive cameras. Camera A is 
equipped with a VGA Autobrite [8] HDR sensor, while 
camera B has a wide-VGA sensor with enhanced low-light 
sensitivity and HDR image processing. Each camera has a 
Cosmicar 6mm f/1.2 lens. 

A. Comparison of two automotive cameras 

The ISO 15739 OECF-noise transmission test chart was 
illuminated with the integrating sphere ETC-LE6-100 [14]. 
The test images in Fig. 9 were taken at a peak luminance of 
1,120cd/m², and the chart modulates the luminance over a 
range of 5.13⋅104 below the peak luminance. This simulates 
the imaging of natural scenes that include light sources as 
well as shadow detail (see Fig. 1). The curves of OECF and 
SNR vs. luminance shown in Fig. 9 were calculated from the 
image data, using the recommendations of ISO 15739 [15]. 
The OECF of camera A in Fig. 9 approaches the peak 
luminance with a steady slope, whereas that of camera B is 
much steeper so that saturation is reached far below peak 
luminance, leaving the top six patches of the chart almost 
indistinguishable. At low luminances camera B’s SNR is 
decreased by higher noise, and at high luminances it is 
limited by saturation. The resulting its dynamic range is 
reduced by 0.9 log units (18dB) relative to camera A.  
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Fig. 9.  Images of ISO 15739 OECF-noise test chart and curves of OECF 
and SNR vs. luminance. Camera B (right) shows significant loss of 
highlight and shadow detail in comparison to camera A (left).  

In order to simulate a wider range of automotive 
photospace conditions in the lab, the measurements shown in 
Fig. 9 were repeated at different peak luminance levels that 
were varied in logarithmic steps between 4cd/m² and 
3,700cd/m². At each of the peak luminance levels, average 
performance parameters were calculated from the OECF and 
noise data: visual noise using (3), SNR, and dynamic range. 
The measurements in Fig. 9 correspond to the data points at 
1,120cd/m2 in Figs. 10 and 11.  
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Fig. 10.  Average visual noise (top) and SNR (bottom) at different exposure 
levels. 

Fig. 10 shows that both cameras have similar levels of 
visual noise except for the highest and the two lowest peak 
luminances where camera B shows increased amounts of 
visual noise. Comparing the average SNRs at the different 
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luminance levels illustrates the interdependence of OECF 
and noise. At the lowest luminances camera B is at a 
disadvantage due to its higher noise. Its steeper OECF slope 
gives it an advantage between 10cd/m2 and 1,000cd/m2, but 
at higher luminances the steep slope is responsible for 
increasing the proportion of saturated highlight levels, with a 
corresponding decrease in SNR.  
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 Fig. 11.  Dynamic range at the different peak luminance levels. 

Fig. 11 compares the dynamic range of each camera at the 
different peak luminance levels. The higher the luminance, 
the wider the gap between the dynamic ranges becomes due 
to the beneficial effect of camera A’s Autobrite technology. 
At low luminances the dynamic range becomes increasingly 
limited for both by pixel sensitivity. Camera B should be at 
an advantage due to its enhanced low-light sensitivity, but 
this is offset by higher noise.  
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Fig. 12.  Photospace averages of SNR (left) and dynamic range (right) for 
daylight and night conditions. 

Finally, photospace averages using the distributions in 
Fig. 1 are calculated for SNR and dynamic range. Fig. 12 
shows that camera A has a higher SNR than B, and maintains 
it for both daylight and night conditions over a wider range 
of scene luminance levels. From the dynamic range data in 
Fig. 12 it can be estimated that under daylight conditions 
camera A reliably captures image information over a 3.6 
times higher luminance range than B, and at night its range is 
still twice as wide.   

VI. CONCLUSION 

Image quality performance predictions can be made from 
measurements of the basis functions of objective image 
quality, followed by weighted integrations to account for 
both the image viewing and application-typical photospace 
conditions. ISO standards for measuring OECF, noise, and 
MTF form a solid basis for characterizing the image quality 
performance of automotive cameras, and have been utilized 
to estimate SNR and dynamic range for automotive 
photospace conditions at day and night. Future work should 
concentrate on including object distance and motion in the 

automotive photospace, and designing application-specific 
integral image quality criteria that characterize the usefulness 
of automotive video footage.  
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