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Abstract— More than one third of all traffic accidents with
injuries occur in urban areas, especially at intersections. A
suitable driver assistance system for such complex situations
requires the understanding of the scene, in particular a reliable
detection of other moving traffic participants. This contribution
shows how a robust and fast detection of relevant moving
objects is obtained by a smart combination of stereo vision
and motion analysis. This approach, called 6D Vision, estimates
location and motion of pixels simultaneously which enables the
detection of moving objects on a pixel level. Using a Kalman
filter attached to each tracked pixel, the algorithm propagates
the current interpretation to the next image. In addition, a
Kalman filter based ego-motion compensation is described that
takes advantage of the 6D information. This precise information
enables us to discriminate between static and moving objects
exactly and to obtain a better prediction. This speeds up
tracking and a real-time implementation is achieved. Examples
of critical situations in urban areas exhibit the potential of
the 6D Vision concept which can also be extended to robotics
applications.

I. INTRODUCTION

According to current accident statistics more than one

third of all accidents with injuries occur at intersections.

Most of them are caused by distraction, nonattention or

misinterpretation of the situation [1]. Looking at collision

partners it turns out that the vast majority of accidents is

“colliding with moving objects”. A suitable driver assis-

tance system for such highly complex situations requires

the complete understanding of the traffic scene. Besides the

perception of the infrastructure it must detect other moving

traffic participants and measure their movement precisely to

predict potential collisions.

Using a stereo camera system the three-dimensional struc-

ture of the scene is easily obtained. This information is com-

monly accumulated in an evidence-grid-like structure [2]. We

refer to it as the birdview map. Since stereo does not reveal

any motion information, usually this map is segmented and

detected objects are tracked over time in order to obtain their

motion. The major disadvantage of this standard approach

is that the performance of the detection depends highly

on the correctness of the segmentation. Especially moving

objects in front of stationary ones – e.g. the bicycle in

front of the parking vehicles shown in Figure 1 – are often

merged and therefore not detected. This causes dangerous

misinterpretations and requires more powerful solutions.

Argyros et al. describe a method to detect moving objects

using stereo vision in [3]. Comparing the normal flow of the

right camera image with the normal flow between the left

Fig. 1. Typical scene causing segmentation problems to standard stereo
systems.

and the right images of the stereo cameras they detect image

regions with independent object motion as inconsistencies

in the flow data. Heinrich [4] proposes a similar approach

defining the so called flow-depth constraint. He compares

the measured optical flow with the expectation stemming

from the known ego-motion and the 3D stereo information.

Independently moving objects do not fulfil the constraint

and can easily be detected. However, this approach turns

out to be very sensitive to small errors in the ego-motion

estimation, since only two consecutive frames are considered.

In addition, both approaches lack a precise measurement of

the detected movements.

For a direct measurement of the objects movement Wax-

man and Duncan analyse the relation between the optical

flow fields of each camera and defined the so called relative

flow in [5]. Using this information the relative longitudinal

velocity between the observer and the object is directly

determined.

Direct optical flow analysis provides fast detection results,

but is limited with respect to robustness and accuracy due

to the immanent measurement noise. To get more reliable

results, an integration of the observations over time is nec-

cessary. The Kalman filter solves this in an elegant manner.

Each measurement is used to improve the current estimate of

the systems state [6]. In [7] Dang et al. combine stereo and

motion information obtained for an object in a single Kalman

filter and estimate the object’s position and movement. This

method expects a precise object segmentation.
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The core algorithm of the system presented in this con-

tribution follows the principle of fusing optical flow and

stereo information given in [12]. The basic idea is to track

points with depth known from stereo vision over two and

more consecutive frames and to fuse the spatial and temporal

information using Kalman filters. The result is an improved

accuracy of the 3D-position and an estimation of the 3D-

motion of the considered point at the same time. Since we get

a rich 6D-state vector for each point we refer to this method

as 6D-Vision. Taking into account the motion information,

the above mentioned segmentation problem can be solved

much more easily and robustly. In addition, using the 3D-

motion information a prediction of the objects movement is

possible. This allows a driver assistance system to warn and

react to potential collisions in time.

The fusion implies the knowledge of the ego-motion. In

our system we compute it from image points found to be

stationary using a new Kalman filter based approach. This

allows a fast calculation using all information already aquired

by the system including inertial sensor data.

In our real-time application we track about 2000 image

points. So far, the best results are obtained using a version of

the well-known Kanade-Lucas-Tomasi (KLT) tracker [8] that

was optimized with respect to speed. The depth estimation

is based on a hierarchical correlation based scheme [9].

However, any comparable optical flow estimation and any

other stereo algorithm can be used.

The paper is organized as follows: Section II gives the

system overview followed by a description of the Kalman

filter model used for the fusion of optical flow and stereo

information in Section III. To improve the estimation results

an image based ego-motion compensation is introduced and

described in Section IV.

II. SYSTEM OVERVIEW
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Fig. 2. The 6D-Vision system.

The block diagram in Figure 2 shows the main components

of the proposed system. Each cycle a new stereo image

pair is obtained and the left image is first analysed by

the tracking component. It identifies small distinctive image

regions called features and tracks them over time. In the

current application we use a version of the Kanade-Lucas-

Tomasi tracker [8] which provides sub-pixel accuracy and

tracks the features robustly for a long sequence of images. It

was optimized with respect to speed allowing the complete

system to analyse up to 2000 features in real-time (cycletime

of 40 − 80ms).

The displacement of the same feature in the left and the

right image is called disparity. It is determined for all features

in the stereo module. Here a hierarchical correlation based

algorithm is used [9]. After this step the current 3D-position

of each analysed feature is known.

In combination with the set of 3D-positions of the last

frame these features are used to compute the observers ego-

motion. One option to accomplish this is to match the clouds

of static world points using optimal rotation and translation

estimation [10]. The movement needed to match these point

clouds corresponds to the observed camera motion. Instead

of using an image-based ego-motion calculation it can be re-

constructed using inertial sensor data only. However, todays

cars have only sensors for the speed and the yaw rate. Other

rotational components such as pitch or roll are not measured

and thus not compensated for, which results in a less accurate

estimation of the 3D motion. Our novel approach presented

in this paper utilizes both image features and inertial sensors

combined in a Kalman filter. This results in an extremely

fast computation of the ego-motion.

The measurements of the tracking and the stereo module

together with the calculated ego-motion are given to the

Kalman filter system. For each feature one Kalman filter

estimates the 6D state vector consisting of the 3D-position

and the 3D-motion vector. A detailed description of the

underlying models is given in [12] and is recapitulated

shortly in the following section. In addition, the covariance

matrix for each state vector is available representing the

uncertainty of the estimation. This information is important

for further processing steps to build up probabilistic models

of the perceived world.

For the next image pair analysis, the already aquired 6D

information is used to predict the image position of the

features in the tracker. This yields to a better tracking per-

formance with respect to speed and robustness. In addition,

the predicted depth information is used to improve the stereo

calculation.

Features get lost over time as they move out of the image

or get covered by other image portions. To replace these,

the feature detector searches each image for regions that are

good to track. In our case a gradient based tracker is used and

therefore the eigenvalues of the gradient matrix are evaluated

according to [11]. As we want to concentrate mainly on

moving objects and determine their motion quickly and

accurately it is preferable to have as much information as

possible about these objects. Therefore the feature detector

increases the density of features in image areas known to

have object motion.
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III. FUSION OF OPTICAL FLOW AND STEREO

In the following we use a right handed coordinate system

with the origin on the road. The lateral x-axis points to the

left, the height axis y points upwards and the z-axis repre-

sents the distance of a point straight ahead. This coordinate

system is fixed to the car, so that all estimated positions

are given in the coordinate system of the moving observer.

The camera is at (x, y, z)T = (0, height, 0)T looking in the

positive z-direction.

A. System Model

Let ~pk = (X,Y, Z)T be the 3D position of an observed

world point and ~vk = (Ẋ, Ẏ , Ż)T its associated velocity

vector at the time step k. Assuming a constant motion during

the time interval ∆t the 3D position at the time step k + 1
is given by

~pk+1 = R~pk + ~T + ∆tR~vk (1)

Here the rotation matrix R and the translation vector ~T give

the motion of the scene, that is the inverse camera motion.

The camera motion components are either measured using

the inertial sensor data or computed by the image-based ego-

motion module.

The new velocity vector of the observed point is described

by

~vk+1 = R~vk (2)

Combining the location ~pk and the velocity ~vk in the

6D state vector ~xk = (X,Y, Z, Ẋ, Ẏ , Ż)T the time discrete

linear system model is given by

~xk = Ak~xk−1 +Bk + ~ω (3)

with the state transition matrix

Ak =

[

Rk ∆tRk

0 Rk

]

(4)

and the control matrix

Bk =









~Tk

0
0
0









(5)

The noise term ~ω is assumed to be Gaussian white noise

with covariance matrix Q.

B. Measurement Model

The measurement consists of two pieces of information:

the image coordinates u and v of a tracked feature and the

disparity d delivered by stereo vision working on rectified

images. Assuming a pin-hole camera the non-linear mea-

surement equation for a point given in the camera coordinate

system is

~z =





u

v

d



 =
1

Z





Xfu

Y fv

bfu



 + ~ν (6)
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Fig. 3. Estimation results of the presented Kalman filter. The considered
world point is at the initial position (10.0 m, 1.0 m, 60.0 m)T . The observer
moves at a constant speed of vz = 10 m

s
in positive z-direction (20 fps).

with the focal lengths fu and fv in pixel and the baseline b

of the stereo camera system. The noise term ~ν is assumed

to be Gaussian white noise with covariance matrix R.

To improve the Kalman filters rate of convergence a multi

filter system is used. It consists of multiple differently ini-

tialized and parameterized Kalman filters running in parallel.

By analysing the innovation of each filter the best matching

estimation is chosen. A detailed description of this approach

is given in [12].

C. Simulation Results

The benefit of filtering the three-dimensional measurement

is illustrated by Figure 3. It shows the estimated relative

distance of a simulated static world point measured from an

observer moving at a speed of 10 m
s

. The initial position of

the point is (10.0 m, 1.0 m, 60.0 m)T . White gaussian noise

was added to the image position and the disparity with a

variance of 1.0 px2. The dashed curve shows the unfiltered

3D position calculation which suffers from the additive noise.

The continuous curve represents the excellent result of the

filter.

D. Real world results

First we concentrate on the crossing situation already

shown in Figure 1. The result of the velocity estimation

is given in Figure 4. The cyclist drives in front of parked

vehicles while the observer moves towards him at a nearly

constant speed of 4m
s

. The arrows show the predicted position

of the corresponding world point in 0.5s projected into the

image. The colors encode the estimated lateral speed; the

warmer the colour the higher the velocity. In order to prove

the results, the right image in Figure 4 shows the same

situation 0.5s later. As can be seen, the prediction shown

in the left image was very accurate.

Figure 5 shows the estimation results for a typical on-

coming traffic situation in which the observer moves at a

constant speed of 14m
s

. Here the color encodes the absolute

velocity of the tracked points. The prediction matches the

real position shown in the right image.
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Fig. 4. Velocity estimation results for cyclist moving in front of parking cars. The arrows show the predicted position of the world point in 0.5s. The
right image was taken 0.5s later allowing a comparison of the estimation from the left image. Blue encodes stationary points.

Fig. 5. Velocity estimation results for an oncoming car. The observer moves at a constant speed of 14 m
s

.

IV. KALMAN FILTER BASED EGO-MOTION CALCULATION

In order to obtain the best results in the given fusion

process, the observer’s ego-motion must be known. The

inertial sensors installed in today’s cars measure the current

speed and the yaw rate. However, this information is not

sufficient for a full description of the observer’s motion as

it lacks important components such as the pitch and the roll

rate. Not compensating these influences results in a wrong

3D motion estimation.

This is illustrated in Figure 6. Here the ego-motion was

computed using inertial sensors only. As the car undergoes a

heavy pitch movement, the world seems to move downwards.

Using the estimated 6D information static world points are

easily identified. Assuming they remain static the observers

ego-motion is determined by comparing the predicted world

position with the measured one. We use a Kalman filter

to accumulate all these measurements and estimate a state

vector containing all ego-motion parameters. In addition, the

inertial sensor data is integrated as an additional source of

information.

This calculation of the ego-motion fits well into the

proposed system as it uses the already aquired information

Fig. 6. Velocity estimation results without image based ego-motion
compensation.

including the knowledge of the 6D filtering.

A. System model

We use a bicycle model for the car and assume that the

pitch and the roll angle change only slowly. The rotational

parameters of the ego-motion are the pitch angle α, the
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yaw angle ψ and the roll angle γ. Their derivative with

respect to time are the pitch rate α̇, the yaw rate ψ̇ and

the roll rate γ̇. The translational parameters are the com-

ponents of the observers velocity vector ~v = [vx vy vz]
⊤

.

Together with the acceleration a in z-direction and a scale

factor β, neccessary to compensate systematic errors of

the internal speed sensor, the state vector of the system is

~x =
[

α̇ ψ̇ γ̇ vx vy vz a α γ β
]⊤

.

To transform the state vector ~xk−1 of the previous time

step into the current one, the discrete system model is given

by

~xk = Ak~xk−1 + ~ω (7)

with the state transition matrix defined as

Ak =

































1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 0 1 0 0 0

∆t 0 0 0 0 0 0 g̃ 0 0

0 0 ∆t 0 0 0 0 0 h̃ 0
0 0 0 0 0 0 0 0 0 1

































(8)

and the noise term ~ω which is assumed to be Gaussian white

noise with covariance matrix Q.

The terms g̃ and h̃ are

g̃ = 1 − g∆t, 0 < g < 1 (9)

h̃ = 1 − h∆t, 0 < h < 1 (10)

where g and h are damping factors to reduce effects of

divergence of the integrated pitch and roll angle.

B. Measurement model

The measurement vector contains the components of the

measured optical flow ∆u and ∆v, and the change of

disparity from the stereo module ∆d of each point found to

be static. In addition, the translational velocity components

sx, sy and sz calculated using the inertial sensor data

speed ssensor and yaw rate ψ̇sensor are used. Therefore, the

stacked measurement vector - using only one image point

for simplicity - is ~z = [∆u ∆v ∆d sx sy sz]
⊤

.

The measurement model is given by

~z =

















∆u
∆v
∆d
sx

sy

sz

















=

















uk − uk−1

vk − vk−1

dk − dk−1
(

c0 − c1s
2
z

)

ψ̇sensor

ssensor sin θ
ssensor cos θ

















(11)

where c0 and c1 are constants describing the influence of the

side slip angle and θ is the yaw installation angle.

In addition, the equation

0 = vz − βsz (12)

Fig. 7. Velocity estimation results with image based ego-motion compen-
sation.

describes the relation of the measured velocity and the

estimated velocity using the scale factor β.

Static features used for the ego-motion computation are

identified by their associated 6D vector. The estimated mo-

tion of these features has to be small and a subset is selected

evenly distributed in the image. Features with low estimation

covariance are preferred. The algorithm runs in less than one

millisecond per frame.

C. Real World Result

The benefit of the presented image-based ego-motion

compensation is demonstrated in Figure 7. Comparing to

Figure 6, which showed the same scene using only inertial

sensors for the ego-motion calculation, the world seems to

be more stable. In fact, all previously moving image points

remain static. In addition, there are more vectors on the

cyclist. To suppress measurement outliers a standard 3σ-test

is performed in the Kalman filter. As the pitch movement in

Figure 7 is not estimated at all, the features are misinterpreted

as outliers and are therefore rejected.

Looking at the same situation a few frames earlier, we

see in the left image of Figure 8 the cyclist appearing

behind a wall. The rear wheel of the bicycle is covered

by a solid fence. At this time the cyclist is at a distance

of about 32 m and covers a visible region in the image of

about 30 × 40 pixels. Nevertheless, first reliable estimation

results are available. Looking at the right image, a birdview

display on the same scene is given. Here only motion vectors

whose associated world point lies above 1 m are displayed

to provide a better view of the situation. It can be seen, that

this rich information helps detecting the moving cyclist in a

following detection step and provides a first prediction of its

movement at the same time.

V. SUMMARY

The proposed fusion of stereo and optical flow simulta-

neously improves the depth accuracy and allows estimating

position and motion of each considered point. Segmentation

based on this 6D-information is much more reliable and

a fast recognition of moving objects becomes possible.
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Fig. 8. Estimation results for partially occluded cyclist (rear wheel occluded). On the left image the velocity estimation is shown. On the right image
the same scene is displayed in a birdview perspective with the camera center at the middle of the bottom line. The total width is 20 m and the displayed
depth is 40 m.

In particular, objects with known direction and speed can

directly be detected on the image level without further non-

linear processing or classification steps that fail if objects

occur, which were not provided in the training process.

Since the fusion is based on Kalman filters, the informa-

tion contained in a number of frames is integrated. This leads

to much more robust estimations than differential approaches

like pure evaluation of the optical flow. The multi-filter

approach adopted from our depth-from-motion work [13]

speeds up the rate of convergence of the estimation, which

is important for fast reactions. For example, practical tests

confirm that a crossing cyclist at an intersection is detected

within 4-5 frames. In addition, the novel image based ego-

motion compensation improves the quality of the estimation

significantly.

Even partially occluded objects are detected fast and

reliably as seen in Figure 8. This demonstrates the power of

the presented system not only to detect but also to measure

and predict the objects movement. At the moment, no other

sensor is able to provide these results at such an early stage.

The described system is implemented in our demonstra-

tor vehicle (UTA, Mercedes Benz S-Class vehicle) on a

3.2 GHz Pentium 4. The cycle time of the complete system

for analysing about 2000 image points is 40 − 80ms. That

includes the image aquisition as well as the visualisation.

The next step focuses on the segmentation of the available

6D information in order to provide reliable object hypothe-

ses. The detected objects will be analysed subsequently with

respect to their risk of collision. In a first implementation, we

adopted a method used for segmenting stereo data. All points

with a high risk of collision are put into a birdview map and

objects are identified using a connected component analysis.

In a test scenario, we used this information successfully

to perform a fully autonomous emergency braking in our

demonstrator vehicle. However, as this method uses only a

subset of the available information, we are investigating more

powerful segmentation algorithms.
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