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Abstract— Many driver assistant and safety systems depend
on an accurate environmental model containing the positions
of stationary objects, the states of dynamic objects and in-
formation about valid driving corridors. Therefore, a robust
differentiation between moving and stationary objects is re-
quired. This is challenging for laser scanners, because these
sensors are not able to measure the velocity of objects directly.
Therefore, an advanced occupancy grid approach, the online
map, is introduced, which enables the robust separation of
moving and stationary objects. The online map is used for the
robust detection of the road boundaries for the determination
of driving corridors in urban and highway scenarios. An
algorithm for the detection of arbitrary moving objects using
the online map is proposed.

I. INTRODUTION

Many common and future driver assistant and safety

systems rely on the data of environmental sensors. Sensor

systems such as radar, video or laser scanners provide

information about stationary and moving objects in the field

of view. Many algorithms and applications such as situation

assessment as well as cooperative systems benefit from a

detailed environmental model containing the positions of

stationary objects and also the dynamic states of moving

objects. In this work a laser scanner with a large horizontal

opening angle, which is important in urban areas, such as

intersections or acute bends, is used.

As laser scanners are not able to measure the velocity of

objects directly, common object tracking and classification

approaches are used to determine the dynamic states of

moving objects [1], [2]. There are model assumptions, such

as the dimension or the shape of tracked and classified

objects. That’s why it is hard to separate arbitrary moving

objects and arbitrary stationary objects from each other in

general. Especially the shape of stationary objects, such as

bushes, house walls and all other objects, which can be found

in the environment of the vehicle, is strongly varying. That’s

why a grid based method is chosen in this work to separate

moving and arbitrary stationary objects.

Therefore, a special form of occupancy grids based on a

binary bayes filter is introduced in section III. Within this

approach, the region around the vehicle is partitioned into

grid cells. For each grid cell a likelihood of occupancy is
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calculated in consideration of the distance measurements of

the laser scanner. We denote this to the online map.

Thrun et. al. described a related algorithm for mapping

approaches [3], [4] as well as within the DARPA grand

challenge [5]. The approach was extended and modified in

order to use it in the field of real-time driver assistant systems

in urban and highway scenarios.

With the help of the online map road boundaries are

detected and a driving corridor is determined using a new

approach, which is introduced in section IV. Furthermore, the

robust detection of arbitrary moving objects from the online

map, without any common multi object tracking algorithms,

is proposed in section V. One significant advantage of this

approach is the fact, that no model assumptions are required

to separate moving and stationary objects.

II. SENSOR SETUP

The multilayer laser scanners ALASCA XT (Automotive

LAserSCAnner) of IBEO Automobile Sensor GmbH acquire

distance profiles of the vehicle’s environment of up to 270◦

horizontal field of view [6]. The angular resolution is up

to 0.125◦ and the scan frequency is chosen to 10 Hz in this

work. The laser scanners use four scan planes with a vertical

opening angle of 3.2◦. The scanners are integrated at the front

bumper of our testing vehicles as shown in Fig. 1.

integrated laser scanner

Fig. 1. The laser scanners IBEO ALASCA XT are integrated at the front
bumper of the testing vehicles.

III. ONLINE OCCUPANCY GRID MAPPING

In this section, a real time algorithm for the generation

of advanced occupancy grids using distance measurements

of the laser scanner is proposed. The algorithm is related to

the approach Occupancy Grid Mapping described in detail

by Thrun et. al. in [3]. Modifications and extensions for the

use in real-time driver assistant applications are introduced.

The basic idea of the algorithm is the partition of a certain

region around the vehicle to grid cells. The likelihood of

occupancy of grid cells are updated in consideration of the

actual distance measurements of the laser scanner using a
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binary bayes filter. Thus, each cell contains the history of

the previous laser scans.

In the following sections mi denotes the i-th cell. The

region is partitioned around the host vehicle into grid cells.

All grid cells mi form the occupancy grid m = {mi}, which is

denoted in this work to the online map. p(mi) is denoted to

the occupancy likelihood. The likelihood p(mi) = 0 stands

for a free cell mi and p(mi) = 1 stands for an occupied

cell mi [3].

A. Advanced forward inverse sensor model

In order to combine the actual measurement and the

existing online map, a separate grid with the same dimension

as the online map is defined. The grid is denoted to mea-

surement grid in this paper. The measurement grid contains

the occupancy likelihoods p(m j|zt) in consideration of the

actual distance measurements zt at time t.

1) Initialization of the measurement grid: All cells m j

of the measurement grid are set to p(m j) = 0.5, before

any distance measurements are registered, because it is not

known, whether cells are occupied or not.

2) Registration of distance measurements in the measure-

ment grid: The vehicle’s pose relative to the online map

is known precisely. Each measurement point is transformed

to the coordinate system of the online map. Thus, each

measurement point is assigned to a certain cell in the

measurement grid. There are often more than one distance

measurements in some cells, as the dimension of the grid cell

is chosen to 20 cm in this work. For each measurement point

in a cell m j, the value 0.05 is added to the cell likelihood

p(m j). The value 0.05 is a heuristic parameter determined

from extensive tests.
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Fig. 2. Cells, which are out of view of the laser scanner or which are
occluded (p(m j) = 0.5) are painted gray. Occupied cells (p(m j) > 0.5) are
painted darker. Free cells (p(m j) < 0.5) are painted brighter.

3) Free regions in the measurement grid: There is also

information about free space in the distance profile of the

laser scanner. If the laser scanner detects an object, the

line between the laser scanner and the object seems to

be free. However, if the laser scanner detects an object,

there is no information about the region behind the object.

Consequently, these regions must be neglected and the cells

keep their initial likelihood of occupancy p(mo) = 0.5 (see

Fig. 2 and 3).

The discrete angle steps of the laser scanner are known [6].

If the laser scanner does not detect an object at certain angle

steps, regions in that line also seem to be free.

Nevertheless, in far distances there may be small objects

such as small posts, which are not detected by a laser beam of

the actual scan. Therefore, the grid cells, which are situated

along a beam are not all set simply to zero, but the cells are

set to a value, which depends on the radial distance of the

laser beam.
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Fig. 3. The likelihoods of cells in the measurement grid depends on the
radial distance to the laser scanner.

Therefore, a linear function is used. For a grid cell m j,

which is situated at a radial distance of d, the likelihood of

the cell is:

p(m j,d) =











0.4·dmin
dmax

for 0 ≤ d ≤ dmin

0.4
dmax

·d for dmin ≤ d ≤ dmax

0.5 for d > dmax

(1)

dmax is a design parameter and it is chosen with respect to

the requirements of the application. In our application it is

chosen to dmax = 50 m, although the field of view of the laser

scanner is up to 200 m. dmin is the minimal radial distance

and it chosen to 0.1 m. Fig. 3 illustrates the registration of

free regions in the measurement grid.

Fig. 4 shows two exemplary measurement grids from real

laser scanner data for an urban and a highway scenario.

50 m
50 m

Fig. 4. Left: Measurement grid of an urban scenario. Right: Measurement
grid of a highway scenario. The reference video images show the scenarios.

B. Update of the online map

The existing online map and the measurement grid are

combined using a binary bayes filter, which addresses esti-

mation problems with binary state, that does not change over

time. In this approach the occupancy of a grid cell, which
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remains at the same position and does not change during

sensing, is estimated [3].

Each cell i of the online map contains the probability

of occupancy in consideration of all preceding measure-

ments p(mi|z1, ...,zt−1). The likelihoods of the cells of the

actual online map p(mi|z1, ...,zt) are determined from the

existing online map and the actual measurement grid p(mi|zt)
using Bayes Theorem:

p(mi|z1, ...,zt) =
p(zt |z1, ...,zt−1,mi) · p(mi|z1, ...,zt−1)

p(zt |z1, ...,zt−1)
(2)

The measurement in a cell i does not depend on the pre-

ceding measurements: p(zt |z1, ...,zt−1,mi) = p(zt |mi). After

applying Bayes Theorem p(A|B) = p(B|A)·p(A)
p(B) to p(zt |mi),

equation 2 is then:

p(mi|z1, ...,zt) =
p(mi|zt) · p(zt) · p(mi|z1, ...,zt−1)

p(mi) · p(zt |z1, ...,zt−1)
(3)

Equation 3 gives the probability for an occupied cell i.

Analogous, equation 4 gives the probability for a free cell i:

p(mi|z1, ...,zt) =
p(mi|zt) · p(zt) · p(mi|z1, ...,zt−1)

p(mi) · p(zt |z1, ...,zt−1)
(4)

Equation 3 is divided by equation 4:

p(mi|z1, ...,zt)

p(mi|z1, ...,zt)
=

p(mi|zt)

p(mi|zt)
·

p(mi)

p(mi)
·

p(mi|z1, ...,zt−1)

p(mi|z1, ...,zt−1)
(5)

With respect to p(A) = 1− p(A) and p(A|B) = 1− p(A|B)
equation 5 is then:

p(mi|z1, ...,zt)

1− p(mi|z1, ...,zt)
=

p(mi|zt)

1− p(mi|zt)
·

1− p(mi)

p(mi)

·
p(mi|z1, ...,zt−1)

1− p(mi|z1, ...,zt−1)
(6)

For all cells in the measurement grid without any measure-

ment points or free space (out of view or occluded cells),

we set p(mi) = 0.5. Equation 6 is then:

p(mi|z1, ...,zt)

1− p(mi|z1, ...,zt)
=

p(mi|zt)

1− p(mi|zt)
·

p(mi|z1, ...,zt−1)

1− p(mi|z1, ...,zt−1)
(7)

Finally, the odds ratio of a cell i in the online map is

calculated:

p(mi|z1, ...,zt) =
S

1+S
(8)

S =
p(mi|zt)

1− p(mi|zt)
·

p(mi|z1, ...,zt−1)

1− p(mi|z1, ...,zt−1)
(9)

In [3] a log odds ratio form of the likelihood is proposed,

as the bayes filter for updating beliefs in log odds represen-

tation is computational elegant, as log odds ratio assumes

values from −∞ to ∞. It avoids truncation problems that

arises for probabilities close to 0 or 1 [3].

However, we chose the formulation in equation 8 for two

reasons. The calculation of the logarithm is computational

expensive even if look-up tables are used. Furthermore, the

range of the log odds ratio is −∞ to ∞, which is hard to

implement. The range of the odds form in equation 8 is 0..1,

which is easier to handle using a 32 bit digit in a DSP or

computer, for instance. The problematic truncation problem

close to 0 and 1 is considered for by a simple procedure:

for all online map cells i do
if probability of cell i in measurement grid is

unequal to 0.5 then
calculate odds ratio (equation 8)

if p(mi|z1, ...,zt) is greater than 1− ε then
set p(mi|z1, ...,zt) = 1− ε

if p(mi|z1, ...,zt) is less than ε then
set p(mi|z1, ...,zt) = ε

ε may be set to 0.00001 for float variables, for instance.

Extensive tests have shown, that this approach leads to very

satisfying results. The performance of applications based on

the online map using the odds ratios is the same as if log odds

ratios are used, but with a significant lower computation time.

the computation time for an update step is 25 ms (Pentium

IV-M, 1,6 GHz). Fig. 5 shows an exemplary urban scenario,

the actual measurement grid and the online map.

Fig. 5. The red points in the online map are the distance measurements of
the actual laser scan. The measurement grid of the actual distance profile
and a reference video image are shown. The two pedestrians are walking
on a free region, which allows for the detection of these slowly moving
objects.

C. Vehicle movement

1) Movement Estimation: The movement of the vehicle

is determined using the integrated serial sensors. The trans-

lation and change of orientation is determined from the yaw

rate, steering angle and wheel speed encoders. In standard

situations (no sliding or wheelspin), the accuracy of the ego

motion estimation is satisfying for this approach.

2) Vehicle Movement in the Online Map: In the first step

the translation ∆xm
v , ∆ym

v and the change of the orientation

∆ψm
v of the vehicle are determined using the ego motion

estimation algorithms. The translation and orientation of the

vehicle are transformed to the coordinate system of the online

map.

The position of the vehicle in the map is not only given

by the center of the cell, where the origin of the vehicle’s

coordinate system is situated, but by an accurate position
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Fig. 6. Cells are added (green crosses) and opposite cells are removed
(red crosses) dependent on the vehicle’s movement. The vehicle is rotated
relative to the map coordinate system by the angle ∆ψm

v . The blue box
represents the host vehicle.

in the map coordinate system. Thus, the position of the

vehicle inside the cell is known precisely. The number of

columns and rows, which were passed by the vehicle, are

calculated. The dimension of the online map is constant,

which leads to a constant number of rows and columns.

In this approach the vehicle moves virtually over the map,

but only a quadratic region (the online map) is held in the

memory of the computer. Thus, the map is shifted under the

vehicle. Consequently, cells in driving direction are added

and cells at the opposite site are removed as illustrated in

Fig. 6.

The change of the orientation angle ∆ψm
v is added to

the absolute angle ψm
v between the longitudinal axes of

the vehicle and the map coordinate system. The vehicle is

turning relative to the map. This is an important advantage

as the map is only shifted in xm and ym-direction. Thus

discretization errors, which would occur, if the map would

be turned relative to the vehicle, are eliminated. Fig. 7 shows

an example.

overlap of the cells

Fig. 7. If the map is rotated relative to the vehicle’s coordinate system,
discretization errors in the overlapping regions would occur. That’s why the
vehicle is rotated relative to the map coordinate system.

If there are any temporal errors concerning the laser

scanner or the ego motion estimation, the online map will be

up to date in a very short time, after sensors work reliable

again. This is an important fact for the development of robust

applications based on the online map.

IV. LANE DETECTION USING THE ONLINE MAP

Much work has been done in the field of detecting lanes

and lane markings using video cameras [7]. Also approaches

for the detection and estimation of lane boardings and lane

markings using laser scanners were proposed [8], [9].

Most of the laser scanner based approaches are based

on model assumptions and significant features, such as

a clothoid shape and detected reflexion posts. These ap-

proaches work well in highway scenarios, where signif-

icant features, such as reflexion posts, crash barriers or

lane markings, can be found. However, in urban scenarios,

the estimation of the driving path is more challenging, as

there are no common features such as reflexion posts etc.

Furthermore, the driving path is often reduced by parking

cars or other obstacles. Lane markings are often occluded,

not visible or even not present in urban scenarios. Therefore,

objects at the road boundary form the driving corridor.

The road boundaries are detected and the position of the

host vehicle within the driving path is determined using the

online map in order to provide these informations to driver

assistant and safety systems.

A. Detection of the driving path and lane boundaries

left & sublinesright

host
vehicle

host
vehicle

excluded sublines

free driving path

center line

sublines hit
boundary

spline

Fig. 8. Principle of the road corridor detection algorithm (urban scenario).
Sub lines expand perpendicular from a center line until a border is reached.

Stationary objects, which form the boundaries of the

valid driving path, are registered in the online map. Fig. 8

illustrates the principle of a new road corridor detection

algorithm. The algorithm performs in the following steps:

1) Firstly, a center line is determined, which points in

the direction of the host vehicle’s longitudinal axis as

shown in Fig 8. The line has a maximum length lmax.

If the line hits a boundary, the line is shortened and it

points from the vehicle to the boundary.

2) The line is partitioned into several sub lines.

3) Each sub line moves perpendicular from the center line

until occupied cells in the online map are reached. This

is performed for both sides of the center line. If no

boundary is found for a sub line in the lateral position

of the vehicle, the sub line will be neglected.

4) The center of each sub line is calculated.

5) An iterative optimization algorithm choses sub lines,

which form the road corridor:
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• Valid sub lines must be situated on a parabolic

curve in order to detect outliers.

• The left and right parabolic curve must have a

similar distance to each other.

Further examples from urban and highway scenarios are

shown in Fig. 9.

road corridor
sub lines

Fig. 9. Upper Image: Determination of the road corridor (magenta line)
in a highway scenario. The curvature of the road corridor and the lateral
distance of the vehicle are determined with the help of the red sub lines.
Lower Image: Determination of the road corridor in an urban scenario.

This algorithm works well in standard straight or curved

road scenarios. However, at intersections and turnoffs, there

is more than one possible driving path. Therefore, the algo-

rithm was extended by the following steps:

1) The raw shapes of the free regions in the online map

are determined.

2) Two center lines are defined for the intersection as

illustrated in Fig. 10.

3) Sub lines are used to detect the boundary of the

intersection.

center line
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n
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r 
lin
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boundary

boundary

tu
rn

of
f

video reference image

Fig. 10. Road boundary detection in an exemplary intersection scenario.

In the last step the lateral distance between the vehicle

and the boundary is calculated. Also the orientation and the

position of the vehicle relative to the road is determined.

Fig. 11 shows the result of a lane change maneuver on a

highway scenario.

The question may arise, that the lateral offset could also

be estimated using video processing. However, the proposed

approach will also work in bad visual conditions and if there

are no lines on the road and furthermore in urban areas.

time step [80 ms]
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[m
]
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13

Fig. 11. Lane changing maneuver on a highway. The lateral distance over
time is plotted.

V. DETECTION OF MOVING OBJECTS USING ONLINE

MAPS

Although the proposed algorithm works well in many

scenarios there’s one drawback, which is considered for in

this section. Distance measurements of the backs of objects

moving in front of the host vehicle are registered in the

online map. However, the cells are cleared after some scans,

but the effect leads to a trail in the online map. These trails

are disadvantageous for the road corridor detection algorithm

introduced in the last section.

However, these trails are unique features for moving

objects. Thus, the detection of trails allows for a robust

detection of moving objects independent of their shape

and their velocity. Fig. 12 shows some exemplary trails of

cars and of a truck in urban and highway scenarios. The

likelihoods in the region of moving objects in the online

map are shown in a 3D plot.

In order to find trail candidates, lines pointing in parallel

direction relative to the laser scanner are defined. Along these

lines the likelihoods of passed cells are analyzed. The typical

trail shape as shown in Fig. 12 is searched for.

After the detection of a trail, the driving direction of

the moving object is determined. The driving direction is

perpendicular to the peaks in the online map (see Fig. 12).

After the determination of the driving directions the means

of the peaks are calculated. Furthermore, the velocity vob j

of a moving object is calculated by analyzing the average

distances of the peaks d under consideration of the scan

frequency fscan:

vob j = d · fscan (10)

Extensive tests have shown, that this trail is observed by all

moving vehicles, such as buses, trucks and cars. For bikes the

trail is more narrow, but the algorithm also works for these
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Fig. 12. Moving objects are detected in the online map. Therefore trail
shapes are searched for. The width p and the length d of the trails are
determined. A 3D shape visualizes the likelihood of cells, where a trail
was detected. The peaks are detected and the means of the peaks are
calculated. The results are the right plots. The velocity of the moving objects
is determined. Lower image: Detected trails of two cars driving in front of
the testing vehicle. The green lines show the positions in the online map,
where trails can be found. The sub line algorithms exclude these regions
for a more robust road corridor detection.

objects. The analysis of the trails is reasonable for objects

moving at a relative angle of up to ±90◦ degree relative to

the host vehicle in regions, which have not been observed

before by the laser scanner. Consequently, the velocity of

proceeding objects is calculated without using a common

multi-object tracking approach.

The accuracy of the velocity determination using the on-

line map was analyzed. Therefore, the velocity of a reference

vehicle was determined precisely using the integrated wheel

speed encoders. The testing vehicle followed the reference

vehicle and determined its velocity using the online map.

The accuracy of the velocity determination is in the region

of 1−2 km/h. Fig. 13 shows the results.

Moving objects are excluded from the online map, in

order to improve the detection of the road corridor. Vehicles

driving towards or across the host vehicle are not registered

in the online map, because they pass free regions with low

0 10 20 30 40 50
50

60

70

80

90

100

Time [s]

v
e

lo
c
it
y
 [

k
m

/h
]

 

 
wheel speed

online map

No trail detected

Object is detected 
the first time

Fig. 13. Velocity of the reference vehicle and the velocity determined from
the online map of the testing vehicle driving behind the reference vehicle.

likelihood of occupancy. The trail detection algorithm can

be used for various applications. The robust algorithm is

applicable in real-time.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions and Future Works

An algorithm for the real time generation of an online

map based on binary bayes filter and laser scanner data is

proposed. A robust algorithm for the detection of the driving

corridor in urban and highway scenarios is introduced. Fur-

thermore, an algorithm for the detection of moving objects

using the online map is proposed.
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