
 

 

 

  

Abstract—In this communication we present a new algorithm 

of lane detection and tracking.  In the detection step, from the 

first frame of a video sequence, a linear-parabolic   model is 

used to smooth the estimated trajectories, obtained by using the 

NNF approach. In the step of tracking, assuming a small change 

in the model, we use the HMM to update each parameter of the 

model. The results obtained are satisfactory.  

I. INTRODUCTION 

Lane detection and tracking is the problem of locating 

road lane boundaries without an a priori knowledge of the 

road geometry. Lane tracking techniques and a vision-based 

lane boundary location system can assist in a number of 

“driver assistant’’ applications, such as intelligent vehicles, 

and automatic navigation systems. Basically, there are two 

classes of approaches used in lane detection: the feature-

based technique and the model-based technique [1, 2, 3, 4, 

and 5]. In the feature based technique the lanes in the road 

images are detected by traditional image segmentation where 

the low-level features are   combined [6, 7, and 8]. 

Accordingly, in this technique the studied road is assumed 

having well-painted lines or strong lane edges, otherwise it 

will fail. Moreover, this technique may suffer from occlusion 

or noise.   

On the other hand, in the model-based technique, one uses 

only  a few parameters to represent the lanes . This technique 

is based on the assumption that the shapes lane can be 

represented by straight lines or parabolic curves [3-5]. 

Hence, the lane detection problem is considered as a 

problem of the model' parameters estimation. 

Several algorithms were developed to estimate the 

parameters of a lane model to achieve the lane detection. 

These algorithms are based on various techniques such as: 
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edge detection [6, 7], Hough transform [8] and networks of 

neurons [9], etc. 

In this paper we propose a new algorithm for lane 

detection / tracking. The problem is reduced to the 

estimation of a target trajectory. Basically our method 

consists in two steps: 

1) Lane detection: this first step consists of detecting lane 

boundaries from the first frame of the video sequence, 

using a tracking algorithm. 

2) Lane Tracking: this step consists of updating the 

detection in the previous frame to the subsequent one, 

by using the Hidden Markov Model (HMM). 

In section 2 we present the new algorithm, based on a 

tracking algorithm inspired from radar tracking, to achieve 

the lane detection. In section 3, we present the lane tracking 

step by using the HMM. This paper concludes in section 4. 

II. LANE DETECTION  

A. Formulation of lane detection problem 

 In this section we propose a new formulation of the lane 

detection. The problem of lane detection is formulated as 

follows: we consider each lane boundary as being the 

trajectory of a moving object or target, which it will be 

necessary to estimate using a tracking algorithm based on the 

Kalman Filter (KF) [10] [11]. In our case, the fictive target 

will be a pixel or a set of pixels which will move throughout 

the lane boundary (Fig.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Principle of the lane detection 

 

 In our case, the right and the left lanes to be detected are 

well separated, that is means that each lane can be 

considered as separate from the other. Hence, the tracking 
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problem of the targets corresponding to each lane is reduced 

to two single targets tracking in clutter.  

By consider the problem of tracking a single target in 

clutter, the target dynamics are modelled in discrete time in 

the standard manner [10,11], using a state-space model of 

the form: 

    ( ) ( ) ( ) ( ) ( ) ( )  1  k k k k k k+ = + +x F x G u v             (1) 

Where ( )kx  is the target state vector that includes the 

quantities to estimate, such as the position of the pixel and its 

speed of displacement in the image, u(k) is an input, ( )F k  

is the matrix transition, and  v(k) is the noise vector k = 0, 1, 

. . . , assumed to be a zero-mean, white Gaussian process 

with covariance ( ) ( ) ( ) ( ),Tk l k k lδ  = E v v Q , where 

[ ]{ }E ∗  denotes the mathematical expectation. 

 

The measurement of the target kinematics equation is 

( ) ( ) ( ) ( )k k k= +z H x k w                                           (2) 

where w(k) is the  measurement noise, assumed to be a zero-

mean, white Gaussian process with covariance   

( ) ( ) ( ) ( ),Tk l k k lδ  = E w w R , and  ( )kH  is the matrix 

measurement. This matrix relates the state to the 

measurements. In practice ( )kH  might change at each time 

step or measurement, but here we assume it is constant. The 

process noise and measurement noise sequences are assumed 

to be uncorrelated with known covariances, 

( ) ( ) 0;Tk l  = E w v   lk,  ∀  .  The matrices   ( )kQ  and 

( )kR   are positive definite matrices. 

The matrices F, G, H, Q, and R are assumed to be known 

with appropriate dimensions. 

The proposed algorithm is inspired from the Radar 

tracking algorithms [10, 11]. There are four processing 

stages in the algorithm:  

--The measurements' generation by edge pixel extraction.  

--Trajectory or track initiation, using the Hough transform. 

--Tracking algorithm, based on the Nearest Neighbour 

Filter NNF approach to estimate the trajectory. 

--Lane modelling: The estimated trajectory in the previous 

step is modelled by a linear-parabolic model.  

 

B.  Generation of the measurements  

  As the pixels representing the white marking of the road 

have a high intensity, the measurement generation may be 

achieved by the edge pixel extraction which is performed by 

Canny edge detection. The Canny filter is employed to 

obtain edge map (Fig. 2). 

The detected edge points are used to estimate the 

trajectories of the moving targets by using the Kalman filter. 

They represent the measurement of the target position.  From 

Fig.2 we see that the detected edge points can be classified in 

two groups: the first one represents the points originated 

from the targets or the lanes, and the second one represents 

the noise or the clutter.  

It is well known that most of the target tracking algorithms 

need track initiation. 

 

 

   

                      

 

        

 

                     

 

 

 

 

 
Fig. 2. Measure’s generation: Edge Pixel Extraction 

 

C.  Trajectory (Track) initiation     

  The trajectory initiation is a problem similar to the 

tracks' initiation in the case of Radar tracking. Before using 

the Kalman filtering in the NNF, one must initialize the 

tracking algorithm from initial measurements. This 

represents an important step since a bad initialization leads 

to a misdetection of the lane.  If additional information is 

used in the track initiation, efficient detection can be 

achieved.  

In order to determine the first measurements which will 

allow thereafter the initialization of the Kalman filter, one 

could use the Hough transform to detect the two straight 

lines representing the two boundaries of the road.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Initialization of the Kalman Filter by the Hough Transform 

 

The Hough transform is a well known method for 

initiating multiple target tracks. In our algorithm, this 

transform is applied only to one small section (about 20-30 

lines) to of the filtered image where the likelihood of the 

presence of the road edges is the highest (Fig.3).  
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Since only a small section is used, the Hough transform 

computation load is not prohibitive. This load can be 

reduced  by considering four to five sub-sections;  each 

defined by 20-30 lines and 40-60 columns. This allows a  

Hough transform parallel implementation leading to a real 

time implementation.   

Notice that some methods are based on the Hough 

transform by using the whole image to achieve the lane 

detection this very time consuming. 

 

D. Tracking Algorithm  

 At each step time (iteration), several measurements of the 

target state are available. In a clutter environment, incorrect 

measurements may be received. Hence there is an 

uncertainly, related to the origin of measurements.  This 

uncertainly poses the problem of which measurement, should 

be used to update the state of a given target.  

The simplest method for target tracking in clutter is the 

Nearest Neighbour Filter (NNF),  which utilizes the closest 

measurement to the predicted target measurement. The NNF 

assumes, at any time, that the Nearest Neighbour (NN) 

measurement is target-originated and uses it in a Standard 

Kalman Filter (SKF) to update the target state estimate. The 

performance of the NNF has been completely analyzed in 

[11]. 

The NNF (Nearest Neighbour Filter) is widely used for its 

computational simplicity. 

The most commonly used validation gate in Radar 

tracking is an ellipsoid defined from the innovation and a 

gate size parameter. The validation gate is a region around 

the predicted measurement and is used to select the 

candidate measurements for association. A measurement 

falling inside the validation gate is referred to as a validated 

measurement, and is a candidate for the use in a tracking 

filter. In the NNF, the measurement closest to the predicted 

measurement is used for track update and the others are 

discarded. 

In our case the gate is defined by a set of np pixels around 

the predicted position. Only those observations that are 

within the gate are considered for track updating. 

Assuming the target moving with constant speed, hence 

the two-dimensional state vector is defined by position and 

speed. The tracking is performed with a Kalman filter of the 

second order (KF2) defined by:  
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where 
2

vq σ=  and T are, respectively, the measurement 

noise power and the sampling period.  

The Kalman filter is initialized with the two points method 

by using the results provided by the Hough transform in the 

previous section.  

The proposed algorithm has been tested on some 

sequences of images grabbed by an on-board camera at 

different locations and at different times. Fig. 4 shows some 

of our experimental results of lane boundary detection where 

estimated lane boundaries using the NN filter are 

superimposed onto the original images. The images 

presented in this communication are downloaded from 

http://vasc.ri.cmu.edu//idb/html/road/may30_90/index.html. 

E. Lane model: 

 Lane model plays an important role in lane detection. We 

choose a linear-parabolic model as in [12] to represent lane 

boundary. This model is described by the function f (x): 

 

( )
2

,           
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Fig. 4. Estimated trajectories with NN filter. 

 

 

where xm represents the border between near and far fields. 

The function f verify the continuity and the differentiability 

conditions: 

 
( ) ( )
( ) ( )' '

   

.

m m

m m

f x f x

f x f x

+ −

+ −

=

=
                                                    (5) 

The estimated trajectories obtained by the NNF in the 

previous step are modelled following the linear-parabolic 
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model (4). Fig. 5 shows some results obtained by using 

linear-parabolic model, superimposed onto the original 

images. 

The observations' sequence consists of M samples (1,…, 

M) of the model determined previously. Each sample defines 

a pixel coordinate, in the image, which will be associated to 

a normal line. The length of this normal line is 2N+1 pixels 

indexed from –N to N, position 0 on normal line Ø 

corresponds to the pixel described by sample Ø. In this 

manner, the 2D representation of a contour will become a 1D 

representation where each contour on normal line Ø will be 

identified by its position [ , ]N Nλ∈ − . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The models superimposed on the original images. 

 

In addition to the observations sequence, the HMM 

requires a hidden states sequence S= {S-N, S-N+1,…, SN} 

describing all possible positions that a contour can take on a 

normal line. Thus the HMM is specified by: 

--A set of state S, where each state has a probability     

[ ]( ) 1/ (2 1), ,p s N N Nφ φ= + ∈ − . 

--A probability of transition between the states        
2 2

1 1( | ) exp ( ( ) / )sp s s c s sφ φ φ φ σ− −= − − . 

--An observation model ( | )p O sφ φ λ= describing the 

probability that a state sφ λ= can generate the 

observationOφ . 

Before finding the optimal contour, we must generate the 

sequence of M observations. Each observation (OØ ) on each 

normal line  Ø  can be noised by the presence of many edges 

(OØ  = (c1, c2,….,cj)).  Of the J edges, at most one is the true 

contour. Hence we can define J+1 hypothesis [12]:  

 

 
{ }
{ }

0 : 1,..., ,

, : 1,..., ; .

j

j j k

H c F j J

H c T c F k J k j

= = =

= = = = ≠
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Fig. 6.  The tracking with HMM, the continuous line represents contour at  

t-1 and the dashed line represents contour at t. 

 

 

Where cj=T means the J-th edge is associated with the true 

contour, cj=F otherwise. Hypothesis H0 therefore means that 

none of the edges is associated with the true contour. 

The probability ( | )p O sφ φ λ= , that a state sφ λ= can 

generate the observation Oφ  is approximated by:  

2 2

1

( | ) 1 (1/ 2 ) exp ( ( ) / 2 )
J

c m c
m

p O s q c sφ φ φλ α π σ γ σ
=

= + − −∑

                                   (7) 

Where γ is the density of Poisson noise process along each 

normal line, cσ is the standard deviation of true target 

measurement and q is the prior probability of hypothesis H0 .  

The results obtained in the tracking step are shown in fig. 7 

and fig. 8.  We see that the model is well superimposed on 

the real lane in the original frame. 

III. CONCLUSION 

 In this communication we proposed new lane detection 

and tracking algorithm using a linear-parabolic model based 

on the NNF approach. During the initialization phase, we 

model each lane boundary as the trajectory of a moving 

target. In the lane tracking step, the parameters of the model 

are updated by the Hidden Markov Model (HMM). The 

computational complexity of the proposed method can be 

reduced by using others edge detection algorithms that  

Canny operator. 

The complete system was analysed and simulated matlab 

software and the results seem to be very satisfactory. The 

next step is to implement this system on a real-time DSP 

processor such as the TMS320DM64x [13]. 
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Fig. 7 . Frames of video sequence 1 and corresponding results. 
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Fig. 8 . Frames of video sequence 2. 
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