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Abstract— In the field of automotive environment perception,
the state estimation problem of other road users with sensors
like video, radar, lidar, or combinations of them has been solved
for years now. However, driver assistance systems like ACC
are only available for restricted environments like highways
and rural roads today. Especially in complex environments,
the uncertainty of target existence induced from missing and
false detections becomes the dominating error source. Tradi-
tional approaches for track verification are rule based systems
and trained classifiers. In this contribution, we present an
automotive application of the Integrated Probabilistic Data
Association (IPDA) Filter superseding additional validation
modules by modeling the probabilistic knowledge about both,
state and existence, as temporal Markov chains and computing
filter estimates for both issues. The temporal evolution and
measurement update models for state and existence estimation
are presented for the vehicle tracking problem as well as results
from a sensor fusion setup with video and multibeam lidar.

I. INTRODUCTION

Future ACC systems will be predictive and traffic situation

aware in order to save ressources and to perform more

adequate reactions for less driver interaction. Indispensable

features of these next generation systems including emer-

gency braking and stop-and-go are a wide field of view

over several lanes, a large detection range for high speed

expressway usage, the ability to robustly detect other moving

and non-moving road users, and finally precise velocity

and yaw rate estimates to compute meaningful time-forward

predictions for situation analysis. For this purpose, but

especially to overcome the detection by motion approach

utilized by first generation single ranging sensor systems by

substituting or reinforcing dynamic decision features with

appearance features, several vehicle detection schemes based

on vision [1],[2] or heterogeneous sensorfusion [3],[4] have

been developed. We suggested a sensorfusion setup with

lidar and vision as depicted in Figure 1. The test vehicle is

equipped with an automotive CMOS video camera and a 16

channel multibeam lidar with a detection range of about 200

meters. The sensors are aligned in the spatial and temporal

domains and operate at 16 Hz. Figure 2 summarizes the

vehicle detection procedure as explained in detail in [5]. The

focus of this contribution is the subsequent tracking stage

using the IPDA filtering algorithm to increase the detection

performance. The key idea of this approach is to remove hard

decisions within the processing chain to reduce parameters

to be optimized on the first hand and to decide about object

Fig. 1. Sensor mounting points and fields of view for the sensorfusion
setup combining multibeam lidar and monocular vision.

Fig. 2. Vehicle detection scheme. The lidar echoes (yellow dots in right
birdview) are projected into the image domain (diamonds on gray rays
in left video image). An image classifier is applied on lidar projections
(cyan boxes). A detection box cluster algorithm outputs the final detections
(magenta boxes).

existence based on time accumulated probabilistic evidence

on the other hand.

A. Paper structure

After the introductory section I describing the application,

section II reviews the classical multitarget tracking architec-

ture and explains why FISST based tracking approaches are

expected to improve the performance. Section III introduces

the IPDA filter and a succeeding section IV describes the

models used for the ACC application. The final section

presents results and suggests further research topics.

II. FISST BASED TRACKING

A. The classical tracking approach

No matter what sensors are used in automotive multitarget

environment recognition, all measurements show three inde-
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pendent types of uncertainty and ambiguity. They are the

uncertainty of target existence, induced by false negatives

and clutter, the data association uncertainty between mea-

surements and tracks, and the uncertainty of the measured

state variables due to measurement noise. The classical

system architecture for resolving these uncertainties consists

of several subsequent algorithms starting with a detection or

segmentation stage computing the object candidate list from

raw sensor data. Well studied approaches for object detection

are i.e. template matching [6], learned classifiers [7], and

motion based methods [1]. The next step is a data associ-

ation algorithm, assigning the object candidates to already

existing tracks. Among others, important members are the

Kuhn-Munkres Algorithm and the Joint Probabilistic Data

Association (JPDA). The succeeding recursive state estima-

tion filters, usually Extended-Kalman, Unscented-Kalman,

or Particle Filters output temprally smoothed state estimates

suppressing the measurement noise. Since false positives of

the detection stage sometimes also enter the track list in

presence of clutter, a track validation module finally decides

whether to accept the track by examining filter consistency,

state constraints, or features from the detection stage again.

Rule based systems and learned classifiers [8] are state of

the art for this purpose.

This sequential modular concept has the advantage of early

information densification leading to computational efficiency.

Another benefit is the ability to optimize the modules inde-

pendently. A major drawback is the early decision making

in the detection and association stages. From an information

theoretic view, decision making introduces information that

is not present in the data at all. This is why false decisions,

which grow in number as the signal to noise/clutter ratio

(SN/CR) decreases, may falsify or at least negatively influ-

ence the whole future system output. Therefore the track

validation module is necessary in the classical architecture

to handle false detection decisions at a later point in the

processing chain when dynamic features from the tracking

stage are available for classification, as well. Another issue is

that the detection and association decisions are made locally

in time without consideration of temporal prior knowledge.

Although some temporally smoothed detection algorithms

are known in the image processing domain [9],[10], solving

these problems in the tracking stage with an sensor indepen-

dent probabilistic model is more adequate for sensorfusion

applications. Tracking unresolved raw or feature level hints

over time and deciding with time smoothed information is

also referred to as “Track before Detect” (TBD).

The sensorfusion vehicle detection approach presented in

[5] is robust in highway scenarios but Figure 3 illustrates

the clutter problem in complex urban environments which

would be even more severe in pure vision based approaches.

Therefore TBD approaches are of intrest especially in vision

supported sensing systems.

B. Finite Set Statistics Theory (FISST)

Ronald Mahler introduced the finite set statistics theory

[11], which simultaneously handles joint multitarget detec-

sensor host vehicle trace
clutter
true positives

meters

m
e

te
rs

Fig. 3. Time accumulated birdview of a drive through a complex urban
scene. The blue line is the trace of the sensor host vehicle, with sensed
true positive measurements from three other cars (green boxes) and false
positive readings in the background (red dots).

tion, association, and state estimation in one single filtering

algorithm. Although computationally intractable for most

non-academic applications, the theory preserves and prop-

agates the probabilistic knowledge in all three uncertainty

domains through time and extracts posterior estimates of the

multitarget state in each filter cycle. The main idea is to

replace the classical single target recursive Bayesian state

estimation, implemented i.e. by the Kalman-Filter, that com-

putes the posterior pdf p(x|Zk) of target state, conditioned

on all measurements up to the current time step. The second

Kolmogorov axiom (
∫

p(x|Zk)dx = 1) implies that the only

uncertainty in this model is about target state and therefore

it is implicitly assumed that the target exists somewhere in

the state space for sure. Apparently, in real applications with

clutter, the elementary event that the target does not exist

at all because the track was initialized by a false positive, is

outside this sample set. So the key idea of FISST is to change

the underlying model to incorporate existence uncertainty as

well. The new approach is to assign probabilities to random

finite sets (RFS) X of multitarget states:

p(X) = p({x1, .., xn}) (1)

In this model, the individual target state vectors xi and the

number of targets n are both random variables. The same

model is applied for the RFS Z of measurements. Since RFS

of different cardinality are allowed to coexist, including the

empty set, the state evolution model p(Xk|Xk−1) has to cope

with cardinality changes, like object birth, death, spawning,

and fusion. In the same way the measurement likelihood

function p(Zk|Xk) has to model different cardinalities of

the target and measurement RFS, like missing, false, and

multiple detections. Mahler developed recursive Bayesian

prediction and update formulas for the RFS model as well

as multitarget posterior state estimators.

III. THE IPDA FILTER

Almost in parallel to Mahler developing FISST, Darko

Musicki et al. introduced the IPDA Filter [12] for tracking

targets in clutter. In this section, Musicki’s IPDA filter
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equations will be presented. Although the IPDA Filter uses

explicit data association, it still provides a joint filtering of

state and existence for each target. IPDA is of high practical

interest, because the computational overhead, compared to

ordinary multi instance Kalman filtering is almost negligible.

Recently it has been shown [13] that IPDA can be derived

from FISST theory if the following assumptions hold:

1) The objects evolve independently in state and exis-

tence, so multi instance filtering is applicable.

2) Each real object can only generate one measurement -

if more are associated, all of them except one are false

positives.

3) For the closed form solution, the state and measure-

ment models must satisfy linear Gaussian assumptions.

4) False positives are Poisson distributed in number and

distributed uniformly in location.

The second assumption is valid, since all boxes embracing

the true object are clustered together to one single measure-

ment [5]. Musicki et al. originally proposed two variants

of IPDA. The first is to insert the single element of target

non-existence into the probability sample set as mentioned

before. The other is to split this event by inserting two events,

one of true non-existence and the other of existence, but

non-observability. In this application, we use the first variant

of IPDA, summarizing the two cases of variant two. The

target existence is described by the events ∃x and ∄x. In

RFS formulation this means:

p({x}|Zk) = p(∃x|Zk) · p(x|Zk) (2)

p(∅|Zk) = 1 − p(∃x|Zk) (3)

We refer to p(x|Zk) as the spatial probability density

function, describing state uncertainty, and p(∃x|Zk) as the

cardinal probability mass function of target x describing the

existence uncertainty. IPDA uses two separate cross-coupled

Markov chains for filtering state and existence uncertainty.

The spatial Markov chain is an (Extended) Kalman-Filter

with prediction and update steps as usual. The next subsec-

tions discuss the prediction and update steps for the cardinal

Markov chain.

A. Cardinal Prediction

The Chapman-Kolmogorov equation simplifies to matrix

multiplication in the discrete case:
[

p(∃x)
p(∄x)

]

k

=

[

pp(x) pb(x)
1 − pp(x) 1 − pb(x)

] [

p(∃x)
p(∄x)

]

k−1

(4)

with the state dependent probability of object persistence

pp(x) and object birth pb(x). The cardinal time forward

prediction equation therefore is:

p(∃x)k|k−1 = pp(x)p(∃x)k−1 + pb(x)[1 − p(∃x)k−1] (5)

The dependence of the prediction equation on the state

variables x is the first coupling point between the Markov

chains. For the modeling of persistence and birth for the

ACC application, see Section IV.

B. Cardinal Measurement Update

If mk = |Zk| measurements arrived at time k, three

mutually exclusive events can have occurred. The first one is

that the target does not exist at all, and all mk measurements

are clutter. The second is the target exists, but none of the mk

measurements descended from the target (x→ ∅), hence all

measurements are false alarms again. The final event is that

one of the measurements originated from the target (x→ zi),

and the others are false alarms (see IPDA assumption two).

The exhaustiveness of these events is given by:

p(Zk) = 1 = p(∄x|Zk) + p(∃x, x→ ∅|Zk)

+

mk
∑

i=1

p(∃x, x→ zi|Zk) (6)

The unnormalized Bayesian posteriors (abbrev. l) of the three

events are given by multiplication of their cardinal and spatial

likelihoods with the prior existence probability. For example

the unnormalized posterior for target non-existence is the

spatial likelihood pFP
s (Zk) of all measurements in Zk being

false positives (FP), multiplied by the cardinal false positive

likelihood of the complete measurement set pFP
c (Zk) and

the prior non-existence probability from the prediction step:

l(∄x|Zk) = pFP
s (Zk) · pFP

c (Zk) · (1 − p(∃x)k|k−1) (7)

In the same way, the unnormalized posterior of the second

event of (6) is:

l(∃x, x→ ∅|Zk) = pFP
s (Zk) · pFP

c (Zk) · pFN
c · p(∃x)k|k−1

(8)

where pFN
c is the false negative probability, hence the

probability of missed detections. The final event is the

unnormalized Bayesian posterior for the true positive case:

l(∃x, x→ zi|Zk) = pFP
s (Zk \ zi) · p

FP
c (Zk \ zi)

· pTP
s (zi|x) · p

TP
c (zi) · p(∃x)k|k−1 (9)

Here, pTP
s (zi|x) is the ordinary spatial measurement likeli-

hood (another coupling point) and pTP
c (zi) is the cardinal

probability that the i’th of the mk measurements is a true

positive. With the earlier explained assumptions and given

an a-priori known detection rate pD (sensitivity, recall) and

the hypervolumes Vi of the 3-σ association gates, the used

probabilities are:

pTP
c (zi) = pD ·m−1

k (10)

pFN
c = 1 − pD (11)

pFP
c (Z) = e−λV · λ

|Z|
V · |Z|!−1 (12)

pFP
s (Z) =

|Z|
∏

i=1

V −1

i (13)

The expectation value λV for the cardinal Poisson false

alarm distribution in the gate can either be known a-priori

or estimated with:

λV = max(0,mk − pD · p(∃x)k|k−1) (14)
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Fig. 4. Object persistence probability related to the sensor field of view
of 16◦ , given the position in vehicle coordinates (green). The probability
interval [0..1] is color mapped from black to white.

The posterior probability of target existence is then given by

the Bayes rule:

p(∃x|Zk) =

l(∃x, x→ ∅|Zk) +
∑mk

i=1
l(∃x, x→ zi|Zk)

l(∄x|Zk) + l(∃x, x→ ∅|Zk) +
∑mk

i=1
l(∃x, x→ zi|Zk)

(15)

which simplifies to the cardinal measurement update equa-

tion:

p(∃x)k|k =
(1 − δ) · p(∃x)k|k−1

1 − δ · p(∃x)k|k−1

(16)

δ = pD − pD

Vk

λV

mk
∑

i=1

pTP
s (zi|x) (17)

The spatial Markov chain updates the target states by JPDA-

like mixing of the state prediction and the innovations of the

assigned measurements. The mixture weights βi, i = 0..mk

(β0 is the weight of the prediction) are given by:

β0 =
l(∃x, x→ ∅|Zk)

l(∃x, x→ ∅|Zk) +
∑mk

j=1
l(∃x, x→ zj|Zk)

(18)

βi =
l(∃x, x→ zi|Zk)

l(∃x, x→ ∅|Zk) +
∑mk

j=1
l(∃x, x→ zj|zk)

(19)

This is where the cardinal Markov chain couples back to the

spatial one.

IV. MODELING FOR ACC VEHICLE TRACKING

A. Cardinal ACC prediction model

The cardinal process model used in the prediction step of

IPDA provides the persistence pp(x) and birth probabilities

pb(x), given the predicted states of the spatial Markov chain.

Because the first variant of IPDA is used, the persistence

probability, that is the probability of object survival from

timestep k − 1 to k, must account for observability issues

like field of view (FOV) and mutual occlusion of targets

as well as static and dynamic a-priori state constraints. The

FOV part pFOV
p (x) is dominated by the smaller FOV of

the lidar sensor and is shown in Figure 4. Obviously, the

persistence probability must be one at any position inside

the FOV, since objects cannot disappear spontaneously. The

mutual occlusion part pOCC
p (x) of the persistence model

accounts for the lack of observability if targets dive into the

surveillance shadow of other targets. Only confirmed targets

can throw a surveillance shadow (Fig. 5). Another possible

component of the persistence model could be digital map

information or the results of a lane detection system. This

Fig. 5. Object persistence probability of positions relative to ego vehicle
coordinates (green) induced by observation lacks in surveillance shadows
of other confirmed targets (green boxes). The probability interval [0..1] is
color mapped from black to white.

Fig. 6. Persistence probabilities from digital map of a two lane highway.
As objects can only be on the road, all other areas have probability zero.
The probability interval [0..1] is color mapped from black to white.

Fig. 7. Combined persistence probability map, composed of FOV, occlu-
sion, and infrastructure restrictions. The probability interval [0..1] is color
mapped from black to white.

Fig. 8. Objects can only appear and vanish near the boarders of the FOV
and occlusion areas. The resulting probability interval [0..1] is color mapped
from black to white.

furthermore constraints the allowed target positions. Figure

6 exemplary shows the persistence probabilities pDM
p (x)

resulting from a digital map of a straight forward two lane

highway piece. The overall persistence probability for usage

in (5) is given by the product of its components:

pp(x) = pFOV
p (x) · pOCC

p (x) · pDM
p (x) (20)

The resulting persistence probability, depending on the target

position is visualized in Figure 7. The object birth process,

that is the state change between non-existence and existence,

is only allowed near the boarders of the FOV and surveillance

shadow areas. Therefore the object birth probability (see Fig.

8) was chosen as:

pb(x) ∝
∣

∣∇x,y

[

pFOV
p (x) · pOCC

p (x)
]∣

∣ (21)

B. Cardinal measurement update

For the non-parametric version of the IPDA filter, hence

estimating λV with (14), only the sensitivity measure of the

detector pD needs to be known in addition to usual Kalman-

Filtering parameters. It can be directly taken from the current
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Fig. 9. Vehicle detection receiver operating characteristics (ROC) resulting
from the variation of the detection decision threshold.

operating point of the detection algorithms receiver operating

characteristics chart. The ROC chart of our detection system

is shown in figure 9. For details on its generation please

refer to [5]. But in order to avoid the Poisson false alarm

model (12) that may be inadequate, we extended the general

detector characteristics approach of IPDA taken from the

ROC chart to incorporate measurement specific existence

features f(zi). This is done by redefining equations (10)-

(12) with:

pTP
c (zi) =

hr(f(zi)|∃x)

hr(f(zi)|∃x) + hr(f(zi)|∄x)
(22)

pFN
c = hr(f(zi) = 0|∃x) (23)

pFP
c (Z) =

|Z|
∏

i=1

hr(f(zi)|∄x)

hr(f(zi)|∃x) + hr(f(zi)|∄x)
(24)

Here, hr(f |∃x) is the relative frequency of a feature value f

given the target exists and hr(f |∄x) is its relative frequency

given the target does not exist. These can be computed from

a pre-classified ground truth data set. Figure 10 shows the

graphs for the video detection cluster size feature. When

using this cardinal model, the update equation does not

simplify to (16) anymore, thus equation (15) is used instead.

C. Spatial modeling

The spatial process and measurement update models can-

not be discussed in deep detail here. Please refer to [14] for

a detailed description. The state vector of other targets was

chosen as:

x = (x, y, z, v, ψ, ψ̇)′ (25)

The position components (x, y, z) and the orientation angle

ψ are measured relative to the ego vehicle coordinate system,

whereas the target velocity magnitude v and yaw rate ψ̇

are estimated absolutely over ground. The motion of the

sensor host vehicle is estimated from the wheel revolutions

and the yaw rate sensor of the ESP system, according to an

Fig. 10. Relative frequency of detection cluster sizes given the target
exists (green) and given the target does not exist (red) and resulting cardial
existence probability p

TP
c (zi) (blue).

Ackermann steering geometry model, as published in [15].

The process model predicts target states by incorporating

uncertainties of the applied constant turn motion model,

the ego motion estimation and the unknown vehicle pitch

angle. Measurement innovations are computed from the

polar (r, φ)-coordinates of the lidar echoes and the (i, j)
image coordinates of the detection box base points of the

image classifier. As mentioned above, multiple measurement

associations to the same track lead to innovation mixing with

weights computed from (18) and (19).

V. RESULTS AND CONCLUSION

Compared to the classical tracking approach, FISST based

techniques and especially the efficient IPDA algorithm pro-

vide a method for keeping the probabilistic nature of knowl-

edge instead of applying decision thresholds within the pro-

cessing chain. This does not only reduce decision parameters,

but also produce a probabilistic track list, with posterior time

smoothed existence probabilities for each track. Exemplary,

the graphs of these probabilities are shown for several tracks

in Figure 11 starting at each tracks initialization time. The red

curves show the IPDA estimated existence probabilities for

true positive tracks and the green plots are the probabilities

for false positive tracks. This allows a non-heuristic way

of track confirmation or track pruning by thresholding the

posterior existence probability without a separate validation

stage. A possible confirmation threshold is depicted by the

blue line. Due to the probabilistic formulation of all system

components related to track existence, only the two thresh-

olds for confirmation and pruning need to be optimized.

Instead it is also possible to pass the probabilistic track

list to subsequent modules as situation analysis for even

later decision making. Furthermore, the seamless integration

of prior knowledge about target existence is possible in

the cardinal prediction step as demonstrated i.e. for digital
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Fig. 11. Temporal evolution of the IPDA estimated posterior probabilities
of existence for several true positive (red) and false positive (green) tracks in
linear (top) and logarithmic scale (bottom). Tracks are confirmed and pruned
by thresholding the existence probability. A possible track confirmation
threshold is represented by the blue line.

map information and occlusion reasoning. In the cardinal

measurement update model, the sensor specific existence

hints f(zi) are transformed into sensor independent cardinal

proabilities pTP
c (zi) and pFP

c (Z) which serve as a natural in-

terface for heterogeneous sensorfusion even in the existence

domain.

The described detection and tracking system is imple-

mented in realtime in a test vehicle equipped with sensors

as described in the introduction. The current development

phase allows non-synthetic in-vehicle demonstrations in real

traffic scenarios where even standing vehicles are detected in

distances up to 150 meters. Moreover, the system can keep

track of already detected vehicles up to 200 meters.

Further research will deal with the incorporation of other

- more discriminating - existence features. Especially for

Boosting classifiers, a theoretically funded method for deriv-

ing existence probabilities based on the Friedmann-formula

[16] is currently under investigation [17]. In the future a

comparison with other tracking methods like multi hypoth-

esis tracking (MHT, [18]) and more sophisticated FISST-

based tracking algorithms like the Probability Hypothesis

Density Filter [19] will be of interest. Another goal is

porting the presented approaches to other applications like

nightview pedestrian warning and near range applications

with extended object models where several measurements

contribute to the same object.
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