
  
Abstract— This paper introduces a new approach for 

tracking and path planning for intelligent vehicles. The 
tracking application takes into account the trajectories 
followed by the obstacles, making a prediction of their future 
positions and corresponding uncertainties. This idea introduces 
a stochastic model for obstacle and vehicle kinematics. A multi-
rate Kalman filter is considered in the tracking process in 
order to manage the uncertainty. Potential Field approach for 
path planning is redefined according to the new stochastic 
models. In particular, the repulsive potential field is modified 
to consider these models projected into a prediction horizon. 
The use of future information minimizes the risk of collisions 
and generates smoother trajectories. 

I. INTRODUCTION 
ATH planning applications in intelligent vehicles require 
gathering information of the environment for solving the 

problem of generating free-collision trajectories. Several 
applications use a map of the environment for their 
calculations. In general, the environment is dynamic where 
mobile obstacles (targets) are present. Identifying targets 
and tracking their trajectories increases the performance of 
path planning algorithms.  

In the literature [1, 2, 3, 4, 5] target tracking mainly 
covers ballistic problems using filtering techniques such as 
Kalman filtering or its successors, for example alpha beta or 
alpha beta gamma trackers. 

Reactive path planning approaches deal properly with 
unstructured and dynamic environments. Examples of these 
methods include: Potential Fields methods [6], Vector Field 
Histogram [7, 8], Elastic Bands [9], Elastic Strips [10], 
Nearness Diagram Navigation [11, 12], the Curvature-
Velocity Method [13] and the Dynamic Window approach 
[14, 15]. 

Some of the most popular reactive methods are based on 
Artificial Potential Fields [6]. In them, the vehicle steering 
direction is determined assuming that obstacles generate 
repulsive forces and the goal generates attractive forces on 
the vehicle. These methods are extremely fast when 
considering just a small subset of obstacles near the vehicle.   

In this paper, target tracking and reactive path planning 
are considered simultaneously. Once a target is identified, 
several tasks are performed: path - tracking, uncertainty  
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evaluation, future position prediction and path planning. The 
final result of the tracking is a map of uncertainty areas 
combining present and future time instants which generates 
a potential field. 

This paper presents a new adaptation to the classical 
Potential Fields technique that uses the previous map, 
considering the effect of future positions and uncertainties in 
the computation of repulsive forces.  

The paper is organized as follows: next section focuses on 
path tracking application; section III describes the Potential 
Field Projection approach; section IV presents some 
experimental and simulation results and finally section V are 
the conclusions. 

II. PATH TRACKING APPLICATION 
The set of algorithms included in the path tracking 

application follow the stages listed below: 
 1) Target detection and characterization. 
 2) Target list management. 
 3) Target path tracking. 
 4) Evaluation of target estimation. 
 5) Calculus of target influence area. 

A. Target Detection and Characterization 
Application design requirements are: 
• Number of targets in the environment is unknown 

when application starts. 
• Number of targets is dynamic, new targets must be 

detected and tracked while application runs. 
• Support temporal disappearance of targets. 
We assume that a geometric environment map is available 

which, for simplicity, only contains lines and arcs. This map 
is easy to use and has low computational requirements; 
therefore processing capacity is still available for other 
applications. 

Mobile obstacles (targets) appear in the map as a set of 
geometric entities separate from walls. When a shape with 
these characteristics is detected, it is analyzed to verify 
whether or not it is a mobile obstacle. 

The geometric representation for pedestrians is simplified 
with a small diameter circle. For vehicles, bigger than 
pedestrians, their simplified geometry is a circle hull which 
envelopes the obstacle. 

Target detection process provides a list of possible targets. 
For each one, position (center of circle), size (radius) and 
target type (pedestrian or vehicle) is obtained and stored. 
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When a target is tracked, estimation data includes target 
position and speed together with their uncertainty level. 

B. Target List Management  
For every iteration of the algorithm we obtain a list of 

possible mobile obstacles extracted from the geometric map. 
This list is compared with the existing list of targets which 
have been tracked. Thus, positions will be updated and new 
targets will be detected. The set of operations to do at this 
stage is: 

1) Target matching and position updating. 
2) Target creation for new obstacles. 
3) Target removal for old hidden obstacles. 
Matching is necessary for determining whether or not the 

detected obstacles correspond to tracked targets. Detected 
objects are compared with targets considering position and 
size: object position with target uncertainty ellipsoid and 
object radius with target radius. A mobile object is matched 
with a target when the mobile object position is in the target 
uncertainty ellipsoid and their radii are comparable. 

Fig. 1 shows the matching process. Targets are 
represented by their uncertainty ellipsoids and detected 
mobile obstacles by dots. Uncertainty ellipsoids of matched 
targets contain a dot corresponding to a detected object. 

Matched targets are “visible” because an observation of 
their position is available. Otherwise unmatched targets are 
“hidden” and become candidates to be removed from the 
list, depending on an index evaluation (see subsection D). 
Finally, unmatched objects (new targets) are appended to the 
list of targets. This process is shown in Fig. 2. 

Target list includes target position observation (only 
available for matched targets) and target position estimation. 
New targets generate a new estimation initialized to the 
target position observation.  

 Target tracking is carried out using Kalman filtering 
where associated matrices (system and filter matrices) are in 
diagonal blocks depending on the number of targets, as 
described below.  

C.  Target Path Tracking  
 Dynamic models of moving targets are essential in the 

estimation procedure. In this sense, two different model 
approximations for pedestrians and vehicles have been 
considered. 

 
Fig. 1  Matching process representation. 
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Fig. 2 Target list management process. 

Pedestrian targets are modeled as moving particles where 
the state vector is composed of target position and target 
speed in XY coordinates. Using Euler approximation, this 
model corresponds to the following equations: 
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Vehicle targets are modeled with non-linear equations 
taking into account vehicle kinematics. While pedestrians 
usually describe lines in their trajectory and changes of 
direction are made suddenly as breakpoints, vehicles 
describe a curve trajectory due to their kinematical 
restrictions (links between straight lines must be curves). 
The corresponding dynamic model for vehicle targets is 
described in (3) and (4). 

It can be seen that only two states can be observed. This is 
because it is practically impossible to measure target 
orientation based only on sensor distance measures. 
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Tracking a single object at low speed is a simple process 
which can be implemented using single-rate filtering 
techniques. When many targets are involved and/or moving 
at high speed, single-rate filtering at high frequency cannot 
be implemented. However, Euler approximation used in 
dynamic models requires high frequencies. Therefore, 
multirate techniques must be applied. 

Many multirate models can be found in the literature. In 
this paper we use a dynamic multirate system model 
[16, 17, 18] as shown in (5), 
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where state space multirate matrices are obtained from 
previous matrices and u

kΔ , y
kΔ  are the sampling matrices 

defined in [17]. 
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Applying this formulation, a multirate system model of a 
target can be obtained for either a pedestrian model (1, 2) or 
a vehicle model (3, 4). According to these multirate models, 
two multirate Kalman filters have been proposed. A linear 
Kalman filter, applied to pedestrian targets, expressed as 
follows: 
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and an extended Kalman filter applicable to the non-linear 
model of the vehicle, developed in (8). 
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The tracking procedure is implemented in two separate 
processes, one for linear and another for non-linear tracking. 

In the linear estimation process pedestrian targets are 
considered in a distributive structure. In this structure, 
estimation is carried out using block diagonal matrices, 
where each block corresponds to one pedestrian as shown in 
(9) and (10). In the same way, non-linear estimation process 
for vehicle targets also uses a distributive structure.  
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State vector and covariance matrices inherit the same 

distributive structure. Each block in the covariance matrix P 
contains on its own diagonal the variances of estimated 
variables. Using this information, an uncertainty ellipsoid 
centered on the estimated position, can be constructed. This 
ellipsoid represents the region inside which the target is 
most likely to be located. 

When target measures are available the uncertainty 
ellipsoid decreases, otherwise the ellipsoid grows. 

Fig. 3 shows a representation of tracking for a pedestrian 
(top side) and a vehicle (bottom side) target type. Due to the 
particle model characteristics, uncertainty ellipsoids become 
circles for the pedestrian. We can also observe that if target 
observations are not available the ellipsoid area increases 
(shaded zones), modeling the growth of uncertainty in target 
position estimation.  

D.  Evaluation of Target Estimation 
Each target position estimation obtained can be evaluated 

using its correspondent covariance sub-matrix. 
Although the entire target list is embedded in a dynamic 

model defined with the appropriate matrices, the list can be 
separated into their decoupled component subsystems. For 
each one of these subsystems, the diagonal of the sub-matrix 
P contains information on estimation noise variances. 
Processing this information generates an uncertainty 
ellipsoid representing the uncertainty area where target must 
be located. 

Evolution of P depends on availability of measurements 
taken along the filtering process and characteristic noise 
system sub-matrices Q and R. Matrix P has an optimum 
characteristic value corresponding to the equivalent single 
rate Kalman filter. Each time a target position measurement 
is not available, uncertainty estimation increases, with this 
effect being reflected in the matrix P. 
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Fig. 3 Tracking of a pedestrian (top figure) and a vehicle (bottom figure). Shaded zones represent instants without measurement. 

Applying this idea, the estimates obtained can be 
compared with optimum estimates defining an estimation 
quality index in the form: 
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Where Poptim is the P matrix obtained off line for the 
corresponding single-rate equivalent system and σ is a 
user adjustable distribution scaling factor. 

Depending on the measure sequence index, evaluation 
varies between a maximum level of one and zero. A high 
level index evaluation means a good estimation while a 
low level index evaluation means a poor estimation with 
considerable uncertainty. Fig. 4 shows index evolution 
with unavailability of measures of the obstacle position. 

As shown in this figure, in complete absence of 
measurements, the index continuously decreases. If 
measurements are available, index increases breaking 
with plot tendency.  

If the index rises to value 1, the estimation obtained 
corresponds to a possible optimum. If the index value 
decreases, it is due to the absence of measurements, 
sometimes due to multirate nature of the process and 
other times because the object is hidden.  
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Fig. 4 Plot of the estimation quality index against absence of measures. 

 

Therefore, if measurements are not available for a long 
time, uncertainty increases to higher levels and the index 
decreases considerably. In these circumstances, the index 
value is used as a measure of estimation quality, and 
considered in other tasks such as path planning.  

Moreover, if the index decreases under a threshold 
limit value Jmin, fixed by user, it means the continuous 
absence of target measurements for a long time and 
increasing of uncertainty to excessive high values. When 
this situation occurs, the target is removed from the list of 
targets and all its data are deleted. This is the condition to 
remove a target as explained previously in “target list 
management”. 

E. Calculus Of Target Influence Area 
A particular application of path tracking is trajectory 

prediction by projecting the present trajectory. Using the 
filter equations, the target trajectory can be projected in 
time making a prediction of the future target evolution. As 
the calculations made are a prediction, they are affected 
by a considerable uncertainty level that grows with 
projection. This characteristic is used in the path planning 
application. 

A trajectory prediction consists of running filter 
equations without measurements available for a set of 
“future sampling times”, which becomes a trajectory 
projection. Therefore, during the projection, as 
measurements are not available, Δ matrices are zero for 
the entire prediction horizon and it is only necessary to 
run the equations (12) for pedestrian targets and (13) for 
vehicle targets. 
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As projection means unavailability of measures, as long 
as predictions are made, uncertainty of prediction 
increases. In this sense, Fig. 5a shows the uncertainty 
ellipsoid evolution in trajectory projection for two 
pedestrian targets with a projection horizon of 5 seconds. 
The evolving area defined by the set of ellipsoids is called 
the target influence area.  
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Fig.  5 a) Projected uncertainty ellipsoids of two obstacles (left), b) Repulsive potential field (right).

III. PATH PLANNING USING POTENTIAL FIELD PROJECTION 
The concepts explained in previous sections have been 

used for developing a new path planning approach based on 
Artificial Potential Fields [6]. In this sense, the target 
influence areas corresponding to all tracked targets are 
considered as restricted areas for path planning and must be 
avoided to minimize the risk of collision. The intelligent 
vehicle influence area and the obstacles influence areas 
should not collide to ensure collision-free movements. 

In particular, we have considered that every ellipsoid 
obtained from obstacles trajectory projection only has 
influence on the corresponding vehicle ellipsoid, i.e, only 
ellipsoids obtained in the same sample time are tested for 
possible collisions. 

In order to reflect the influence of the trajectory 
projection in the path planning algorithm, the repulsive 
potential function is defined as shown in the following 
equation: 
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where J∈[0, 1] is the estimation quality index and i∈[0, N] 
indicates the number of instants after the last measurement 
was done, being N the number of ellipsoids that generate the 
influence area. N is determined from the temporal projection 
horizon ΔT and the estimation period T as N=∆T/T. ρ0 
represents the limit distance of the repulsive potential field 
influence and MTDi is the minimum translational distance 
between the vehicle and the obstacle in the i-th projection 
instant. The Minimum Translational Distance is defined in 
[19] as the shortest relative translation of two models to 
bring them in contact. In this way, when two models are not 
intersecting, MTD represents the separation distance 
between them. Otherwise if models are colliding, MTD 
states the penetration distance.  Depending on the values of 
MTD we can distinguish between different collision 
situations, as detailed in Table I. 

 
The estimation quality index J quantifies the reliability of 

the estimation. It depends on the precision and uncertainty 
of the sensors employed. Therefore, the influence of the 
repulsive potential field for future instants depends on the 
quality of the estimation, as shown in (14).   

The factor Ji causes a degradation of the potential field in 
the sense that as i grows (the instant considered moves away 
from the last measure instant), the probability that the 
obstacle follows the estimated trajectory decreases. This 
situation leads to a “vanishing” of the potential field as time 
goes by without sensor information. An example of the 
evolution of the repulsive potential field in a dynamic 
environment, considering a vehicular environment with two 
mobile obstacles, is shown in Fig. 5b. 

The repulsive potential field obtained before generates a 
repulsive force applied to the vehicle defined as 
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 where iMTDu
G

is a unit vector in the direction of  MTDi The 

total repulsive force generated by all the obstacles is: 
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where the repulsive force magnitude decreases as i grows.  
We have obtained a set of repulsive forces that, applied 

on the intelligent vehicle in successive instants, generates a 
continuous avoiding movement of the robot during the 
projection horizon, as shown in Fig. 6.  

TABLE I 
COLLISION SITUATIONS 

MTDi Situation 

0iMTD ρ>  No avoidance 

0iMTD ρ=  Starting avoidance 

0iMTD ρ≤  Avoidance 

0MTDi =  Avoidance (Contact) 
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Fig. 6 Repulsive forces obtained from the potential field projection. 

IV. SIMULATIONS AND EXPERIMENTAL RESULTS 
Some simulations have been developed to show the 

performance of the Potential Field Projection approach for 
particle model environments.  

In Fig. 7 the intelligent vehicle uncertainty ellipses avoid 
the obstacles uncertainty ellipses. These ellipsoids are 
derived from the potential field projection. At the beginning 
of the simulation, the mobile robot moves along a straight 
line. As the upper obstacle comes closer to the vehicle, it 
starts a smooth avoiding maneuver that modifies its initial 
trajectory.  

A set of experiments has been developed to verify target 
tracking application using an electric vehicle as development 
platform and other vehicles and pedestrians as targets. Our 
development platform is a vehicle equipped with distance 
sensors, laser scanner, ultrasonic and infrared sensors.  

V. CONCLUSIONS 
This paper introduces a new approach for tracking and 

path planning in dynamic environments by combining 
Kalman filtering and Artificial Potential Fields. 

Traditional artificial potential fields considers 
deterministic positions for obstacles and vehicles at a given 
instant of time. However, the present proposal also considers 
position uncertainties of obstacles and vehicles at the present 
instant as well as in future instants of time within a temporal 
horizon. 

Using Kalman filter equations, obstacles trajectories are 
computed making a prediction of future positions and 
uncertainties. These uncertainties grow with time.  

Two different kinematic models have been considered in 
Kalman filtering for moving targets: particles for pedestrians 
and non-linear kinetics for vehicles. 
Missing data and low speed sensor acquisition have been 
supported using multirate models considered in Kalman 
Filter. In this technique the number of targets to be tracked 
is completely dynamic allowing targets to appear and 
disappear at any time. 
It is interesting to remark that by introducing Kalman 
filtering into path planning a most powerful collision 
avoidance technique has been obtained. 

  
Fig. 7 Obstacle avoidance using Potential Field Projection approach. 
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