

Abstract — The paper presents an obstacle avoidance

algorithm to be used for autonomous ground vehicles
applications. The proposed method improves some of the
limitations of the recently developed Null Space Based
Behavioral Control. The technique divides the problem into
tasks, which are associated to increasing priority. Activities
with lower priority do not interfere with those having higher
priority. The scenario is supposed known only partially, and
the complete environment is reconstructed during the
mission, with the aid of stereoscopic vision sensors. The
validity of the method is currently verified via computer
simulations.

I. INTRODUCTION
BSTACLE avoidance is one of the more complex

problems to be addressed within the context of
autonomous vehicles guidance design. Difficulties
increase if the initial knowledge of the scenario is limited,
and the outside environment must be reconstructed
online, during the motion of the vehicle, and without
apriori information and/or clues.

The literature offers a large number of methods for the
solution of the obstacle avoidance problem, and several
of them use modifications of the potentials algorithms
adapted to represent vehicle trajectories and paths.
Potential-based techniques have the advantage of being
straightforward and of easy implementation. One of the
limitations encountered by these methods is the presence
of local minima, which can be addressed in several ways,
for instance by using harmonic functions [1]. In addition,
the complexity of the scenarios is limited under the
application of this methodology.

Fuzzy Logic and Neural Networks have been used in
the past and are used currently in the development of
obstacle avoidance algorithms [2][3][4]. They can be

 The Authors are with the Department of Electrical Systems and

Automation (DSEA), University of Pisa, Via Diotisalvi 2, 56126 Pisa,
ITALY. (e-mail: minnoce@dsea.unipi.it). This work was performed
with the support of the Italian Ministry for University Research under
Grant 2005097207..

considered as “intelligent systems” in that they use
strategies of optimality based on various types of training,
and data processing structure. Performance can be very
good, however they require fine tuning, and training.

The present work deals with the design of an obstacle
avoidance scheme for a specific vehicle: the autonomous
ground system Ulisse [5]. Ulisse is a three-wheeled
vehicle originated from a motorized golf kart, and
modified in the Department of Electrical Systems and
Automation of the University of Pisa, to serve as a test
bed for autonomous control, guidance, and navigation
research. The vehicle is currently using stereoscopic
vision sensors, and clustering techniques in order to
detect and isolate obstacles within the field of view of the
cameras.

For the purpose of this work, we assume partial
knowledge of the outside scenario: some obstacles are
well known apriori (such as buildings, lakes, prohibited
areas, and other obstacles, like those available in up-to-
date navigation maps), others must be identified during
the motion. A path planning algorithm is used, which
incorporates known obstacles, and the proposed obstacle
avoidance system is switched on when need arises.

The problem of obstacle avoidance is addressed by
decomposing it into smaller and simpler subtasks, so that
the procedure is modular, and more versatile. These
concepts were used in a recently developed method called
Null Space Based Behavioral Control (or NSBBC) [6],
which however has several limitations in its application to
large trajectories in an outdoor environment. The method
in [6] will be reviewed and improved, so that it can be
applied to the problem at hand.

II. NULL-SPACE-BASED BEHAVIORAL CONTROL
The NSBBC method addresses obstacle avoidance in a

multiple obstacles context by subdividing the scenario in
smaller tasks of lesser complexity. The basic idea
originates in Robotics, with the control of redundant
manipulators. The added degrees of freedom are used to
minimize a specific functional so that the manipulator can

Obstacle Avoidance for Autonomous Ground
Vehicles in Outdoor Environments

Cellini M., Mati R., Pollini L., and Innocenti M., Senior Member IEEE

O

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

WeD1.5

1-4244-1068-1/07/$25.00 ©2007 IEEE. 258

execute accessory tasks, without modifying the path
followed by the end effector.

Let us consider a generic manipulator; the end effector
velocity can be written as a function of the joints
variables set as:
 ()e ex J q q= ⋅ (1)

where q is the nth-dimensional joint velocities vector,
and ex is the end effectors’ velocity vector. By inverting
eq. (1), it is possible to compute the joints velocity
needed, in order for the end effector to move at a given
speed as shown in eq. (2).
 ()†

e eq J q x= ⋅ (2)
In general, additional degrees of freedom are used to

obtain a solution of (2) that minimizes some joint velocity
norm. It is possible, however, to get a non minimum norm
solution, and to use the redundancy for other objectives.
A possible non minimum norm solution that uses the
Jacobian pseudo inverse ()†

eJ q is given by:
 () () ()()† †

e e e e aq J q x I J q J q q= ⋅ + − ⋅ ⋅ (3)

The term aq in eq. (3) is projected onto the ()eKer J ;

thus aq has no effect on the end-effector trajectory ex and
can be used to manage the redundancy.

This technique ca be used in a task oriented paradigm
for control of a robot manipulator where ex is the priory
task and aq can be used to perform additional tasks that
do not effect the end effector motion [6].

The property outlined above can be generalized from
the well known case of redundant manipulators, to
problems requiring splitting an objective into tasks
having different priorities, such as the motion control of
an autonomous vehicle within an environment with
obstacles [7].

In an obstacle avoidance scenario, the vector
q represents the planar velocity, and the vector ex
becomes a variable associated to the task. With this
position, eq. (2) becomes:
 ()†

d d dp v J p σ= = ⋅ (4)

Where ()d dp p t= is the time dependent desired

position at some time t, dv the vehicle’s desired velocity,
J the matrix of velocities allowed for the task, and σ
the process variable that must be controlled. Eq. (4) is
modified with the addition of a control term for closed
loop position error elimination; thus:
 () ()†

d dv J p σ σ

σ σ σ

= ⋅ + Λ ⋅

= −
 (5)

where σ is the desired value of the process variable,
and Λ is a positive definite matrix. We can use σ e J
to define tasks appropriately, and then compute the speed
necessary to accomplish them.
 If there are multiple simultaneous tasks, a supervisor
must be designed for assigning priority and subsequent
ordering. For this, it is possible to use the relationship:
 () ()

() ()()
†

1 1 1 11

†
11

i i i ii

i ii

v J p

I J q J q v

σ σ+ + − −+

++

= ⋅ + Λ ⋅ +

+ − ⋅ ⋅
 (6)

The supervisor starts with the lowest priority task
(index 0), up to the task with the highest priority.

As an example, let us consider a vehicle moving on a
planar surface, which must reach a target avoiding point
mass obstacles. Each obstacle is enclosed by a safety
circle, which can not be crossed by the vehicle. Two tasks
can be identified:

1. to reach the target,
2. to remain outside the safety circles.

The critical task is the obstacle avoidance, and it
receives higher priority. In order to avoid a collision, the
task acts on the vehicle’s velocity in the direction of the
obstacle. The magnitude is a function of the distance to
the obstacle and it become zero in proximity of the safety
circle. (for instance if equal to the circle’s radius d). If the
vehicle goes beyond the circle’s limit, the speed sign is
reversed. In the example, the parameters oJ , oσ , oσ in (6)
have the following meaning:

oJ represents the velocity direction on which the task can
operate,

oσ is the distance between vehicle and obstacle

oσ is the safety circle radius.
Therefore we have:

; ;

T
o

o o o o
o

p p
J p p d

p p
σ σ

⎛ ⎞−
= = − =⎜ ⎟⎜ ⎟−⎝ ⎠

 (7)

Thus:
 ()†

o o o ov J d p p= ⋅ Λ ⋅ − − (8)

Where
p is the vehicle position, op is the obstacle position

Since the process yielding the vehicle to the goal must
be able to impose any velocity direction, gJ is a 2x2

identity matrix, which identifies all possible velocities on
the plane. The planar position is the task variable (gσ),

which must be reach the desired value (gσ). Therefore:

 ; ;g g g gJ I p pσ σ= = = (9)
and:

WeD1.5

259

 ()g g gv p p= Λ ⋅ − (10)

Matrix gJ is full rank, thus its null space is empty.

The processes with priority lower than the main one are
thus projected onto an empty subspace and to not
influence the motion of the vehicle.

III. NSBBC: THE SUPERVISOR
The priority of the various processes is managed by a

supervising algorithm, which determines the state of the
vehicle with respect to the scenario, and defines the rules
to be used. In reference [2] no mention was made on how
the rules were obtained, therefore a numerical simulation
was performed in order to define their possible structure.
In the case of a single obstacle, the main rule is that if the
distance between target and vehicle is greater than the
distance between target and obstacle, then the primary
task is obstacle avoidance and secondary task is reaching
the target (and the other way around of course).

If the scenario has many obstacles, to each one a
process is associated, which indicates speed and direction
necessary for the avoidance. The supervisor orders the
obstacles by their distance to the vehicle, with their
relative priority. The obstacles that were already passed
are given a priority lower than the one relative to the
target.

IV. LIMITATIONS OF THE NSBBC ALGORITHM
Extensive simulation tests were performed in order to

evaluate the performance of the algorithm. The values of
oΛ and gΛ in equations (8) and (10) were selected

according to what suggested in [7]. The numerical values
are:
 0.5; 1o gΛ = Λ =

1) One obstacle
If the line connecting the vehicle and the target crosses

the obstacle, the two processes (vehicle to target, and
obstacle avoidance) create the same vector. This means
that the projection of gv on the null space of oJ gives a

zero vector and the vehicle will proceed on a straight line
following the vector ov until it stops at the perimeter of
the safety circle.

The problem does not arise of course when the obstacle
is not in the Line of Sight as shown in Figure 1, and the
vehicle continues to the target.

Fig.1: Vehicle Trajectory with one Obstacle outside the LOS.

In conclusion, with one obstacle the vehicle always

reaches the target, except for the singularity case.

2) More obstacles

When safety circles intersect, the algorithm naturally
creates a velocity vector as a combination of components
directed towards the obstacles. This yields an “attractive”
effect to the obstacles groupings. This feature increases as

the ratio o
g

Λ
Λ increases. In this situation, it can happen

that the vehicle goes through an area where two safety
circles intercept, and since there is a different priority as a
function of distance, it may enter the safety circle of the
more distant obstacle.

Fig.2: Vehicle Trajectory with more Obstacles near to each other.

Obviously, the more separated the obstacles are, the

easier is for the vehicle to avoid all the safety circles in
order to reach the target.

V. OBSTACLE GROUPING
If the safety circles intersect each other, a possible

solution is to collect the obstacles into a larger set. Let us
suppose that the safety circle of the obstacle at highest
priority intersects those relative to other obstacles as
shown in Figure 2. A possible strategy to guide the
vehicle outside the entire set of obstacles is to keep the
process relative to the highest priority obstacle
unchanged, and to vary the others. This is achieved very
simply, by inverting the vector computed by the obstacle
avoidance algorithm relative to all the obstacles, except

WeD1.5

260

for the critical one (the one nearest to the vehicle). Let us
examine in detail the modification to the NSBBC
algorithm for this particular case. Define the obstacles
area
 () { }2 |

i ii o oo p w w p d= ∈ − ≤ (11)

where d is the safety radius. Define the obstacles-set
 { }, 1..io i NΩ = = (12)
where N is the number of obstacles. Define the primary
obstacle as
 (){ }1..| min

i ko i o k N oo o p p p p== ∈ Ω − = − (13)

The obstacles are divided into groups. Each group
contains only obstacles whose relative distance is smaller
than the safety circle’s radius. If an obstacle has a non
intersecting safety circle, then it belongs to a group
consisting of itself only. The Cluster-set C is:
 (){ }|o i iC o o S o= ∪ ∈ Ω ∃ (14)

where the sequence ()iS o is define as follow:
 () {

() }
1

1

, 1.. | , ,j k
i i o

n n
n k

S o o j k o o o o

o o+

<

= ∈ Ω = ≡ ≡

∩ ≠ ∅
(15)

During the construction of the velocity vector, if an
obstacle is identified as belonging to the critical group,
then there is a sign change variation in the weight oΛ .
Although this does not guarantee mathematically the
entrance in a safety circle, it greatly reduces the
probability. Define the function

() 1,
0,

i
i

o C
o

otherwise
∈⎧

Φ = ⎨
⎩

 (16)

The weight of the obstacle io can be calculate using the
following expression
 (), 1,

,i

o i i o
o

o

o o o
otherwise

⎧−Λ Φ = ≠⎪Λ = ⎨
Λ⎪⎩

 (17)

where oΛ is the weight associate to the generic obstacle
avoidance task. The modification introduced here is
applied to the scenario of Figure 2, and the results are
shown on Figure 3. The grouping concept improves the
obstacle avoidance, but it can fail when, for instance, the
starting point of the vehicle is well within the concave
area described by the group. In this case, safety circles
may be violated by the computed trajectory. An example
is shown in Figure 4.

Fig.3: Obstacle Avoidance Trajectory with modified NSBBC

Algorithm for Scenario of Figure 3.

Fig.4: Example of possible Drawback of the Grouping Algorithm

A second potential issue in the grouping algorithm is

the effect of variations in the weight oΛ . When
computing a trajectory that goes outside a group of
obstacles, it is appropriate to generate a path that is
located as close as possible to the obstacles. This is done
by increasing oΛ . In this case, however, there is the
possibility that the vehicle reach a point where the
resulting velocity vector is zero, and the vehicle can not
reach the target. This singularity arises for the following
conditions:

1. The vehicle is on the safety circle.
2. The resultant of the target task vector and the

vectors relative to all obstacles is parallel to the
vector needed to avoid the obstacle having
highest priority.

Fig.5: Potential Singularity in the Grouping Algorithm.

A graphical example is shown in Figure 5. If the vehicle
were to move from the current position, a velocity vector
component would be created, tangent to the circle,

WeD1.5

261

making the vehicle return to the initial point. If the weight
associated to secondary obstacles is sufficiently high, the
situation may arise before the obstacle is declassified
(being farther than the target), and the vehicle stops. By
increasing oΛ the vehicle stops earlier, whereas by
increasing gΛ the vehicle stops closer to the target.

VI. SHADOW AVOIDING DEVICE
A task called Shadow Avoiding Device (SAD) was

proposed and developed to improve the problems
encountered by the grouping algorithm described in the
previous section. SAD is based on human experience
when dealing with his/her motion towards a light source.
If a person is located in the shadow cone of an object, and
wants to reach the light source, then his/her response is to
move toward the lighted zone closest to the obstacle. The
target projects Omni directional light beams, and creates
shadow cones behind obstacles (or groups of obstacles).
If the vehicle is in the shadow of an obstacle in the group,
it will try to exit moving in the direction of the light
source. The shadow cone built with lines tangent to the
safety circle and starting from the target (for each
obstacle). At the end, a shadow cone for the entire group
is defined as the envelope of the single cones. The group
border is identified much in the same way with lines
departing from the vehicle’s current position. The two
points generated by intersecting the cones are the light
points towards which the vehicle will move in order to
avoid the obstacles.

Fig.6: Implementation of S.A.D.

The choice of which point depends on different factors,

for instance we can choose the one that minimizes the
distance between the vehicle and the target. To reach the
desired point, the task needs full control over the
vehicle’s motion. The Jacobian matrix is therefore the
identity matrix, like that of the target, so that all the
subtasks with lower priority will participate in the
construction of the SAD velocity vector.

The control variable SADσ is the vehicle’s position and
the desired position (SADσ) is the position of the chosen
light point. We have therefore:

 ; ;SAD SAD SAD tJ I p pσ σ= = = (18)
Once the obstacle avoidance scheme is set up (with the

above improvements), the supervising algorithm needs to
be constructed with the priority rules for implementation.
Heuristic reasoning can be used for this purpose. If the
vehicle is outside the shadow of a group of obstacles,
then the SAD priority is the lowest, and it does not
influence the motion of the vehicle. If the vehicle enters a
shadow cone, then SAD has a higher priority. In this case,
if the distance between vehicle and shadow cone exit
point is larger than the distance between primary obstacle
and the same point, there is a collision danger. The
highest priority is then given to the avoidance of the
primary obstacle (SAD will assume priority level 2).
When the vehicle is inside the shadow zone, only the
closest obstacle is considered. The light point is visible by
construction (see Figure 6), and the vehicle will not cross
other obstacles in order to reach it.

Fig.7: Collision Avoidance using N.S.B.B.C. with S.A.D.

VII. MODIFIED NSBBC IN A SIMULATED SCENARIO
The algorithm described in the previous section was

adapted for implementation on the Ulisse vehicle [5]. The
vehicle has two cameras, which are used to reconstruct
3D information of the surrounding environment. Pairs of
frames and pairs of congruent points are periodically
processed and features extracted using the SIFT
algorithm and grouped to form solid obstacles. The
details of the vision system are described in [9]. At this
point, the obstacle avoidance algorithm is introduced.
Since the obstacles are not point mass models as required
in [3], we can either consider a sufficiently large safety
perimeter to incorporate the entire obstacle, or create a
safety perimeter made of smaller circles of constant
radius. The latter choice was selected in this work. A
data-base must also be included in the overall process
capable or memorizing obstacles as they appear on the
sensors. For computational purposes, only obstacles at a
distance larger than ¼ the safety circle of an obstacle
already in memory are included. This guarantees that the
algorithm is capable of grouping, and the memory is not

WeD1.5

262

overloaded.
The ordered list of obstacles is then passed to the

obstacle avoidance algorithm, in order to build the
appropriate velocity vector sequence to be commanded to
the vehicle.

VIII. TESTS
Currently, the proposed algorithm has been

implemented using a numerical simulation under
MATLAB environment.

Consider a triangular obstacle between vehicle and
target. Figure 8 shows the trajectories using standard
NSBBC collision avoidance (green path), and the
proposed method with grouping and SAD (blu path).

Fig.8: Simple triangular Obstacle

Figure 9 show a simulation representing a vehicle
going through two obstacles that create a “canyon like”
structure. Again the improvement in the results is evident.

Fig.9: Trajectory through a Canyon

 The last simulation considers a starting point within

the concavity of an obstacle. The two different solutions
are shown in Figure 10, where the standard NSBBC
method fails, unlike the proposed method.

IX. CONCLUSIONS
The present work proposes a modification of an

obstacle avoidance algorithm recently proposed in the
literature. The use of the algorithm, with the addition of
obstacle grouping, and shadow cones avoids collisions in
critical cases, as demonstrated via numerical simulation.

At the current time, field testing is in progress using the
autonomous vehicle Ulisse, developed by the Automation
group of the University of Pisa.

Fig.10: Trajectory Comparison in the presence of Concave

Obstacles

REFERENCES

1. Jin-Oh Kim, Pradeep K. Khosla Real-Time Obstacle
Avoidance Using Harmonic Potential Functions IEEE
Transaction on robotics and automation, Vol .8 No.3, June
1992.

2. Siripun Thongchai, Kazuhiko Kawamura Application of
Fuzzy Control to a Sonar-Based Obstacle Avoidance Mobile
Robot International Conference on Control Applications
Anchorage, Alaska, USA September 2000.

3. A. Chohr;, A. Farah**, and M. Belloucif Neuro-Fuzzy Expert
System E-S-CO- V for the Obstacle Avoidance of Intelligent
Autonomous Vehicles (IA V).

4. Priti K. Gaonkar, Anthony DelSorbo and Kuldip S. Rattan
An Intelligent Robot System using Fuzzy Logic, 2005.

5. M. Cellini, R. Mati, L. Pollini, M. Innocenti Software and
Hardware for Guidance and Navigation of unmanned
Vehicles. Aeronautics and Space Education Workshop,
Istanbul, June 2006.

6. S.Chiaverini. Singularity-robust task-priority redundancy
resolution for real-time kinematic control of robot
manipulators. IEEE Transactions on Robotics and
Automation. 13(3):398-410, 1997.

7. G. Antonelli F. Arrichiello S. Chiaverini The Null-Space
Based Behavioral Control for Mobile Robots IEEE
International Symposium on Computational Intelligence in
Robotics and Automation, Espoo, Finland, June 2005.

8. G. Antonelli F. Arrichiello S. Chiaverini Experiments of
Formation Control with Collision Avoidance using the Null
Space Based Behavioral Control IEEE Mediterranean
Conference on Control and Automation, Ancona, Italy, June
2005.

9. L. Pollini , F. Greco , R. Mati and M. Innocenti, A. Tortelli,
"Stereo Vision Obstacle Detection based on Scale Invariant
Feature Transform Algorithm" accepted for pubblication in
Proceedings of AIAA Guidance, Navigation, and Control
Conference, Hilton Head, South Carolina, 20-23 Aug 2007

WeD1.5

263

