
 
 

 

  
Abstract — The paper presents an obstacle avoidance 

algorithm to be used for autonomous ground vehicles 
applications.  The proposed method improves some of the 
limitations of the recently developed Null Space Based 
Behavioral Control.  The technique divides the problem into 
tasks, which are associated to increasing priority. Activities 
with lower priority do not interfere with those having higher 
priority. The scenario is supposed known only partially, and 
the complete environment is reconstructed during the 
mission, with the aid of stereoscopic vision sensors. The 
validity of the method is currently verified via computer 
simulations.  
 

I. INTRODUCTION 
BSTACLE avoidance is one of the more complex 

problems to be addressed within the context of 
autonomous vehicles guidance design. Difficulties 
increase if the initial knowledge of the scenario is limited, 
and the outside environment must be reconstructed 
online, during the motion of the vehicle, and without 
apriori information and/or clues. 

The literature offers a large number of methods for the 
solution of the obstacle avoidance problem, and several 
of them use modifications of the potentials algorithms 
adapted to represent vehicle trajectories and paths.  
Potential-based techniques have the advantage of being 
straightforward and of easy implementation.  One of the 
limitations encountered by these methods is the presence 
of local minima, which can be addressed in several ways, 
for instance by using harmonic functions [1]. In addition, 
the complexity of the scenarios is limited under the 
application of this methodology. 

Fuzzy Logic and Neural Networks have been used in 
the past and are used currently in the development of 
obstacle avoidance algorithms [2][3][4]. They can be 
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considered as “intelligent systems” in that they use 
strategies of optimality based on various types of training, 
and data processing structure. Performance can be very 
good, however they require fine tuning, and training. 

The present work deals with the design of an obstacle 
avoidance scheme for a specific vehicle: the autonomous 
ground system Ulisse [5]. Ulisse is a three-wheeled 
vehicle originated from a motorized golf kart, and 
modified in the Department of Electrical Systems and 
Automation of the University of Pisa, to serve as a test 
bed for autonomous control, guidance, and navigation 
research. The vehicle is currently using stereoscopic 
vision sensors, and clustering techniques in order to 
detect and isolate obstacles within the field of view of the 
cameras. 

For the purpose of this work, we assume partial 
knowledge of the outside scenario: some obstacles are 
well known apriori (such as buildings, lakes, prohibited 
areas, and other obstacles, like those available in up-to-
date navigation maps), others must be identified during 
the motion.  A path planning algorithm is used, which 
incorporates known obstacles, and the proposed obstacle 
avoidance system is switched on when need arises. 

The problem of obstacle avoidance is addressed by 
decomposing it into smaller and simpler subtasks, so that 
the procedure is modular, and more versatile. These 
concepts were used in a recently developed method called 
Null Space Based Behavioral Control (or NSBBC) [6], 
which however has several limitations in its application to 
large trajectories in an outdoor environment. The method 
in [6] will be reviewed and improved, so that it can be 
applied to the problem at hand. 

II. NULL-SPACE-BASED BEHAVIORAL CONTROL 
The NSBBC method addresses obstacle avoidance in a 

multiple obstacles context by subdividing the scenario in 
smaller tasks of lesser complexity. The basic idea 
originates in Robotics, with the control of redundant 
manipulators. The added degrees of freedom are used to 
minimize a specific functional so that the manipulator can 
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execute accessory tasks, without modifying the path 
followed by the end effector. 

Let us consider a generic manipulator; the end effector 
velocity can be written as a function of the joints 
variables set as:  
 ( )e ex J q q= ⋅  (1) 

where q is the nth-dimensional joint velocities vector, 
and ex is the end effectors’ velocity vector. By inverting 
eq. (1), it is possible to compute the joints velocity 
needed, in order for the end effector to move at a given 
speed as shown in eq. (2). 
 ( )†

e eq J q x= ⋅  (2) 
In general, additional degrees of freedom are used to 

obtain a solution of (2) that minimizes some joint velocity 
norm. It is possible, however, to get a non minimum norm 
solution, and to use the redundancy for other objectives. 
A possible non minimum norm solution that uses the 
Jacobian pseudo inverse ( )†

eJ q  is given by: 
 ( ) ( ) ( )( )† †

e e e e aq J q x I J q J q q= ⋅ + − ⋅ ⋅  (3) 

The term aq in eq. (3) is projected onto the ( )eKer J ; 

thus aq has no effect on the end-effector trajectory ex and 
can be used to manage the redundancy. 

This technique ca be used in a task oriented paradigm 
for control of a robot manipulator where ex  is the priory 
task and aq can be used to perform additional tasks that 
do not effect the end effector motion [6]. 

The property outlined above can be generalized from 
the well known case of redundant manipulators, to 
problems requiring splitting an objective into tasks 
having different priorities, such as the motion control of 
an autonomous vehicle within an environment with 
obstacles [7]. 

In an obstacle avoidance scenario, the vector 
q represents the planar velocity, and the vector ex  
becomes a variable associated to the task. With this 
position, eq. (2) becomes: 
 ( )†

d d dp v J p σ= = ⋅  (4) 

Where ( )d dp p t=  is the time dependent desired 

position at some time t, dv  the vehicle’s desired velocity, 
J  the matrix of velocities allowed for the task, and σ  
the process variable that must be controlled. Eq. (4) is 
modified with the addition of a control term for closed 
loop position error elimination; thus:  
 ( ) ( )†

d dv J p σ σ

σ σ σ

= ⋅ + Λ ⋅

= −
 (5) 

where σ  is the desired value of the process variable, 
and Λ is a positive definite matrix.  We can use σ  e J  
to define tasks appropriately, and then compute the speed 
necessary to accomplish them. 
 If there are multiple simultaneous tasks, a supervisor 
must be designed for assigning priority and subsequent 
ordering.  For this, it is possible to use the relationship: 
 ( ) ( )

( ) ( )( )
†

1 1 1 11

†
11

i i i ii

i ii

v J p

I J q J q v

σ σ+ + − −+

++

= ⋅ + Λ ⋅ +

+ − ⋅ ⋅
 (6) 

The supervisor starts with the lowest priority task 
(index 0), up to the task with the highest priority. 

As an example, let us consider a vehicle moving on a 
planar surface, which must reach a target avoiding point 
mass obstacles. Each obstacle is enclosed by a safety 
circle, which can not be crossed by the vehicle. Two tasks 
can be identified: 

1. to reach the target, 
2. to remain outside the safety circles. 

The critical task is the obstacle avoidance, and it 
receives higher priority.  In order to avoid a collision, the 
task acts on the vehicle’s velocity in the direction of the 
obstacle.  The magnitude is a function of the distance to 
the obstacle and it become zero in proximity of the safety 
circle. (for instance if equal to the circle’s radius d). If the 
vehicle goes beyond the circle’s limit, the speed sign is 
reversed. In the example, the parameters oJ , oσ , oσ  in (6) 
have the following meaning: 

oJ  represents the velocity direction on which the task can 
operate, 

oσ is the distance between vehicle and obstacle 

oσ  is the safety circle radius. 
Therefore we have: 

 
; ;

T
o

o o o o
o

p p
J p p d

p p
σ σ

⎛ ⎞−
= = − =⎜ ⎟⎜ ⎟−⎝ ⎠

 (7) 

Thus: 
 ( )†

o o o ov J d p p= ⋅ Λ ⋅ − −  (8) 

Where 
p is the vehicle position, op is the obstacle position 

Since the process yielding the vehicle to the goal must 
be able to impose any velocity direction, gJ is a 2x2 

identity matrix, which identifies all possible velocities on 
the plane. The planar position is the task variable ( gσ ), 

which must be reach the desired value ( gσ ). Therefore: 

 ; ;g g g gJ I p pσ σ= = =  (9) 
and: 
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 ( )g g gv p p= Λ ⋅ −  (10) 

Matrix gJ  is full rank, thus its null space is empty. 

The processes with priority lower than the main one are 
thus projected onto an empty subspace and to not 
influence the motion of the vehicle. 

III. NSBBC: THE SUPERVISOR 
The priority of the various processes is managed by a 

supervising algorithm, which determines the state of the 
vehicle with respect to the scenario, and defines the rules 
to be used. In reference [2] no mention was made on how 
the rules were obtained, therefore a numerical simulation 
was performed in order to define their possible structure.  
In the case of a single obstacle, the main rule is that if the 
distance between target and vehicle is greater than the 
distance between target and obstacle, then the primary 
task is obstacle avoidance and secondary task is reaching 
the target (and the other way around of course). 

If the scenario has many obstacles, to each one a 
process is associated, which indicates speed and direction 
necessary for the avoidance. The supervisor orders the 
obstacles by their distance to the vehicle, with their 
relative priority.  The obstacles that were already passed 
are given a priority lower than the one relative to the 
target. 

IV. LIMITATIONS OF THE NSBBC ALGORITHM 
Extensive simulation tests were performed in order to 

evaluate the performance of the algorithm. The values of 
oΛ and gΛ in equations (8) and (10) were selected 

according to what suggested in [7]. The numerical values 
are: 
 0.5; 1o gΛ = Λ =   
 

1) One obstacle 
If the line connecting the vehicle and the target crosses 

the obstacle, the two processes (vehicle to target, and 
obstacle avoidance) create the same vector. This means 
that the projection of gv  on the null space of oJ  gives a 

zero vector and the vehicle will proceed on a straight line 
following the vector ov until it stops at the perimeter of 
the safety circle. 

The problem does not arise of course when the obstacle 
is not in the Line of Sight as shown in Figure 1, and the 
vehicle continues to the target. 

 
Fig.1: Vehicle Trajectory with one Obstacle outside the LOS. 

 
In conclusion, with one obstacle the vehicle always 

reaches the target, except for the singularity case. 
 
2) More obstacles 

When safety circles intersect, the algorithm naturally 
creates a velocity vector as a combination of components 
directed towards the obstacles. This yields an “attractive” 
effect to the obstacles groupings. This feature increases as 

the ratio o
g

Λ
Λ  increases. In this situation, it can happen 

that the vehicle goes through an area where two safety 
circles intercept, and since there is a different priority as a 
function of distance, it may enter the safety circle of the 
more distant obstacle. 

 
Fig.2: Vehicle Trajectory with more Obstacles near to each other. 

 
Obviously, the more separated the obstacles are, the 

easier is for the vehicle to avoid all the safety circles in 
order to reach the target. 

V. OBSTACLE GROUPING 
If the safety circles intersect each other, a possible 

solution is to collect the obstacles into a larger set. Let us 
suppose that the safety circle of the obstacle at highest 
priority intersects those relative to other obstacles as 
shown in Figure 2. A possible strategy to guide the 
vehicle outside the entire set of obstacles is to keep the 
process relative to the highest priority obstacle 
unchanged, and to vary the others. This is achieved very 
simply, by inverting the vector computed by the obstacle 
avoidance algorithm relative to all the obstacles, except 
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for the critical one (the one nearest to the vehicle). Let us 
examine in detail the modification to the NSBBC 
algorithm for this particular case. Define the obstacles 
area  
 ( ) { }2 |

i ii o oo p w w p d= ∈ − ≤  (11) 

where d is the safety radius. Define the obstacles-set 
 { }, 1..io i NΩ = =  (12) 
where N is the number of obstacles. Define the primary 
obstacle as 
 ( ){ }1..| min

i ko i o k N oo o p p p p== ∈ Ω − = − (13)

The obstacles are divided into groups. Each group 
contains only obstacles whose relative distance is smaller 
than the safety circle’s radius. If an obstacle has a non 
intersecting safety circle, then it belongs to a group 
consisting of itself only. The Cluster-set C is: 
 ( ){ }|o i iC o o S o= ∪ ∈ Ω ∃  (14) 

where the sequence ( )iS o is define as follow: 
 ( ) {

( ) }
1

1

, 1.. | , ,j k
i i o

n n
n k

S o o j k o o o o

o o+

<

= ∈ Ω = ≡ ≡

∩ ≠ ∅
(15) 

During the construction of the velocity vector, if an 
obstacle is identified as belonging to the critical group, 
then there is a sign change variation in the weight oΛ . 
Although this does not guarantee mathematically the 
entrance in a safety circle, it greatly reduces the 
probability. Define the function 
 

( ) 1,
0,

i
i

o C
o

otherwise
∈⎧

Φ = ⎨
⎩

 (16) 

The weight of the obstacle io can be calculate using the 
following expression 
 ( ), 1,

,i

o i i o
o

o

o o o
otherwise

⎧−Λ Φ = ≠⎪Λ = ⎨
Λ⎪⎩

 (17) 

where oΛ is the weight associate to the generic obstacle 
avoidance task. The modification introduced here is 
applied to the scenario of Figure 2, and the results are 
shown on Figure 3. The grouping concept improves the 
obstacle avoidance, but it can fail when, for instance, the 
starting point of the vehicle is well within the concave 
area described by the group. In this case, safety circles 
may be violated by the computed trajectory. An example 
is shown in Figure 4. 

 
Fig.3: Obstacle Avoidance Trajectory with modified NSBBC 

Algorithm for Scenario of Figure 3. 
 

 
Fig.4: Example of possible Drawback of the Grouping Algorithm 

 
A second potential issue in the grouping algorithm is 

the effect of variations in the weight oΛ . When 
computing a trajectory that goes outside a group of 
obstacles, it is appropriate to generate a path that is 
located as close as possible to the obstacles. This is done 
by increasing oΛ . In this case, however, there is the 
possibility that the vehicle reach a point where the 
resulting velocity vector is zero, and the vehicle can not 
reach the target. This singularity arises for the following 
conditions: 

1. The vehicle is on the safety circle. 
2. The resultant of the target task vector and the 

vectors relative to all obstacles is parallel to the 
vector needed to avoid the obstacle having 
highest priority. 

 

 
Fig.5: Potential Singularity in the Grouping Algorithm. 

 
A graphical example is shown in Figure 5. If the vehicle 
were to move from the current position, a velocity vector 
component would be created, tangent to the circle, 

WeD1.5

261



 
 

 

making the vehicle return to the initial point. If the weight 
associated to secondary obstacles is sufficiently high, the 
situation may arise before the obstacle is declassified 
(being farther than the target), and the vehicle stops. By 
increasing oΛ  the vehicle stops earlier, whereas by 
increasing gΛ the vehicle stops closer to the target. 

VI. SHADOW AVOIDING DEVICE 
A task called Shadow Avoiding Device (SAD) was 

proposed and developed to improve the problems 
encountered by the grouping algorithm described in the 
previous section. SAD is based on human experience 
when dealing with his/her motion towards a light source. 
If a person is located in the shadow cone of an object, and 
wants to reach the light source, then his/her response is to 
move toward the lighted zone closest to the obstacle. The 
target projects Omni directional light beams, and creates 
shadow cones behind obstacles (or groups of obstacles). 
If the vehicle is in the shadow of an obstacle in the group, 
it will try to exit moving in the direction of the light 
source. The shadow cone built with lines tangent to the 
safety circle and starting from the target (for each 
obstacle). At the end, a shadow cone for the entire group 
is defined as the envelope of the single cones. The group 
border is identified much in the same way with lines 
departing from the vehicle’s current position. The two 
points generated by intersecting the cones are the light 
points towards which the vehicle will move in order to 
avoid the obstacles. 

 
Fig.6: Implementation of S.A.D. 

 
The choice of which point depends on different factors, 

for instance we can choose the one that minimizes the 
distance between the vehicle and the target. To reach the 
desired point, the task needs full control over the 
vehicle’s motion. The Jacobian matrix is therefore the 
identity matrix, like that of the target, so that all the 
subtasks with lower priority will participate in the 
construction of the SAD velocity vector. 

The control variable SADσ  is the vehicle’s position and 
the desired position ( SADσ ) is the position of the chosen 
light point. We have therefore: 

 ; ;SAD SAD SAD tJ I p pσ σ= = =  (18) 
Once the obstacle avoidance scheme is set up (with the 

above improvements), the supervising algorithm needs to 
be constructed with the priority rules for implementation. 
Heuristic reasoning can be used for this purpose. If the 
vehicle is outside the shadow of a group of obstacles, 
then the SAD priority is the lowest, and it does not 
influence the motion of the vehicle. If the vehicle enters a 
shadow cone, then SAD has a higher priority. In this case, 
if the distance between vehicle and shadow cone exit 
point is larger than the distance between primary obstacle 
and the same point, there is a collision danger.  The 
highest priority is then given to the avoidance of the 
primary obstacle (SAD will assume priority level 2). 
When the vehicle is inside the shadow zone, only the 
closest obstacle is considered. The light point is visible by 
construction (see Figure 6), and the vehicle will not cross 
other obstacles in order to reach it. 

  
Fig.7: Collision Avoidance using N.S.B.B.C. with S.A.D. 

VII. MODIFIED NSBBC IN A SIMULATED SCENARIO 
The algorithm described in the previous section was 

adapted for implementation on the Ulisse vehicle [5]. The 
vehicle has two cameras, which are used to reconstruct 
3D information of the surrounding environment. Pairs of 
frames and pairs of congruent points are periodically 
processed and features extracted using the SIFT 
algorithm and grouped to form solid obstacles. The 
details of the vision system are described in [9]. At this 
point, the obstacle avoidance algorithm is introduced. 
Since the obstacles are not point mass models as required 
in [3], we can either consider a sufficiently large safety 
perimeter to incorporate the entire obstacle, or create a 
safety perimeter made of smaller circles of constant 
radius. The latter choice was selected in this work. A 
data-base must also be included in the overall process 
capable or memorizing obstacles as they appear on the 
sensors. For computational purposes, only obstacles at a 
distance larger than ¼ the safety circle of an obstacle 
already in memory are included. This guarantees that the 
algorithm is capable of grouping, and the memory is not 
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overloaded. 
The ordered list of obstacles is then passed to the 

obstacle avoidance algorithm, in order to build the 
appropriate velocity vector sequence to be commanded to 
the vehicle. 

VIII. TESTS 
Currently, the proposed algorithm has been 

implemented using a numerical simulation under 
MATLAB environment. 

Consider a triangular obstacle between vehicle and 
target. Figure 8 shows the trajectories using standard 
NSBBC collision avoidance (green path), and the 
proposed method with grouping and SAD (blu path). 

  
Fig.8: Simple triangular Obstacle 

Figure 9 show a simulation representing a vehicle 
going through two obstacles that create a “canyon like” 
structure. Again the improvement in the results is evident. 

 
Fig.9: Trajectory through a Canyon 

 
 The last simulation considers a starting point within 

the concavity of an obstacle. The two different solutions 
are shown in Figure 10, where the standard NSBBC 
method fails, unlike the proposed method. 

IX. CONCLUSIONS 
The present work proposes a modification of an 

obstacle avoidance algorithm recently proposed in the 
literature. The use of the algorithm, with the addition of 
obstacle grouping, and shadow cones avoids collisions in 
critical cases, as demonstrated via numerical simulation.  

At the current time, field testing is in progress using the 
autonomous vehicle Ulisse, developed by the Automation 
group of the University of Pisa. 

 
Fig.10: Trajectory Comparison in the presence of Concave 

Obstacles 
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