
 
 

 

  

Abstract- This paper explains a fast overtaking algorithm for 
IVHS based on clothoidal trajectories.  

In spite of the fact that clothoidal trajectory generation 
requires complicated computation of Fresnel integrals, in this 
paper, an on-line clothoidal path is obtained just by scaling a 
general parametric curve. This is based on a general offline 
approximation of the Fresnel integrals into Rational Bezier 
Curves (RBC) which are later used in the generation of on-line 
clothoidal paths. In addition, in order to obtain a fast 
algorithm, a new methodology to approximate the Fresnel 
integrals into RBC is proposed. This approach guarantees that 
the resulting curve has the same behavior than the clothoid. 

In particular for overtaking maneuvers, a clothoidal path 
composed of two equal elementary paths is generated. Each one 
constructed joining two piecewise identical clothoids.  

A 3D simulation environment has been used for testing the 
trajectory generation algorithm described in the paper. As can 
be seen, the obstacle avoidance module generates free-collision 
intermediate positions which are reached by clothoidal paths. 

I. INTRODUCTION 
Intelligent Vehicle Highway Systems (IVHS) have been 

subject to extensive research; however automated lane 
changing has not been fully accomplished yet. The 
complexity of the lane changing maneuver, since it 
incorporates lateral and longitudinal control in the presence 
of obstacles, is one of the main problems [1].  

The simplest solution is to generate a trajectory 
concatenating line and arc segments [2], [3]. The main 
disadvantage of this technique is the discontinuity between 
concatenated paths. This problem can be overcome by the 
use of clothoids. This curve has a linear relationship 
between the curvature and the arc length. This fundamental 
feature guarantees the comfort of the passengers because it 
maintains a constant variation of the centrifugal acceleration. 
Therefore, it can be used as a curve transition between lines 
and arcs [4],[5]. Another possibility is to combine only 
clothoids [6],[7]. In these papers, an elementary path 
consisting of two equal clothoids is defined. Then, any pose 
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in the plane can be reached through a bi-elementary path, 
built using two different paths. For our particular case, that 
is, lane changing maneuver, the required path can be 
simplified using two equal elementary paths, as it is 
proposed in [9] and previously published in [8]. 

Unfortunately, the clothoid is a transcendental curve 
defined in terms of Fresnel integrals. Therefore, it cannot be 
solved analytically. The relevance of the clothoid [6], [7], 
[10] has encouraged the development of many 
approximation techniques [11]-[14]. These techniques have 
been used in CAD/CAM programs for road design. 
However, they are not fast enough for online path planning. 
In this sense, we present a general offline approximation of 
the Fresnel integrals into Rational Bezier Curves (RBC) 
which are later used in the generation of the on-line 
clothoidal path just scaling the parametric curves.  

Virtual environments are widely used for algorithm 
validation in mobile robotics. They are particularly useful 
when real implementation does not guarantee safety. In such 
situations, it is essential to detect any possible fault that may 
exist in the algorithm. In spite of the fact that simulation 
does not contemplate every factor involved in real situations, 
it is still a good approximation [16]. In order to test the 
suitability of the clothoidal trajectory generation, a 
simulation application has been used. 

The simulation application, shown in the paper, represents 
an autonomous vehicle with an obstacle avoidance process 
based on clothoidal trajectory. The obstacle avoidance 
algorithm uses the computation of the MTD, [17]. 

This paper is organized as follows. In section II, a brief 
review of the properties of clothoid curves is presented. 
Section III shows the methodology to approximate the 
Fresnel integrals into RBCs. These curves are used to 
construct a clothoidal path for lane changing maneuvers, 
sections IV and V. This methodology is tested in a 
simulation environment as described in section VI. 
Conclusions and future work are presented in section VII.  

II. PROPERTIES OF THE CLOTHOID CURVE 
The clothoid curve or Cornu spiral is defined as follow. 

( ) ( )
( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∫
⋅

∫
⋅

⋅=⎟
⎠
⎞⎜

⎝
⎛⋅=⎟

⎠
⎞⎜

⎝
⎛= γ

0

2

γ

0

2

ξd
2
ξπsin

ξd
2
ξπcos

K)γ(S
)γ(CKγy

γxγQ
  (1) 

where K is a positive real number, γ  is a non-negative real 
number. Clothoid curves have the following properties:  
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1. Angle of tangent: 2γπτ 2⋅=   
2. Curvature: Kk γπ ⋅= , Radius kR 1=  
3. Arc length L: γπγ ⋅⋅=⋅= AKL , where A is the well-

known clothoid constant parameter. 
4. Homotecial factor AK ⋅= π  
The most attractive property of the clothoid curve is that: 
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where R is the radius of the curvature. This property 
guarantees the passengers comfort. In particular, the 
variation of the centrifugal acceleration, J, is defined by the 
next equation, [8], [9], [10]. 

J
VA e

3
2 =    

where Ve is the vehicle velocity. This property has main 
relevance in road design [10] and AGVs [6], [7]. As 
mentioned in the introduction, Fresnel integrals must be 
solved numerically. The approximation methods can be 
divided into polynomial and non-polynomial functions. In 
particular, all existing techniques involving non-polynomial 
functions [11] are just useful to approximate the Fresnel 
integrals in a single point. However, CAD/CAM systems or 
automated guided vehicles trajectory generation require a 
continuous function. For this purpose, polynomial functions 
are an ideal solution [1].  

Usually, the standard polynomial functions used in 
CAD/CAM fields are Bezier, Rational Bezier, B-spline and 
NURBS. In this sense, there are some techniques that 
approximate the clothoid into these curves [12]-[14]. 
Although these methods produce accurate approximations of 
the clothoid, they cannot be used in AGVs because the 
resulting order of the curves is too high and the calculus is 
very complicated for online path generation. For this reason, 
we have developed a new technique to approximate the 
clothoid into parametric curves. In particular, an 
approximation of the clothoid to Bezier and Rational Bezier 
curves (RBC) is presented. In this sense, each Fresnel 
integral is approximated to one parametric curve in a 
selected working interval. Therefore, one parametric curve is 
obtained for each coordinate as explained afterwards. 

III. FRESNEL INTEGRALS APPROACH TO BEZIER AND 
RATIONAL BEZIER CURVES 

A Bezier curve is the most common form to represent 
planar curves for CAD/CAM applications. This curve has 
the next formulation: 
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where: 
Ck: Bezier control points 
 u :  Intrinsic parameter [0…1]  
N :  Order of the Bezier equation 

Parameter γ must be normalized in a selected work 
interval γs≤γ≤γe , where γs, γe are the limits of the Fresnel 
integrals. These values can be calculated by the clothoid 
properties explained in section II. With this, Bezier equation 
can be rewritten as: 
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It can be expressed as a linear equation: 
N

N BCBCBCP γγγγ ⋅++⋅+⋅= ...1
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Where kBγ
 is the kth Bernstein basis function, which is: 
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This equation can be expressed in the next matrix form: 
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CBP ⋅=  
This representation permits the use of LS-techniques in 

order to compute the Bezier control points. Fresnel points 
(C(γ), S(γ)), represented by Pγ in the equations , are obtained 
using a non-polynomial approximation explained in [11], 
with an accuracy of 2⋅10-10. The clothoid property 1 (see 
section II) permits to establish the working interval in terms 
of the tangent angle [τi,τe]. For instance, Fig. 1 shows an 
approximation of Fresnel points in the interval [0,π/2]. 

 
Fig. 1. Bezier curve of 5th (left) and 7th (right) order. 
 

Although this methodology produces an accurate 
approximation, the resulting Bezier curve does not pass 
across the start and end points. In addition, it doesn’t 
guarantee G2 continuity at the start point unless the first 
three control points must be aligned with the line. Therefore, 
in order to overcome discontinuities, the control points have 
to be forced in these locations. 

Forcing the location of these three points reduces the 
degree of freedom, so it is necessary to increase the order of 
the curve to maintain the accuracy of the approximation. 
This drawback can be avoided using Rational Bezier Curves 
(RBC) as a way of introducing new degrees of freedom. 
RBC requires relocating control points with weights wk, 
which allow reallocating starts and ending control points at 
the desired positions without increase the order of the RBC. 
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The RBC formulation is: 
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This equation can be expressed in the matrix form P=B⋅w. 
To approximate the C(γ) Fresnel integral term, it is only 
necessary to adjust the start and end control points. In this 
case, the resulting matrixes are:  
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To approximate the S(γ) Fresnel integral term the first 
three control points must be aligned with the line. Therefore, 
hereinbefore matrixes must be changed. In particular, the 
required changes are w1=w2=1 and C1=C2=0. For instance, 
Fig. 2 shows the RBC approximation in the interval [0,π/2]. 

 
Fig. 2. RBC approximation of 7th (left) and 9th (right) order. 

 
The accuracy of the approximation can be measured as: 
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Next table shows the variance and maximum variance for 
each Fresnel integral component with different orders of 
complexity. 

TABLE I 
 RBC WITH DIFFERENT ORDERS OF COMPLEXITY 

N σ2
C σ2

S Max(σ2
C) Max(σ2

S) 
7 1.3·10-11 1.4·10-9 1.3·10-12 2.7·10-10 
9 2.1·10-13 1.1·10-13 2.5·10-14 3.9·10-14 
11 5·10-18 4.6·10-15 9.1·10-19 6.1·10-16 
13 3·10-21 7.9·10-20 6.3·10-22 9.5·10-21 

Although this approximation is very accurate, the most 
interesting feature is the behavior of the RBC. In fact, if the 
approximation is accurate enough, RBC should be a clothoid 
with homotecial factor K=1 and curvature varying linearly 

with the arc length (well-known property of the clothoid). In 
order to test this statement, the Rational Bezier Curves that 
approximate C(γ) and S(γ) in the interval [τi,τe] (Pc(γ) and 
Ps(γ) respectively) have been resampled in terms of the  
curvature k using clothoid properties 1 and 2, explained in 
Section II, obtaining Pc(k) and Ps(k). The work interval has 
changed to [ki, ke]. The arc length for every k-value L(k) can 
be calculated as: 
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The linear relationship between the arc length and the 
curvature is defined by the homotecial factor K. Equation (2) 
shows this linear relationship using the well-known clothoid 
constant parameter A. It can be rewritten using equation (2) 
and the 4th clothoid property: 

( )( ) L kK k k π= ⋅  

Fig.3 shows this linear relationship and demonstrates that 
the RBC has the same behaviour as a clothoid. It is only 
guaranteed when the approximation error less than 20101 −⋅ . 

 
Fig. 3. RBC behaving as a clothoid. 
 

The selected work interval depends on the application. In 
this case, that is, for lane changing maneuvers, the work 
interval is [ ]8,0 π . The coefficients of the RBC are: 

TABLE II 
 COEFFICIENTS OF THE RBC FOR LANE CHANGING MANOEUVERS 

 
C S i 

Ci wi Ci wi 
0 0 1 0 1 
1 0.0555 1-76·10-11 0 1 
2 0.1111 1-52·10-10 0 1 
3 0.1666 1+95·10-10 0.0007 1-17·10-4 
4 0.2222 1-16·10-9 0.0031 1+67·10-7 
5 0.2777 1+14·10-9 0.0077 1+19·10-7 
6 0.3329 1-12·10-9 0.015 1-34·10-8 
7 0.3876 1+49·10-10 0.027 1+24·10-9 
8 0.4410 1-34·10-10 0.043 1-17·10-9 
9 0.4923 1 0.064 1 

These coefficients are constant for any computed 
trajectory just lacking the computation of the homotecial 
factor, which is coincides with the scaling factor of the 
RBC. 
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As we can observe in the previous equation, it is only 
necessary to apply the homotecial factor to the control points 
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Ck to obtain the required clothoid. It has the effect of scaling 
the obtained curve which is the same as multiplying the 
Fresnel integral points (C(γ), S(γ)) by the homotecial factor. 
This allows defining a general RBC that will be 
particularized to any desired trajectory. It is due to RBC 
guarantees that the resulting curve is invariant under scaling, 
rotation and translation. This is one of the properties of the 
parametric curves, named as transformation invariance. It 
implies that the RBC can be translated, rotated and scaled 
without loses in the clothoid properties hereinbefore 
demonstrated. It permits an easy construction of clothoidal 
paths, as explained in the next sections. 

IV. ELEMENTARY PATH 
Because of the interesting properties of the clothoid, it is 

being applied in road design for many years [10]. These 
properties have also been considered by researches in 
automated guided vehicles, as in [6], [7].  In these papers the 
concept of elementary path is introduced. It is built 
throughout the concatenation of two equal piecewise 
clothoids. Besides, the concatenation of two different 
elementary paths joins any two poses in the plane (x,y,θ) [6], 
[7]. In particular, to link two (x,y)-positions it is only 
necessary to generate an elementary path because always 
exists a tangent angle τ  that guarantees the symmetry 
between these two poses. This matter has been extensively 
treated in our previous work [8].  

For the first clothoid of the elementary path, the tangent 
angle can be computed as:  
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where (xe,ye) is the end position to reach. In this calculus, 
initial position (xi,yi) is always (0,0). Changing the initial 
position just implies the translation of the resulting RBC. 

The second clothoid of the elementary path is equal and 
symmetrical to the first one. This involves that the control 
points of the second clothoid can be obtained by generating 
the symmetry of the control points of the first clothoid, see 
Fig.4. 

 
Fig. 4. Control points symmetry: Construction of an elementary path. 
 

Any symmetrical point (Cτ,Sτ) is obtained resampling the 
RBC for the required tangent angle. As the tangent angle 
does not depend on the homotecial factor (see property 1 of 
the clothoids), it is possible to construct the elementary path 
without taking it into account. 

As mentioned in the previous section, the homotecial 
factor acts as a scaling factor of the general RBC curve. 
Thus, the last step will be to scale the control points 
considering that the last control point (Cc2k,Cs2k) has to 
coincide with the desired final position. 

The mentioned homotecial factor K, and the A parameter 
of the clothoids, is computed from the desired end position 
(xe,ye) and the last control point of the second clothoid 
(Cc2k,Cs2k) as follows  : 
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e
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e
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For instance, fig. 5 shows an elementary path calculated 
to join the start position (0,0) with the end position (20,10). 
The resulting homotecial factor is K=21.81. 
 

 
       a)           b) 
Fig. 5. Elementary path: a) without scaling factor, b) with scaling factor. 
 
This simple technique allows the easy construction of an 
elementary path. In particular, lane changing maneuvers 
only require the combination of two elementary paths, as 
explained in the next section. 

V. FOUR SYMMETRICAL CLOTHOIDS 
In [7], the concatenation of two different elementary paths 

is used to achieve any pose in the plane (x,y,θ). A particular 
case is when the start and end pose have the same 
inclination. In this situation, the final positions of the first 
elementary path are located in a straight line joining the start 
and end positions. In [15] is demonstrated that the minimum 
length of the clothoidal path is obtained forcing the joint 
point to be located on the intermediate point of the straight 
line. In this case, both elementary paths are equal. The 
required tangent angle to reach the intermediate position has 
been computed in the hereinbefore section. The control 
points of the second elementary path must be obtained by 
symmetry, as shown in Fig 6. 

 
Fig. 6. Control point symmetry in a four clothoidal path. 
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The homotecial factor K, and then, the A parameter of the 
clothoids can be calculated as: 
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where (
kk SC CC

44
, )  is the end control point of the four 

clothoidal path.  
For instance, Fig. 7 shows four symmetrical clothoids to 

join the start pose (0,0,0) with the end pose (200,5,0). The 
resulting homotecial factor is K=369.56. 
 

 
a)               b) 

Fig. 7. Four-clothoids path: a) without scaling factor, b) with scaling factor. 
 
A four-clothoids path is ideal for lane changing maneuvers 
because its smooth curvature guarantees comfort passengers. 
Besides, its easy and fast construction permits an online path 
planning. In this sense, a simulation application is explained 
in the next section. 

VI. NON-STRUCTURED SIMULATION ENVIRONMENT 
In this section, it is described a virtual environment 

employed for testing the goodness of the clothoidal 
trajectory generation explained in previous sections when 
avoiding obstacles in mobile robotics.   

A commercial programming software called Dark Basic 
Professional® has been used for modeling the environment. 
It offers powerful specific commands to represent and move 
3D objects and handle with control devices such as mouse, 
joysticks, steering wheels, etc. It also provides an interface 
between DirectX commands and the programmer. 

 
Fig. 8. Simulation environment showing the AGV and an obstacle. 
 
The simulation environment, already presented in [18], 
represents a typical four-lane highway where vehicles can 
travel in two directions, as depicted in Fig. 8. 

A motorbike represents the autonomous vehicle and cars 
are used for simulating obstacles.  

The simulation code has been designed to include 
clothoidal trajectory generation and collision avoidance 
algorithms as independent modules. The modular structure 
proposed is achieved by using Dynamic Link Libraries.  

The diagram in Fig 9 shows the basic structure of the 
application. It represents the case of an autonomous vehicle 
following a predefined trajectory (straight line). When a 
vehicle occluding the predefined trajectory of the AGV is 
detected, the obstacle avoidance (OA) algorithm computes 
an intermediate non-collision position that prevents them 
from colliding. Once the new position is known the 
trajectory generation module computes the appropriate 
clothoidal path that leads the AGV to the non-collision 
position in the right time interval (established by the OA 
algorithm). As the environment represents an Intelligent 
Vehicle Highway System, the generated trajectory obtained 
will always be a lane changing maneuver, whose line width 
is a prestablished parameter of the OA algorithm.  

The avoidance maneuver can be observed in the picture 
sequence shown in Fig. 10. It clarifies that the use of 
clothoids for trajectory generation produces continuous-in-
curvature paths that guarantee the comfort of the passengers.

 
Fig. 9. Simulation application structure. 
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Fig. 10. Lane changing maneuver in obstacle avoidance (top view). 
 

The OA algorithm is based on the computation of the 
Minimum Translational Distance (MTD) [17]. This 
avoidance algorithm uses spheres for distance computation 
as a way of reducing computational time. In particular, bi-
spheres are considered for modeling the volume swept by 
each vehicle. The algorithm provides the MTD of separation 
(positive value) or penetration (negative value) between two 
objects, as well as the direction of possible collision.  

 

VII. CONCLUSION 
In this paper, an approximation of clothoids by RBCs has 

been presented and applied for trajectory generation in 
mobile robotics and vehicles. This approximation guarantees 
that the RBC has the same behaviour as a clothoid with 
lower order than other approaches. 

Although clothoidal trajectory generation requires 
complicated computation of Fresnel integrals, in this paper, 
an on-line clothoidal path is obtained just by scaling a 
general parametric curve. Therefore, we have been able to 
develop a fast algorithm for generating accurate 
approximations of clothoidal paths. Its simplicity allows the 
implementation of fast modules for obstacle avoidance 
applications, 27 ms for a Pentium IV, 2.4 Ghz. 

In particular, a four-clothoid path has been taken as ideal 
solution for lane changing maneuvers due to its smooth 
curvature that guarantees comfort passengers. In such 
situations, lane changing maneuvers only require the 
combination of two equal elementary paths. 

In order to test the suitability of the clothoidal trajectory 
generation, a simulation environment for overtaking 
manoeuvres of vehicles has been used. When an obstacle is 
detected, the obstacle avoidance algorithm computes 
intermediate positions to compute the appropriate clothoidal 
path that leads to non-collision trajectories. Some videos of 
this methodology can be found in [19]. 
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