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Abstract— Cascaded classifiers are widely spread in auto-
motive pedestrian detection systems. Since there has been no
research on probabilistic information derivable on the basis
of a cascade, these systems are limited in the sense that they
only exploit the binary classification results. In contrast to that,
this paper presents a mathematically founded model regarding
the computation of posterior probabilities on the basis of such
classifiers. This is highly relevant in respect of the further
development of robust and reliable detection systems.

I. INTRODUCTION AND RELATED WORK

Many of the recently developed pedestrian detection sys-

tems in automotive applications [1], [2] are based on casca-

ded classifiers, aiming at high detection rates in combination

with low computation time. A cascade consists of several

concatenated classifiers and corresponds to a degenerated

decision tree. It is applied to a set of hypotheses, generated

at every time frame and covering all relevant image loca-

tions and scalings. A detection occurs, if the corresponding

hypothesis has passed a specified layer called detection layer.

By adding layers to or removing layers from the end of

the cascade, the working point of the classifier is adjusted.

This is a rather heuristical approach and it would be more

systematic to adjust the detection rate by applying a threshold

to the mathematically modeled posterior probability of each

sample.

Furthermore, detection information of previous frames

could be used by the searching strategy at the next frame.

One possible approach to accomplish this is to use a particle

filter in order to track the region of interest over time [3],

[4]. Generally speaking, a particle filter reduces a searching

problem to a verification problem [5], [6]: Each particle

can represent a hypothesis and therefore be classified by

the cascade detector. Over time, search narrows down to

image areas where the appearance of a pedestrian is more

likely. However, this requires the posterior probability of

each sample in respect of the measurement update stage of

the particle filter.

Most important, recent developments based on subsequent

stages of tracking allow the usage of unresolved sensor

data [7], [8]. This means that there is no necessity for an

explicit decision of the detector. Instead, the main focus

here is to provide target candidates with probabilities, each

associated with a belief of existence. Detectors of such type

are called probabilistic detectors. In this context, the tracker

simultaneously provides a-posteriori estimates of the state

variables and the probability of existence. The advantage

compared to the classical approach is, that temporal a-priori

knowledge can be incorporated into the detection decision.

This is state of the art in the field of state estimation. In

order to use the cascaded classifiers in such a manner, it

must assign a probability instead of a binary decision to each

sample. Here, a mathematical model is key. This is the focus

of this work.

Fig. 1. Different system designs of common detection systems. The
availability of the posterior probabilities after the verification step can
improve these whole detection system. First, the probabilities can be used to
force a desired detection rate. Secondly, the posterior probability can supply
information for the searching strategy regarding the next frame. Thirdly, the
detector can be used as a probabilistic detector. In this context, the tracker
provides the a-posteriori estimates concerning the existence itself.

A. Structure of the Paper

This paper is structured as follows: Section II-A gives a

theoretical overview of the AdaBoost algorithm, which is

used to train each cascade stage. The section also recapitu-

lates the theoretical upper bound on misclassification error.

Furthermore, it briefly summarizes the connection of boos-

ting and logistic regression and recapitulates the posterior

probability presented by Friedman, Hastie and Tibshirani

[9]. This forms the basis for the deduction of posterior

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

FrF1.2

1-4244-1068-1/07/$25.00 ©2007 IEEE. 1284



probabilities based on cascaded classifiers discussed in detail

in Section III. Using the principle of Probabilistic Boosting

Trees [10], we present a mathematical model for obtaining

a-posteriori estimates on the basis of the cascade results.

Section IV finally provides first experimental results using

artificial and real data in order to verify the presented theory.

II. ADABOOST AND LOGISTIC REGRESSION

A. The AdaBoost Approach to Machine Learning

Boosted classifiers and the related AdaBoost algorithm in-

troduced by Freund and Schapire [11] are very well described

in [12]–[14]. A pseudo code description of the algorithm re-

garding a two-class classification scenario is given in Figure

2. It requires a training set (x1, y1), . . . , (xN , yN ) as input

Given: samples (x1, x1), . . . , (xN , yN ) where yj ∈
{−1, +1}
Initialize wj = 1

N
.

For t = 1, . . . , T :

• Train base classifier incorporating the weights

wj , j = 1, . . . , N and determine base classifier

ht that minimizes the weighted error on the

training data.

• Choose αt

• Update sample weights and normalize so that

w will remain a distribution:

wj =
wje

−αtyjht(xj)

Zt

Zt is the normalization factor.

The final strong learner decision H realizes a ma-

jority vote of all weak learner decisions ht:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

Fig. 2. Pseudo code description of the boosting algorithm AdaBoost
regarding a two-class classification scenario.

with xj being a vector valued feature and yj ∈ {−1, +1} a

corresponding label. In every round t = 1, . . . , T , AdaBoost

calls a weak learning algorithm which trains the classifier ht

on a weighted version of the training set by minimizing the

weighted error

ǫi =
∑

j

wi,j

∣

∣

∣

∣

hi(xj) − yj

2

∣

∣

∣

∣

, (1)

and determines a parameter αt ∈ R. This αt intuitively mea-

sures the assigned importance of ht. For a binary decision

of ht, we typically set

αt =
1

2
ln

(

1 − ǫt

ǫt

)

. (2)

The final strong learner decision H is a weighted majority

vote of the T weak classifiers where αt is the weight assigned

to ht:

H(x) =







+1 : A(x) :=
∑

t

αtht(x) ≥ θ

−1 : else.

(3)

A(x) is called activation of the strong learner.

B. Analyzing the Training Error

In [15], [11] an upper bound on the misclassification error

of an AdaBoost classifier is presented and defined as follows:

1

N
|{j : H(xj) 6= yj}| ≤

1

N

∑

j

e−yjA(xj) =
∏

t

Zt, (4)

with A(xj) being the strong learner’s activation so that

H(xj) = sign(A(xj)). The inequality can be proved by the

fact that e−yjA(xj) ≥ 1 in case H(xj) 6= yj . The equality

follows by unraveling the recursive definition of w. Note that

αt in Eq. 2 is chosen in order to minimize Zt at each round.

So, at heart, AdaBoost is a procedure for finding a linear

combination A(·) of weak classifiers which minimizes the

upper bound on misclassification error.

C. Boosting and Logistic Regression

In order to estimate the probability that a sample corre-

sponds to a particular label, Friedman et al. have shown

in [9] that AdaBoost is effectively approximating logistic

regression. Minimizing the exponential criterion

E
[

e−yA(x)
]

(5)

with respect to A(x) leads to

A(x) =
1

2
log

p(y = +1|x)

p(y = −1|x)
. (6)

Although E [·] stands for the expectation of the worst case

misclassification error regarding all samples, it is sufficient

to minimize the criterion conditional on x. Resolving Eq. 6

leads to

q(y = +1|x) := p(y = ±1|x) =
ey·A(x)

e−A(x) + eA(x)
. (7)

This function is plotted in Figure 3.

III. ANALYZING CASCADED CLASSIFIERS

A. Principle of Cascaded Classifiers

The cascade classifier approach, first presented in [16],

is an object detection framework, capable of processing

images extremely rapidly while achieving high detection

rates. For this purpose, classifiers with increasing complexity

are combined in a cascaded manner as illustrated in Figure

4. Each cascade stage discards samples originating from

the image background and passes promising samples to the

successive and more complex stage. Therefore the most com-

putation effort is spent on promising (object-like) regions.

The classifiers themselves are based on Haarwavelet-like

features and trained with the AdaBoost algorithm presented

in Section II-A.
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Fig. 3. Logistic function (see [9]) for the estimation of the posterior
probability of a sample x, depending on the activation A(x) assigned by a
boosted classifier.

Fig. 4. Cascade principle: each layer discards clutter and passes promising
samples to the successive and more complex stage.

In order to guarantee a certain overall detection rate,

an user defined detection rate is forced at each layer by

adjusting the threshold θ in Eq. 3. Note that this adjustment

invalidates the upper bound on misclassification error pre-

sented in Section II-B and consequently makes the posterior

probability presented in Section II-C invalid. This issue will

be discussed in detail further below. The posterior probability

in Eq. 7 is only defined for an individual cascade stage.

The next section therefore describes the principle regarding

a Probabilistic Boosting Tree presented in [10] which we will

adopt to cascaded classifiers. In fact, a cascaded classifier is

a degenerated tree itself.

B. Probabilistic Boosting Trees

In [10], a learning framework called Probabilistic Boosting

Tree (PBT) is presented. One goal of this paper is to

determine the posterior probability of a given sample x and

a label y ∈ {−1, +1} based on such a PBT. Every node of a

PBT is an AdaBoost classifier with the activation threshold

θ = 0. As a result, the sample set is divided into two subsets

depending on the posterior probability q(y = +1|x) (Eq. 7).

If q(y = +1|x) < 0.5 − ǫ, the sample is passed to the left

sub-tree, if q(y = +1|x) > 0.5 + ǫ, the sample is passed to

the right sub-tree, and if 0.5− ǫ ≤ q(y +1|x) ≤ 0.5 + ǫ, the

sample is passed to both sub-trees. Here, ǫ was introduced

in order to avoid over fitting of the data. The whole PBT is

trained recursively and expanded until a predefined depth is

reached. In order to determine the posterior probability of an

unseen sample x, it traverses the tree, again by continuously

applying the posterior probability threshold 0.5. The authors

of [10] then use the principle of total probability to derive

a posterior probability based on the output of all nodes of

the PBT. This approach results in the following recursive

definition:

p(y|x) =
∑

l1

q(l1|x) · p(y|l1, x)

=
∑

l1,l2

q(l1|x) · q(l2|l1, x) · p(y|l2, l1, x)

= . . .

=
∑

l1,...,ln

q(l1|x) · . . . · p(y|ln, . . . , l1, x) (8)

Each p(y| . . . , x) is a recursive element. ln stands for the

branch at level n of the tree. q(ln|ln−1, . . . , l1, x) represents

the posterior probability based on the corresponding indi-

vidual classifier at level n and is computed in analogy to

Eq. 7. When the recursion reaches a leaf-node, the empirical

probability of a sample of class y ∈ {−1, +1} is returned

and the recursion ends. In this case

p(y|l1, . . . , ln, x) := pemp(y|l1, . . . , ln). (9)

In [10], the empirical probabilities are determined during

training stage and defined as

pemp(y|l1, . . . , ln) =
∑

j

wjδ(yj = y). (10)

Figure 5 illustrates the composition of the posterior proba-

bility as described above.

Fig. 5. Calculation of the posterior probability based on the Probabilistic
Boosting Tree described in [10]. ln stands for the branch at level n of the
tree. q(ln|ln−1, . . . , l1, x) represents the posterior probability based on
the corresponding individual classifier at level n. p(y|x) is then calculated
recursively by weighting the left and right sub-trees according to q. At the
leaf nodes, the recursion ends with p(y|·, x) := pemp(y|·).

In order to reduce computation time, [10] does not consi-

der the complete PBT but only those nodes that the samples

passes on its way to a leaf node. The contribution of each

ignored sub-tree is approximated by the empirical probability

of the corresponding learnset. The ǫ-case is disregarded

during testing stage, so the decision as to whether a sample

is directed to the left or to the right sub-tree depends on

the posterior probability based on the activation assigned by

the corresponding individual classifier. However, applying a

posterior probability threshold of 0.5 is just the same as using

an activation threshold of 0.
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C. Posterior Probability and Adapted Thresholds

As mentioned earlier, determining posterior probabilities

in a PBT-like manner cannot be transfered to cascaded

classifiers directly. This is due to two reasons:

• The cascade is not fully expanded to a defined tree depth

(there are no left sub-trees).

• After the training of each stage, the threshold θ of the

strong learner is adapted in order to guarantee a certain

detection rate, i.e. θ 6= 0.

While the first issue can be solved by using empirical pro-

babilities (like done in [10] during testing), the second point

directly affects the calculation of the posterior probabilities

in accordance to Eq. 7. In [10], the posterior probability

q(y|x) of a sample computed on the basis of one node

of the PBT is used to assign a weight to each of the two

sub-tree probabilities emerging from the corresponding left

and right sub-tree (see Eq. 8). If a sample is assigned

the activation A(x) = 0 and the stronglearner threshold

θ = 0, it is very uncertain which of the two branches is the

appropriate one.This is reflected by the posterior probability

q(y = +1|x) = 0.5. In consequence, the two probabilities

are averaged. In order to ensure the same behavior regarding

θ 6= 0, 7 must be adapted to

q∗(y = +1|x) =
e(A(x)−θ)

1 + e2(A(x)−θ)
. (11)

This formula can be derived by minimizing the expectation

E
[

e−y(A(x)−θ)
]

(12)

with respect to A(x), which leads to

A(x) =
1

2
log

q(y = +1|x)

q(y = −1|x)
+ θ. (13)

As in [9], Eq. 12 again is motivated by the upper bound on

misclassification error concerning the strong learner’s deci-

sion. The adapted threshold θ 6= 0 is explicitly considered:

1

N
|{j : H(xj) 6= yj}| ≤

1

N

∑

j

e−yj(A(xj)−θ). (14)

IV. EXPERIMENTS

A. Artificial Data Set

In order to verify the presented theory, initially so-

me experiments with artificially generated samples where

conducted. Two 2D normal probability density function

were used to draw the samples of learn and test set,

with (σ
(pos)
x1

, σ
(pos)
x2

) = (0.5, 5.0) for positive samples and

(σ
(neg)
x1

, σ
(neg)
x2

) = (5.0, 0.5) for negative samples. Thus, a

cross shape is created. Using Bayes’ theorem, a ground

truth of the posterior probabilities is available and plotted

in Figure 6. In order to receive a more precise impression

of the exact probability values, a vertical and a horizontal

cut through the cross in respect of the posterior probability

is also shown. The vertical cut of the cross contains mostly

positive samples (positive cut). In contrast, the horizontal cut

generally relates to negative samples (negative cut). For an

(a) True posterior probabilities with p(y = +1|x) color coded

−15 −10 −5 0 5 10 15

0
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0.4

0.6
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x
2
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p
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=
+

1
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)

(b) horizontal cut
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0.2

0.4
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x
1
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p
(x

=
+

1
|x

)

(c) vertical cut

Fig. 6. True posterior probabilities for an artificial data set: (a) the probabi-
lities p(y = +1|x) derived by Bayes’s Theorem are color coded. Samples
with low posterior probability are blue, samples with high probabilities are
red. (b) Horizontal cut (samples with x2 = 0). (c) Vertical cut samples with
x1 = 0.

TABLE I

CHARACTERISTICS OF CASCADE CLASSIFIER

TRAINED ON AN ARTIFICIAL DATA SET.

Amount of classifiers: 4

Amount of weakleaners for every stage: 7, 15, 15, 15

Detection rate (on test set) Dtest: 98.0%

False positive rate (on test set) Ftest: 11.6%

independent learn set, a cascade classifier was trained. The

classifier characteristics are listed in table I.

In [10], empirical probabilities used for estimating the a-

priori knowledge in the leaf nodes were obtained on basis

of the learnset. In contrast to that, we used an independent

data set (containing 10 · 108 samples of each class) for the

computation of those empirical probabilities. The posterior

probabilities were finally determined regarding a third and

also independent data set. Figure 7 shows the vertical cut

of the posterior probabilities. For completeness, the dashed

lines in this figure also show the posterior probabilities that

were calculated disregarding the adapted thresholds θk. First,

referring to the solid lines, it can be observed that the

posterior probabilities of samples within the vertical wings

of the cross increase with cascade depth. This is not the

case, without explicit consideration of the adapted thresholds.

Secondly, the posterior probabilities of samples in the center
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(b) 2nd layer
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(c) 3rd layer
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(d) 4th layer

Fig. 7. Vertical cuts of posterior probabilities for the artificial data set from
Figure 6. At x2 = 0 a probability of 0.5, at x2 > 0.5 and x2 < −0.5 a
probability of 1 is expected. (a) shows the probabilities calculated after the
first cascade layer, (b),(c) and (d) respectively the values calculated after
the second, third and 4th layer.

of the cross decrease less when considering the adapted

threshold as done in Eq. 11.

B. Cascaded Classifiers for Pedestrian Detection

In order to evaluate the mathematical model described in

Section III, a cascade for the application of a pedestrian

detection system was trained. All data originates from 20
near infrared image sequences, each with a length of 45s;

manually created label information is available. Samples

correspond to rectangles of various size and position within

an image. A sample is assigned to labels by considering

the corresponding coverage. The coverage cov(A, B) is a

measure for the degree of intersection of two rectangular

areas A and B:

cov(A, B) =
A ∩ B

A ∪ B
. (15)

If there is no intersection, coverage is 0. In contrast, if the

sample boundaries correspond exactly to a label, the resulting

coverage is 1.

Positive samples for the training were extracted on the

basis of the label information (2500 positive samples). Ne-

gative samples were obtained by making use of a hypotheses

generator that generates 300.000 hypotheses per image. In

our training configuration, each stage of the cascade is

restricted to a maximum number of weak learners, as given

in table II. An independent empirical data set was used in

order to determine the empirical probabilities. The posterior

probabilities were then calculated for a third data set. Figure

8 displays the mean posterior probabilities plotted over co-

verage. High probabilities result from high coverages. Note,

TABLE II

MAXIMUM WEAK LEARNERS PER STAGE

stage 1 2 3 4 5 6,7 8-20 ≥ 21

no. 3 5 7 10 13 15 25 50

that the absolute values of the probabilities also reflect the a-

priori information (i.e. the proportion of foreground samples

in the data set) used to calculate the empirical probabilities.

(a) mean values (b) variances

Fig. 8. Posterior probabilities over coverage calculated with a cascaded
classifier for a pedestrian detection system. (a) shows the mean posterior
probabilities achieved by all samples over the respective coverage with a
label, (b) demonstrates the corresponding variances.

In Figure 9, two receiver operator characteristic (ROC)

curves are displayed. One arose from the common cascade

classification method, i.e. a detection occurs, if the corre-

sponding sample has passed a specified detection layer. The

other originates from the application of a threshold to each

calculated posterior probability. Obviously, both ROC curves

are similar. This is strong evidence for the validity of the

presented mathematical model.

Figure 10 shows the posterior probability for two typical

hypotheses. Further research will be needed in order to in-

vestigate the influence of the posterior probabilities to robust

detection systems. As an example, the probabilities can help

to understand typical false alarms. However, the practical

relevance of posterior probability is already demonstrated in

[8] and [4].

V. CONCLUSIONS AND FURTHER WORK

Cascaded classifiers are widely spread in automotive app-

lications. In spite of this fact, there has been no research on

probabilistic information derivable on the basis of cascades.

Therefore, these systems are limited in the sens that they

only exploit the binary classification results. In contrast to

that, this paper presents a mathematically founded model

regarding the computation of posterior probabilities on the

basis of such classifiers.

The principle of determining the posterior probabilities of

each sample is similar to the evaluation of a Probabilistic

Boosting Tree. In fact, a cascaded classifier is a degenerated

tree itself. At each node, the information from its descendants

is weighted according to the posterior probability of the
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Fig. 9. Receiver Operator Characteristic curves for the trained cascaded
classifier on an independent test set. The black curve arose from the common
cascade classification method (i.e. a detection occurs, if the corresponding
hypothesis has passed a specific layer called detection layer), the blue
curve originates from the application of a threshold to the calculated
posterior probability of each sample. Note that the false-positive rate axis
is logarithmic.

Fig. 10. Example of the posterior probability for two typical hypotheses.
The detected foreground sample is displayed in green, the corresponding
posterior probability is 0.023. The red sample was discarded with a value
of 0.00012. The detection threshold was chosen to be 0.015. Note, that the
absolute values of the probabilities also reflect the proportion of foreground
samples in the data set.

corresponding strong learner and form an approximated

posterior distribution.

It makes use of the fact that AdaBoost is effectively

approximating logistic regression. This cannot be transfered

directly to the strong learner decision made in cascaded

classifiers: Whereas in Probabilistic Boosting Trees the final

threshold of each individual classifier is θ = 0, in cascaded

classifiers the threshold of each strong learner is adapted

in order to guarantee a certain detection rate. In order to

address this issue, in this paper a mathematical model that

also incorporates adapted thresholds θ 6= 0 is derived.

Furthermore, a cascade has no left sub-trees. In this

work, the probabilities of those leaves are approximated

using empirical probabilities which incorporate the a-priori

knowledge.

The validity of the presented mathematical model is de-

monstrated are based on experimental results using artificial

data and data from a pedestrian detection system. These

results show, that samples with high coverage to a label

receive high probabilities as expected.

The availability of the posterior probabilities is highly

relevant with regard to further development of robust de-

tection systems in automotive applications. As an example,

the probabilities can help to understand typical false alarms

of cascaded classifiers or be used to force a desired detection

rate. Furthermore, the posterior probabilities can supply

information for the search strategy regarding the next time

frame. Last but not least, cascaded classifiers can now be

used as probabilistic detectors. In this context, future work

will be the further development of a tracker stage that

provides the a-posterior estimate concerning the existence

of an object itself.
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