
 

 

 

  

Abstract — Most of the common lane recognition systems are 

designed to work on well structured roads and rely on the exis-

tence of markings. In this paper we present a lane recognition 

scheme for country roads. Our novel approach works even in 

the absence of markings. The parameter estimation is formu-

lated as a maximum-a-posteriori estimation task fusing color, 

texture, and edges. The framework can easily be extended by 

additional features not considered here. The optimization is 

carried out by means of a particle filter. Efficient computation 

schemes allow running the system in video real-time using a 

standard PC. The proposed algorithm can cope with varying 

feature statistics. Practical tests prove the robustness on marked 

as well as unmarked roads. 

I. INTRODUCTION 

HE reliable recognition of the road course and the rela-

tive position of the vehicle is a prerequisite for many 

driver assistance systems such as lane departure warning, 

lane departure protection, and lane keeping. Most systems 

developed until now follow the classical principle introduced 

by Dickmanns [1]. Lane markings are detected and a Kalman 

Filter is used to determine the parameters of a clothoidal 

road model. Much effort is carried out in order to make these 

systems operational if the visibility of the markings degrades. 

Pomerleau tried to circumvent this undesired dependency 

with the RALPH [2] system which has become part of Assist 

Ware’s lane departure warning system. Zhang and Nagel [3] 

classified the road region using texture features and pixel 

locations. 

Particle filter (PF) (see e.g. [4] for an introduction) based 

estimation schemes have gained interest in recent years due 

to their ability to exploit information such as “this pixel is 

more likely to belong to the road than to the background”. 

Such information cannot be used in Kalman Filters. While 

Southall [5] describes a PF-based system that only consid-

ered markings, the approach investigated by Apostoloff and 

Zelinsky [6] fuses markings with color and edge information. 

Recently, Smuda et al. [7] used a PF to extend the visibility 

range of a standard lane recognition system by adding texture 

information in the long range. Meis and Schneider [8] use a 

PF to obtain road course information from the data of a 32 

beam radar sensor. Hummel et al. use stereo, texture and 

color for path planning in the Grand Challenge scenario [9]. 

In the future, lane recognition systems will be required that 

are not only restricted to well marked highways and secon-

dary roads, but work on unmarked or badly marked country 

roads as well. At the same time, these systems should be able 
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to exploit markings when available. For lane departure warn-

ing, we need principles to estimate at least the lateral vehicle 

position using cues other than markings. If one aims at more 

sophisticated assistance systems, the estimation of the road 

course is desirable. 

The most prominent features that support the estimation of 

the road course are intensity, color, texture, edge strength, 

edge direction and height-over-ground. We propose to treat 

the road recognition as a maximum-a-posteriori (MAP) esti-

mation task that optimizes the parameters of a road model 

given an image sequence. This optimization is carried out by 

means of a particle filter for simplicity and the lack of faster 

schemes. The statistics of the pixel features intensity, color 

and texture for the road as well as the non-road area are es-

timated on-line and used to determine the most probable road 

course using a mathematic framework. The edge information 

is also used probabilistically without any threshold that sup-

presses information. 

Section II describes the basic MAP estimation system for 

pixel features and a computationally efficient formulation 

necessary to achieve real-time capability of the PF. Section 

III discusses the use of the pixel features intensity, color and 

texture. Section IV presents a novel generalized distance 

transform and a proper way to exploit the edge direction in a 

probabilistic framework. Results are presented in section V. 

 

 
Fig. 1: Country road with two possible road hypotheses. Ob-

viously, the dark marked hypothesis should result in a higher 

probability than the bright one. 
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II. MAP BASED ROAD RECOGNITION 

Given an image I, the goal is to determine the optimal pa-

rameter vector p
r

of an appropriate road model that maxi-

mizes the probability )|( Ipp
r

. For example, the dark marked 

model in Fig. 1 should result in a higher probability than the 

bright one. In order to maintain maximum compatibility with 

standard lane-marking based systems we stick to the com-

mon clothoidal road model: 
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The meaning of the parameters is as follows. b : road width, 

offsetx : lateral position of the vehicle relative to the road cen-

ter, ψ∆ : vehicle’s yaw angle relative to the road, 0c and 1c : 

curvature and curvature change, respectively and L : look 

ahead distance. 

In the following, we will concentrate on pixel-based features 

such as intensity. According to Bayes rule, for any feature 

image )),((),( yxIfyxF = the probability )|( Fpp
r

 can be 

rewritten as 
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Maximizing of (2) is equivalent to maximizing its enumera-

tor. If we assume that single image points are independ-

ent, )|( pFp
r

 can be expressed by: 
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with 1p representing the probability density of the considered 

feature on the road (foreground) and 0p representing the 

probability density of the feature in the background. 

Obviously, the calculation of these products is computation-

ally expensive and – even worse – numerically unstable. 

Thanks to the Boltzmann statistics, probability and energy 

are coupled according to 
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with a constant β . This relationship allows switching be-

tween both perceptions. Maximization of the product (3) is 

equivalent to minimization of the negative logarithm (en-

ergy): 
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Within the PF framework, this formula has to be evaluated 

for each particle. This fact would prohibit a large number of 

particles, which in turn is desirable to get good estimates. 

However, a close look reveals that the summation can be 

carried out efficiently using line-oriented integral images 

which have to be generated only once. With 
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the summations in (5) are reduced to only one difference for 

the first and two differences for the second sum of eq.5, re-

spectively. 

After normalization to the number of considered pixels the 

computed energy is reconverted into a meaningful probabil-

ity. The fusion of statistically independent cues leads to the 

joint probability 
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where fp denotes the probability of a road model considering 

feature f . 

III. PIXEL FEATURES 

The above estimation works with various features. In the 

following we will consider pixel intensity, texture, and color. 

A. Intensity 

In [9] Hummel assumes the intensities of the road to be 

Gaussian distributed and proposes an equal distribution for 

the non-road area, since no additional a-priori information is 

available. In cooperative situations (as shown in Fig. 1) this 

approach works well. However, in more complex situations, 

e.g. with shadows on the road (see Fig. 2), this assumption is 

ill-suited. 

 
Fig. 2: Unmarked road with shadows that cause violation of a 

Gaussian gray value probability assumption. The statistics 

for foreground and background are taken in the gray and 

black marked areas, respectively. 
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Fig. 3 shows the gray value histograms )( fh of the road area 

(marked gray in Fig. 2) and the non-road area (marked black 

in Fig. 2). Instead of using a parametric model, we use a low-

pass filter and normalize these histograms and use them as 

conditional probability densities. In order to ensure that no 

factor in (3) has a value equal to zero, which would rate the 

current hypothesis as absolutely impossible, we add a small 

constant c . Thus we get 
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for 8 bit images. Fig. 4 shows the “probability images” for 

the road assumption )),((1 yxIp  and non-road assumption 

)),((0 yxIp . 

It is evident that computing the logarithm in (5) can be effi-

ciently implemented by means of a lookup-table. The inte-

gral images are built upon the mapped log-images. 

 
Fig. 3: Conditional intensity histograms for the road area and 

the non-road area shown in Fig. 2 

 

    
Fig. 4: Conditional probability images based on intensity. 

Left: hypothesis “road” ( )),((1 yxIp ), right: hypothesis 

“non-road” ( )),((0 yxIp ). The brightness is proportional to 

the probability. 

B. Color 

Whereas roads are usually gray, the non-road area is often 

covered with grass and plants. For this reason, color can help 

to determine the road parameters. It is obvious, that the RGB 

color space is not well suited. We convert the RGB-color to 

the HSI color space and use the hue as a second feature. Fig. 

5 shows a colored road image and the corresponding hue 

channel. This feature is used in the same way as the intensity. 

Unfortunately, tests with today’s automotive qualified 

CMOS color cameras gave less satisfying results than one 

might expect. One reason is that these sensors deliver weaker 

color saturation than consumer CCD cameras. Secondly, we 

did the tests in late fall when all colors were faded out. 

 

    
Fig. 5: Left: original image, right: intensity encoded hue 

 

C. Texture 

Roads are generally less structured than the background. 

Therefore, texture is a good cue for road recognition. Among 

the various ways to measure texture we select the well known 

structure tensor given by 

 

∑ 












=

W yyx

yxx

III

III

N
G

2

2
1

.      (9) 

 

This tensor was already used for road segmentation in [3]. In 

unstructured areas, both eigenvalues of the structure tensor 

are small. At edges, one eigenvalue is large whereas the 

other is small. In textured areas, both eigenvalues have val-

ues significantly different to zero. Following the principle 

used for intensity and color, we compute the histograms for 

the smaller eigenvalue in the road area and the non-road area 

and use them as estimates for the conditional probability 

density functions. This allows the usage of the same mathe-

matics and the fast implementation as described in section II. 

 

    
Fig. 6: Texture is an important information cue for road rec-

ognition. The right image shows the intensity encoded 

smaller eigenvalue of the structure tensor. 

IV. EDGE FEATURES 

Even if markings are missing, at most times the borders of 

paved roads generate visible edges. It is a must to exploit this 

information. If there is no doubt which edge describes the 

road boundary, a standard Kalman Filter approach offers a 

robust and fast estimation and is therefore the favoured solu-

tion. However, on country roads the road edges may be weak 

and ambiguous. In this case, special care is necessary and the 

fusion of edge information with other cues is beneficial. 
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Edge information is only meaningful in a probabilistic frame-

work if probabilities or energies can be derived for each road 

parameter vector. Obviously, the probability should be 

higher (energy lower, respectively) 

1. the closer the expected road boundary is to the 

edge, 

2. the higher the gradient of that edge is, and 

3. the less the direction of that edge deviates from the 

expected orientation. 

The aimed formulation has to meet these three requirements. 

If an adequate energy value ),( yxe  can be given for each 

pixel, the total energy of a certain road hypothesis is com-

puted as 
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A common way for binary correlation is the distance trans-

form (DT, e.g. [10]). Starting with a binary edge im-

age ),( yxg , an image ),( yxDT is generated encoding the 

distance to the closest edge for every pixel. This distance can 

be interpreted as energy, thus fulfilling requirement 1. In the 

one-dimensional case, the DT is defined by 
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with a certain norm, usually 1L or 2L . Fig. 8 shows the DT 

image (left) for the road situation displayed in Fig. 1. The 

disadvantage of this correlation scheme is that it is based on 

a binary edge image which includes a critical threshold. Con-

sequently, DT is not robust in the sense that small signal 

changes can result in large changes of the output. Moreover, 

sometimes the road edges are so weak that any standard 

threshold would be too high. 

In [11] a generalization of the DT is proposed by adding a 

data dependent term to the optimization: 
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An algorithm that computes this transform in )(nO time is 

presented in the reference. 

For the considered problem, we slightly modified this equa-

tion according to 
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This allows the usage of the energy function uG shown in 

Fig. 7 that has a maximum energy level 0E and a mini-

mum minE  depending on the edge gradient at position zero. 

The width of the function is kept constant in order to get a 

fixed effective range of any edge, independent of its ampli-

tude. This distance transform is computed using a simple 

two-pass algorithm. Since the slope of road boundaries is 

usually far away from horizontal, it is sufficient in the con-

sidered application to compute the DT image one-

dimensionally line by line. Using (3) the obtained total en-

ergy can be reconverted to an applicable probability. 

 
Fig. 7: Energy function uG used for the generalized distance 

transform. The energy minimum depends on the gradient 

magnitude. 

 

This form fulfills the requirements one and two. In order to 

meet the requirement three, we store the phase of the edge 

that causes the minimum energy at each image point. This 

can easily be done while computing the generalized distance 

transform. The probability ϕp of an image point to belong to 

the boundary of a hypothetic road depends on the angular 

difference ϕ∆ between the expected and assigned angle. An 

appropriate formulation is 
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Good results have been obtained for n=5, while n=1 leads to 

a weak rating. In order to avoid costly computations, the 

angular difference is quantized and the probability is stored 

in a lookup-table. 

    
Fig. 8: Gray value encoded distance transforms. Left: stan-

dard DT, black encodes distance zero; white encodes dis-

tance greater 20 pixel. Right: generalized DT gained by (13) 

with .40max =u  

V. RESULTS 

In this section we show results of a PF based road recogni-

tion system using the described features. During initializa-

tion, the particles are equally distributed within the six-

dimensional parameter space. Tests with a reduced parame-

ter space (e.g. fixed tilt angle, no clothoid parameter) were 

less satisfying in practice. Yaw rate and speed are taken from 

inertial sensors. The pixel feature statistics are taken from 

small windows in front of the car and at the image borders. 
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During convergence of the PF the sizes of the statistic win-

dows are increased up to the final size shown in the result 

images. The final decision for the best parameter vector is 

drawn from the 40% best weighted particles. A prior for a 

certain road width can be added. 

The PF usually converges within 20-40 frames. The distribu-

tion of the particles is analyzed in order to verify conver-

gence. In order to achieve real-time performance, the number 

of particles is restricted to 500-1000. 

A. Well Marked Roads 

As mentioned in the introduction, compatibility with the 

common marking based lane recognition is a necessity. If a 

prior on the expected lane width is added, practical results on 

marked winding roads are promising. Fig. 9 shows such a 

road and the overlaid result of the PF. If any lane width up to 

10 m is of equal probability, the PF will usually generate two 

possible solutions: the “correct” one and an alternative with 

double width. The sequence has a length of 20 sec and the 

road parameters are precisely estimated throughout the 

whole sequence. 

 
Fig. 9: Recognition result for a marked road using the fea-

tures intensity, edge gradient and edge direction. 

B. Badly Marked Roads 

The algorithm has been designed to allow road recognition 

on roads with low marking quality. Fig. 10 gives an example. 

The road is tracked throughout the sequence although a car is 

approaching on the opposite lane. Nevertheless, it would be 

beneficial if the occluded image region could be excluded 

from the evaluation by separate detection schemes. 

C. Unmarked Roads 

Fig. 11a and Fig. 11b give two examples for unmarked paved 

roads. In the first image the left border is clearly visible in 

the edge image, whereas the right border is mainly defined 

by texture differences. Fortunately, the probability estimation 

scheme tends to concentrate on features that give clear hints. 

It should be pointed out that the intensity of the road is far 

from a Gaussian distribution. The shown road is robustly 

tracked throughout the whole sequence. 

    
 

    
Fig. 10: 4 frames of a winter country road with the overlaid 

estimated road course. Used features are intensity, edge gra-

dient, and edge direction. 

 

The second image exhibits low contrast and only the combi-

nation of all cues gives satisfying results. Fig. 12 shows plots 

for lateral offset, yaw angle and curvature. The road starts 

with a slight curve to the left, followed by a right curve. In 

the beginning, the driver turned the steering wheel quickly in 

order to prove the correct estimation of the yaw angle. The 

results are comparable to standard Kalman Filter results ob-

tained for marked roads. 

    
Fig. 11a and 11b: Road recognition result on unmarked 

roads. Used features are intensity, edge gradient, edge direc-

tion and texture. 

D. CPU Time 

The parameter estimation consists of three main steps: 

1. preparation, 

2. scoring of the hypotheses, 

3. analysis of the scored particles and prediction. 

While the computational load of step 2 grows linearly with 

the number of particles, step one has to be carried out only 

once. Therefore, our strategy was to move the workload to 

the first step and to make step two as fast as possible. 

According to the features that should be used, step one in-

cludes the computation of  

• gray value and hue statistics and integral images, 

• structure tensor including eigenvalue calculation, 

histogram calculation and integral images, 

• edge magnitude and phase plus distance transform. 

Using Intel’s IPP-support [12], these low-level operations 

are carried out very efficiently on a Pentium IV. As de-

scribed above, the scoring according to (5), (10) and (14) is 

done efficiently by using lookup-tables. 
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It is evident that the road boundaries on unmarked roads are 

not as clearly defined as on marked roads. Therefore it is 

sufficient to work on quarter VGA images. The measured 

CPU times (Pentium IV 3.2 GHz) for preparation and scor-

ing are given in Tab. I. Note that the scoring times depend 

linearly on the number of particles used. 

 
TABLE I: COMPUTATION TIME 

 Preparation 1000 particles 

Gray value 0.5 ms 7.5 ms 

Edge features 8.6 ms 9.7 ms 

Texture 5.7 ms 7.5 ms 

 

 

 
Fig. 12: Estimated offset, yaw angle and curvature for the 

road shown in Fig. 11b. 

VI. CONCLUSIONS 

Road recognition on paved country roads has been success-

fully formulated as a MAP estimation task. Gray value statis-

tics in combination with edge gradient and edge direction 

lead to robust road recognition. Texture and color can addi-

tionally constrain the solution; markings if available are 

taken into account. A generalized distance transform is used 

that – in contrast to the classical transform – is free of any 

threshold. 

The computational load of the used PF approach is signifi-

cantly reduced by means of integral images. On a 3.2 GHz 

Pentium IV up to 1000 particles (road hypotheses) are evalu-

ated in video real-time, if the estimation is based on gray 

value statistics and edge information (gradient and direc-

tion). 

The paper describes a framework that can be extended 

straightforward. The use of map information e.g. local curva-

ture is obvious. Future work will include the exploitation of 

stereo information. 
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