
A Real-Time-capable Hard- and Software Architecture for Joint Image

and Knowledge Processing in Cognitive Automobiles

Matthias Goebl and Georg Färber

Abstract— Cognitive automobiles consist of a set of algo-
rithms that cover a wide range of processing levels: from low-
level image acquisition and feature extraction up to situation
assessment and decision making. The modules implementing
them are naturally characterized by decreasing data rates at
higher levels, because raw data is discarded after evaluation,
and increasing processing intervals, as knowledge based levels
require longer computation times.
The architecture presented in this papers offers a method to
interchange information with different temporal resolutions
liberally among modules with distinct cycle times and real-
time demands. It allows effortless buffering of raw data for
subsequent data fusion and verification, facilitating innovative
processing structures. The paper is completed by measurements
demonstrating the achieved real-time capabilities on our se-
lected hardware architecture.

I. INTRODUCTION

This paper presents a real-time-capable method for an

open integration of modules written by different researchers

to construct software for a cognitive automobile. It illustrates

the chosen hardware architecture and a method to attain a

tight cooperation between image processing (mostly real-

time) and knowledge processing (often non real-time) tasks.

Every software module is able to access the published data of

all other modules, there is no way for an information gap to

arise between two module types, like real-time and non real-

time or image and knowledge processing. So we promote

open data interfaces in order to encourage exchange of

ideas between researchers. At the same time the architecture

guarantees hard real-time for modules requiring it.

A. Requirements of a ‘collaborative research center’

Within the Transregional Collaborative Research Cen-

tre 28 (TCRC28) “Cognitive Automobiles”[1], established at

the beginning of the year 2006 by the german research foun-

dation (DFG), researchers from several research disciplines

work together to develop a theory of machine cognition and

to demonstrate it with the autonomous driving of so-called

cognitive automobiles. For a more precise description see [2].

Every involved research institute has its own set of meth-

ods, tools and software, most apparently shown by the choice

of different programming languages like C, C++, Java, Ada,

and others. A prospering collaboration requires common

standards, interfaces and tools. The results presented here

are the work of the research project C3 within the TCRC28

that is responsible for the hard- and software architecture

M. Goebl and G. Färber are with Technische Universität München,
Institute for Real-Time Computer Systems, Arcisstr. 21, 80333 München,
Germany. {goebl,faerber}@rcs.ei.tum.de

of the cognitive automobile. It has the important mission to

support the overall software integration.

B. Previous approaches

There are several architectures for autonomous systems,

whose main scope of application are autonomous robots.

However, a vehicle in motion on public roads cannot stop

for a prolonged cognition cycle like a robot, because of its

non negligible inertia. Architectures for autonomous vehi-

cles must consider highly dynamic environments and fulfill

stringent real-time requirements.

Well-known middleware concepts like CORBA bring

along an overhead in software having memory and pro-

cessing requirements that are a magnitude too large for our

vehicles. Even derivatives like RT-CORBA are quite resource

demanding.

A system architecture specially designed for visually

guided road vehicles has been proposed in [3]. It is, however,

designed for systems that implement the 4D-approach [4].

An agent-based architecture has been presented in [5], that

has been changed later to support hard real-time control

processes [6]. Both require the application modules to be

integrated into a dedicated framework, that has its own

scheduler and management tools. A case study in [7] consid-

ered the suitability of databases for vehicle control systems.

C. Proposed architecture

This paper presents a comprehensive architecture for

cognitive automobiles. It satisfies the requirements of the

TCRC by providing interfaces for easy integration. It allows

the joint work of real-time and non real-time modules and

provides a temporal decoupling. The underlying hardware

architecture can be easily duplicated at a reasonable price

for every interested research group for simultaneous work.

This contribution is organized as follows: Sec. II gives a

brief functional overview of the architecture, sec. III outlines

the selection of the hardware architecture, sec. IV presents

the developed software architecture including its methods

and applications. Sec. V presents figures and evaluation

results. Sec. VI summarizes our results and concludes the

paper.

II. FUNCTIONAL ARCHITECTURE

Fig. 1 gives a rough overview over the functional ar-

chitecture of the cognitive automobile. It is based on the

architecture proposed in [3] and integrates modules that

implement the mentioned 4D-approach [4]. However the

developed architecture also supports the investigation of

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThB1.35

1-4244-1068-1/07/$25.00 ©2007 IEEE. 734

Gaze control Vehicle guidance

Camera actuators Vehicle actuators

Path planning

Behavior decision

Object detection and state estimation

Object classification

Situation assessment

Own vehicle (physical body)

Radio unitOther sensorsCameras

Feature extraction

Attention arbitration

Mission planning

Sensor data fusion

Fig. 1. Functional architecture

Vehicle actuators

and sensorsplatform

Active camera

Other sensors Platform controller Vehicle controller

Radio unitImage and knowledge processing system

Fig. 2. Hardware architecture

other approaches and allows the combination of them to

reach even better cognitive results.

III. HARDWARE ARCHITECTURE

Fig. 2 shows the overall hardware architecture that will be

used throughout the TCRC28. The dark gray parts form the

physical body of the vehicle (cf. fig.1) and consist of

• various sensors like cameras, RADAR, LIDAR, GPS,

inertial, the vehicle’s odometry, tachometer, wheel

speeds and steer angle, and any future sensors

• the active camera platform as described in [8]

• the vehicle’s actuators like steering, throttle and brake

control

• a radio unit for the communication with other cognitive

automobiles and for remote supervision.

The two medium gray boxes are two embedded systems

that guarantee the lowest possible latencies for reliable feed-

back control loops: The active camera platform is controlled

by a board with a MPC565 processor from Freescale Semi-

conductors. It exhibits the necessary response times needed

for an inertial stabilization of the cameras and offers a rich set

of hardware input/output-interfaces (I/O) to handle all motors

and platform sensors [9]. Commands to the MPC565 are sent

over a dedicated CAN link. Due to its safety relevance the

control of the vehicle actuators is sourced out into another

embedded system, a dSpace AutoBox that is exclusively

operated by the responsible TCRC subproject.

The upper left object in fig. 2 is a PC system that hosts

all image and knowledge processing modules shown in light

gray in fig.1. It must therefore meet sizably requirements:

• Image processing requires fast computation speeds.

• Image acquisition from several cameras at once only

succeeds if there is enough I/O-bandwidth available on

all traversed busses.

• Knowledge processing needs fast access to large mem-

ory areas in order to rapidly find inferences.

• Because most cognitive functions are carried out on this

system a parallel execution is necessary.

• The optimal cooperation of all modules requires an ef-

ficient inter-process communication with low latencies.

• For logging purposes a powerful storage system is

desirable.

The hard- and software architecture of the PC system will

be the focus for the remainder of this paper.

A. PC system architecture

Personal computers (PCs), assembled from commercial-

off-the-shelf (COTS) components, today are the most fre-

quently used systems for machine cognition. The real-time

characteristics of modern multiprocessor PCs have been

sufficiently studied in [10], [11], [12] so we have chosen

to base our hardware architecture on COTS components.

The mass market’s demand for consequent backward com-

patibility conveniently guarantees a smooth migration of our

software onto future systems.

In [13] vision based autonomous driving has been accom-

plished using a cluster of four dual-processor PCs connected

with scalable coherent interfaces (SCI). Due to the low mass

market penetration the price for SCI remains high.

The TCRC needs a system that can be easily duplicated at

an affordable price. So all interested project participants can

buy their own laboratory system that is identical to the real

target system in the vehicle. A multi-PC solution could lead

to an early partition of software modules on different PC,

prohibiting a later rearrangement of modules and shifting co-

operation from software to less flexible hardware interfaces.

B. Opteron system architecture

In [9] we compared modern multiprocessor architectures

and selected the AMD Opteron as the best scaling architec-

ture for growing processor numbers. Fig. 3 shows the internal

architecture of an AMD Opteron system. Each node consists

of a central processing unit (CPU) with its own (local)

memory (RAM) connected by an internal crossbar switch

(X). Dual-core processors (not shown for simplicity) contain

two CPUs. The nodes are networked by hypertransport links

between their crossbar switches. Each hypertransport link

provides a bandwidth of 3.2 · 109Byte/second1 per direc-

tion. The latency for accessing remote memory has been

measured2 to be well below 1µs. Hypertransport hubs and

tunnels (T) connect the nodes to the peripheral busses AGP,

PCI, PCI-X and PCI express. They interlink the peripheral

interfaces (IEEE1394, CAN, other I/O). To sum it up, the

chosen system provides enough I/O-bandwidth to saturate a

considerable number of video streams.

1Our own measurements revealed a usable memory throughput of 3.11 ·
109Byte/second for the local node and 2.62 · 109Byte/second for
a remote node on our AMD Opteron 275HE (2.2GHz, DDR-400 RAM)
executing the following not optimized code, compiled by GCC 3.4.5 with
”-O3” and no further optimizations:
volatile int32 t mem[2000000];

for(j=0;j<100;j++) for(i=0;i<2000000;i++) mem[i]++;

2<110 ns in [14] and bounded at 330ns+130ns·(n−1) for n subsequent
accesses in [15]

ThB1.35

735

CPU

CPU

Node 3

CPU

CPU
RAM

CPU

CPU

CPU

CPU

Node 4

Node 1

trans−
port−

Hyper−

links

TVGA

I/O

T

RAM RAM

HD

1394 1394 CAN

PCI−X/e

Node 2

RAM

Fig. 3. Architecture of AMD Opteron systems

The Opteron in this architecture can be regarded as a

“cluster-in-a-box”. Compared with a real cluster it only

needs infrastructure components once: Storage media, con-

sole devices and power supply. Scalability is yet limited

to the current development in multi-core processors (quad-

core is announced) and boards (quad-CPU boards are already

available on the mass market), so a quad-quad-system will be

soon possible. In contrast to mobile processor families, the

Opteron is optimized for server performance and not power

saving. But there are selected CPUs with a thermal design

power (TDP) of 55 Watt (named ‘HE’) and 30 Watt (named

‘EE’) available.

For the cognitive automobile we currently use two 2.2GHz

dual-core 275HE3 low-power CPUs that consume a total of

just 160W including the mainboard and 4GB RAM. The

complete system costs below $4500.

IV. SOFTWARE ARCHITECTURE

The cognitive automobile can only navigate safely through

real traffic if the timely processing of sensor data and its

translation into actuator commands it ensured. On one hand

this requires efficient algorithms for cognition. On the other

hand this needs a runtime environment to provide the es-

sential computational and memory resources. The following

section points out how we reached that goal. It gives a short

overview and then studies the involved building blocks in

detail.

As basic operating system (OS) the free UNIX derivate

Linux has been selected. Due to its open source nature it can

be easily extended and allows a deep analysis of its internals

and critical execution paths necessary for implementing real-

time functionality. Our integration framework sits mainly on

top of the OS. It serves as interface between all cognitive

modules in the vehicle.

A. Real-time database KogMo-RTDB

Fig. 4 visualizes the developed integration framework. Its

center exposes our real-time database for cognitive automo-

biles named “KogMo-RTDB”. It serves as central hub for

3EE-CPUs are not yet available as dual-core

Object−

detection

Object−

tracking

Road−

tracking

Real−time database for cognitive automobiles (KogMo−RTDB)

Application programming interface (library)

Data

fusion

Situation−

assessment

Behavior−

decision

Mission planning

Image

acquisition guidance

VehicleOther

sensors

Gaze

control

Radio

comm.position

GPS

Recording

Playback

Simulation

modules
Simulation

Visuali−
zation

Super−
vision

ration
Configu−

modules
interface
User−

Data processing modules

Knowledge processing modules

Hardware interface modules

Fig. 4. KogMo-RTDB architecture

information. All relevant information available within the au-

tomobile is published in this database, where it can be openly

accessed by each other module. The only interface between

modules are database objects, so a maximum transparency is

warranted. This kind of communication prevents unnecessary

and time consuming data forwarding between modules from

different cognitive layers.

Below the database there are interface modules whose

only jobs should be feeding raw data from the cameras and

other sensors into the database, and forwarding commands

for the vehicle and camera platform to the actuators. However

it is not strictly forbidden by the architecture for interface

modules to preprocess acquired images. This has to be

negotiated by the participating researchers.

Ideally the image and knowledge processing modules

shown above get their input data from the central database

and publish their results, so the vehicle’s knowledge is

represented in the database. This open concept makes it

easy to visualize the vehicle’s situation just by querying

the database. It also allows us to feed the database with

simulation data, and to record and replay situations.

The KogMo-RTDB needs an easy-to-learn interface, be-

cause it is used by all participating researchers and their

students. We designed an intuitive database-like interface,

available as a shared library, and provide methods to

• publish and delete data

• update data

• search and retrieve data

• wait for updated and new data from other modules.

All data is organized as “objects”, that need not necessarily

be C++ objects. Every database object is structured as

depicted in tab. I: The static block is generated at the creation

of an object, the dynamic block contains the actual user

data that is normally updated in every cognitive cycle. OID
denominates an object identifier that is kept unique and never

reassigned after object deletion. One could use bit slicing like

in IPv6 and 64 bit to maintain uniqueness across vehicles.

PID refer to the internal OID of process objects. TS are

timestamps, see below. DATAuser are nbytes bytes of user

data with a maximum size of nbytes,max bytes.

The definition of new objects is the responsibility of

all project participants. New objects are defined by the

respective TCRC project that wants to publish its results into

ThB1.35

736

TABLE I

STRUCTURE OF A RTDB OBJECT

static information

OID, name, TID, permissions,
nbytes,max, Thistory , tcycle,
TScreated, PIDcreated, TSdeleted, PIDdeleted

dynamic data

TScommitted, PIDcommitted, TSdata,
DATAuser , nbytes

the RTDB. The definitions are organized in a TCRC-wide

source code repository and coordinated in working groups.

There is no need to touch the database internals to support

new objects. The RTDB is responsible solely for managing

the data. Functions to work with the data contents can be

submitted into the source code repository for common use.

B. History buffer

For the data block of every object the RTDB creates

a circular buffer. It manages the temporal decoupling of

accessing modules. We assign it the following amount of

history slots:

nslots =
Thistory

tcycle

+ 1

Thistory denominates the desired time span that old data

should remain available. tcycle is the minimal expected

update cycle time of the object. It must be given at object

creation time and defaults to the parameter tprocess, the min-

imal cycle time of the cognitive module, that accompanies

every database connection.

The KogMo-RTDB features a consequent use of times-

tamps (TS): Every single action within the database is

stamped with the current time and date, every query requires

a timestamp. When performing multiple queries on the same

situation it is important to include the same timestamp, so

the database will yield the corresponding data from the

history buffer, that has been valid at the given point of

time. That method provides slower cognitive modules with

an coherent view at the situation represented in the database

for one particular moment. Due to the nature of the ring

buffer, information older than Thistory will be overwritten,

so the worst case execution time tWCET,reader for a reader’s

algorithm accessing a particular set of n current objects

D = {D1,,Dn} must obey to

tWCET,reader < min
D∈D

{Thistory,D}

It is possible to intentionally retrieve object data from a

past time tage, for example in order to search for patterns

and calculate trends. However that data is only available for

an even shorter certain period of time:

tWCET,reader < min
D∈D

{Thistory,D} − tage

C. Timestamps and clock synchronization

For the resolution of the timestamp different possibilities

have been taken into consideration:

resolution size validity

millisecond 32 bits < 50 days

microsecond 32 bits < 2 hours

nanosecond 32 bits < 5 seconds

nanosecond 64 bits < 585 years

A millisecond resolution is too inaccurate, a microsecond

timestamp will wrap-around to often with 32 bits, so we

decided to use 64 bit timestamps. That allows us to provide a

nanosecond resolution. Even when we use a signed value it is

valid for over 292 years. We use signed absolute timestamps

beginning at 1970–01–014, that will be valid until 2262.

Another benefit is that all produced data including videos

will carry that absolute value, so from just looking at the

timestamp and GPS position we can for example deduce the

season. Because the RTDB adds the current timestamp to all

data committed to the database, we can calculate the runtime

of modules just by looking at their timestamps.

The timestamps’ actual accuracy is yet limited by the

clocks being used. In our system we use the timestamp

counter (TSC), that exists in every x86 compatible CPU

since the Pentium family. The TSC synchronization of all

CPUs is accomplished by the Linux kernel at boot time with

an accuracy that is within the order of transferring a cache

line to another CPU [16]. According to sec. III-B this is

well below 1µs. During the runtime of the system all CPUs

are driven by the same oscillator, so when not using energy

saving techniques that manipulate the cpu frequency scaler,

all TSC stay synchronized.

The external synchronization can be assured by GPS. The

resulting accuracy is determined by the interrupt latency, that

we have measured for our Opteron at 6.2µs-26.4µs.

D. Database locking and consistency

The main intention for the RTDB was to encourage

module developers to publish their data. So it is important not

to disadvantage them when doing so with prolonged blocking

times for write operations. To satisfy this requirement a non-

blocking write protocol similar to [17] has been developed.

This method makes a very efficient use of the circular buffers

mentioned earlier. However it relies on the data writer to

stay within its specified tcycle,object for object updates. If

the writer publishes updates at a higher rate tcycle,writer and

the object has no ‘cycle-watch’-flag set, the valid history time

Tvalid shrinks to

tvalid =
Thistory,object · tcycle,writer

tcycle,object

All database operations are performed in the context of the

calling module, so the copying of data from the database can

be preempted by modules with a higher priority and thus

prolong it by a factor τpreempt. So a requested data block

with an given age tage,object must be valid until the end of

41970-01-01 00:00:00 UTC (the UNIX ‘epoch’) without leap seconds

ThB1.35

737

the copy process whose runtime depends on the object size

nbytes,object:

(tcopy,header + tcopy,byte · nbytes,object) · τpreempt

<
Thistory,object · min(tcycle,writer)

tcycle,object

− tage,object

As tcopy,byte·nbytes,object grows significantly for huge blocks

like video images, it is wise to first examine the data on

the blackboard directly using a ‘direct-read’-pointer given

by the RTDB before asking for a local copy. Depending on

the configured properties of an object it can automatically

activate locks e.g. when allowing more than one module to

update it.

E. Dynamic storage allocation

Another important aspect in database systems is dynamic

storage allocation (DSA) for new objects and its deallocation

after deletion. Standard DSA algorithms are designed for

a good average performance and can expose significant

worst case execution times (WCET). Masmano et al. [18]

proposed a bounded time O(1) good-fit allocator called ‘two-

level segregated fit memory allocator’ (TLSF) that has been

integrated into the RTDB. If an object of the same type

is allocated and deallocated very often, the RTDB allows

the user to keep its allocated storage for faster reuse. That

method ensures optimal results for the steady state.

F. Application programming interface

The KogMo-RTDB provides a C-interface, because this

is a common denominator that most other programming

languages can work with. It contains C++ classes for con-

venience and data generated by them can be read back from

any other language. An older version of the database has

been successfully used in conjunction with a knowledge pro-

cessing module described in [19] and written in Java using

the SWIG toolkit. By using GNAT a successful interface

experiment has been passed for Ada.

Fig. 5 gives a short example in C++ to understand the

simplicity of the programming interface. The given code

retrieves camera images from the RTDB, runs a road-

tracker on it and writes the result back to the database. The

RTDBConn objects opens a connection to the local system

database local:system. On our simulation system we

can run several instances of KogMo-RTDB with differ-

ent names. The objects C3 Image and A2 RoadKloth

have been defined by the TCRC projects C3 and A2.

RTDBReadWaitNext() implements a notification mech-

anism and prevents an inefficient polling. The road-tracker

(not shown here) is described in [20]. Please note the transfer

of TSdata for a correct temporal alignment of the results in

later processing stages.

G. Hard real-time operation system

The kernel of the Linux operating system has not been de-

signed to fulfill hard real-time requirements. However there

are approaches to add real-time capabilities. RTLinux [21]

// Establish a connection to the KogMo-RTDB as a module
// named a2 roadtracker with a cycle time of 33 milliseconds
RTDBConn DBC ("a2_roadtracker", 0.033,

"local:system");

// Wait for an object with an image of the camera video
// provided by the research project C3
C3_Image Video (DBC);
Video.RTDBSearchWait ("c3_camera_left");

// Insert an Road-Object that describes the lanes with
// a model of clothoid segments
A2_RoadKloth Road (DBC, "a2_egolane");
Road.RTDBInsert ()

for(;;) {
// Wait until the next camera image is available and fetch it
Video.RTDBReadWaitNext ();

// Run our road-tracker on the given image
Roadtracker.Run (Video.getImage ());

// Copy the resulting clothoid segments into the road object
Road.setKloth (Roadtracker.getKloth ());

// Transfer the data timestamp
Road.setTimestamp (Video.getTimestamp ());

// Commit the new road data to the KogMo-RTDB and make it
// available for subsequent modules that wait for it
Road.RTDBWrite ();

// Signal own vitality and give a simple synchronization point after
// updating more than one object and for monitoring/debugging
DBC.CycleDone ();

}

Fig. 5. Example application using the KogMo-RTDB API

and RTAI-Linux [22], [23] implement a dual kernel tech-

nique by adding a real-time domain that is strictly isolated

from the standard Linux system. The real-time modules are

run in kernel space, giving them the best possible interrupt

latencies and direct hardware access. On the flipside the real-

time modules have no memory protection, are difficult to

debug and have limited C++ abilities. So it would not be

feasible to ask all TCRC project partners to write dedicated

Linux kernel modules.

A possible solution shows RTAI/LRXT [24]: It allows the

execution of real-time tasks in user space, giving them a

memory protection and better C++ abilities. But debugging

is difficult and it needs its appropriate real-time API.

Therefore we decided to use Xenomai [25], formerly

know as RTAI/fusion: It offers a better integration with the

Linux kernel and can profit from future Linux soft real-

time enhancements. Application are started as ordinary Linux

tasks, having only soft real-time capabilities in a mode called

‘secondary mode’. As soon as they issue real-time calls they

are being switched to the ‘primary mode’ and scheduled

by a real-time scheduler. As long as they do calculations

and issue only further real-time calls they are granted real-

time conditions. It possible to use Linux system calls like

printf() and standard unix debugging techniques, but this

causes them switch back to the non real-time mode. Xenomai

offers a POSIX skin that allows applications that use POSIX

real-time calls to gain hard real-time capabilities. It requires

relinking of the application to intercept the POSIX calls.

ThB1.35

738

KogniMobil−

Module

KogniMobil−

Module

KogniMobil−

Module

RT Nucleus

POSIX
Linux−Kernel + Scheduler

Adaptive Domain Environment for OSs (ADEOS)

Interrupts

Hardware

RTSER RTPAR RTCAN

RTDM

I/O

DMA

RAM

DMA

I/O

RAM

kernel space

user space
unprivileged

Interrupts InterruptsInterrupts

librtdm, libpthread_rt, libc

libkogmo_rtdb_rt

RTDBConn DBC()

KogniMobil−

Module

Fig. 6. KogMo-RTDB real-time architecture

H. Hard real-time architecture for KogMo-RTDB

Fig. 6 shows the hard real-time architecture for the real-

time database KogMo-RTDB. On the top there are the

modules that host the cognitive algorithms, implemented

as standard Linux processes. They call the KogMo-RTDB

API packed into libkogmo rtdb rt. The KogMo-RTDB

operates on top of the Xenomai libraries. On the real-time

side (dark gray) we use the ADEOS nanokernel plus the

Xenomai real-time nucleus and its POSIX skin. For hardware

access we prefer drivers conforming to the real-time driver

model (RTDM) [26]. The system may consist of a mixture

of real-time modules (dark gray), non real-time modules

(light gray) and even modules that alternate (light and dark).

The corresponding colors in fig. 4 illustrate our proposed

assignment.

Note that all cognitive modules are implemented in user

space, protecting them one against each other and allowing

easy supervision by a watchdog module (not shown). If one

module crashes, the watchdog can even initiate an emergency

break maneuver using the last known situation data available

in the database.

For offline experiments and development we also provide

libkogmo rtdb (without rt), a non real-time version of

the KogMo-RTDB. Its main advantage is that it does not need

a modified Linux system. We went even further and took

the binary of a Qt visualization application compiled against

libkogmo rtdb, preloaded it with libkogmo rtdb rt

on a real-time platform and had a successful visualization.

In this case the system switches to real-time mode for

all KogMo-RTDB API calls, making use of all necessary

real-time methods. So the library safely obeys the priority

inversion protocol when using mutexes within the database.

That method ensures that modules cannot violate our real-

time regulations.

V. EXPERIMENTAL RESULTS

We evaluated our architecture by measuring the execution

times of key operations of our real-time database. This

includes the influences caused by our selected hardware

architecture and underlying operation system. We used dif-

ferent system configurations as shown in tab. II: In the ‘idle’

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000

n
u

m
b

e
r

o
f

v
a

lu
e

s
 [

5
6

5
0

2
9

 m
e

a
s
u

re
m

e
n

ts
]

time in microseconds

minimum: 20.00 microseconds

maximum: 36129.00 microseconds

average: 169.80 microseconds

Fig. 7. KogMo-RTDB: Non real-time IPC latency (heady system load)

 0.1

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180 200 220

n
u

m
b

e
r

o
f

v
a

lu
e

s
 [

5
7

4
3

2
4

 m
e

a
s
u

re
m

e
n

ts
]

time in microseconds

minimum: 21.00 microseconds

maximum: 208.00 microseconds

average: 66.48 microseconds

Fig. 8. KogMo-RTDB: Real-time IPC latency (heady system load)

configuration only the module under measurement is started.

No effort has been made to isolate it, there are still some

other applications running (system services and user inter-

face). So the relevant figure is the average time that shows

the low overhead of the architecture. The ‘heavily loaded’

configuration shows the necessity for the real-time variant of

the developed architecture. The system is running a synthetic

compilation of applications in order to stress I/O, memory

and CPU. The measurements depict the efficiency of our

real-time capabilities. In the non real-time mode the system

reveals rising response times, whereas in the real-time mode

the systems responds within certain bounds. The operations

we evaluated are inserting and deleting whole objects, and

reading and writing object data. Additionally we measured

the time between the update of object data by one module

and the notification and data retrieval by another module

that is subscribed to object changes. This characterizes the

latency time for inter-process communication (IPC). Fig. 7

shows the histogram for the distribution of IPC times under

the given system load within the non real-time configuration,

fig. 8 contrasts these times with our real-time configuration.

Regarding these figures our system architecture offers a low

overhead in all configurations and is able to guarantee real-

time conditions even in heavily loaded situations.

ThB1.35

739

TABLE II

MEASURED EXECUTION TIMES FOR KOGMO-RTDB OPERATIONS

system configuration

non real-time real-time
idle heavily loaded idle heavily loaded

operation measured execution time in µs
average min. max. average min. max. average min. max. average min. max.

insert object 60.5 53 154 122.5 39 93109 45.3 38 77 75.6 38 273
delete object 5.2 4 28 18.5 4 41250 9.0 8 20 18.5 8 131
read object 4.6 4 16 17.0 4 10721 5.2 4 18 16.8 4 62
write object 8.3 5 51 22.6 5 181681 10.3 8 28 25.6 6 134
receive notification 29.6 23 241 169.8 20 36129 31.6 27 96 66.5 21 208

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented a comprehensive architecture for cognitive

automobiles. A PC system delivers the necessary computa-

tional power, that at the same time meets our latency time

requirements. We selected an extensible real-time operation

system that we use to combine hard and soft real-time tasks.

We developed a real-time database that provides transparent

interfaces between modules for cognitive processes. It suc-

cessfully serves as an integration platform for a TCRC, a

locally distributed research center. It has been well adopted:

Participants successfully created interfaces to existing ap-

plications like a vision system, a simulation environment,

a behavior generator and a vehicle controller. It has been

deployed in our vehicles and also used for simulations. Even

a suitable 3D visualization application has been developed.

B. Future Works

Future work will make use of the observation capabilities

of the KogMo-RTDB: The execution times of modules can

be read directly from the database and used for developing

a scheduling strategy. The OS scheduler will be modified to

enforce the strategy, profiting from the non-blocking kernel

access to all published data. We also work on real-time image

capture methods that conform to the real-time driver model.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge support of this work

by the Deutsche Forschungsgemeinschaft (German Research

Foundation) within the Transregional Collaborative Research

Centre 28 ’Cognitive Automobiles’. We also thank our

colleagues for valuable discussions.

REFERENCES

[1] Transregional Collaborative Research Centre 28. [Online]. Available:
http://www.kognimobil.org

[2] C. Stiller, G. Färber, and S. Kammel, “Cooperative Cognitive Auto-
mobiles,” in Proc. IEEE Intelligent Vehicles Symposium, 2007.

[3] M. Maurer and E. D. Dickmanns, “System architecture for autonomous
visual road vehicle guidance,” in IEEE Intelligent Transportation

Systems, 1997, pp. 578–583.
[4] E. D. Dickmanns, “The 4D-Approach to Dynamic Machine Vision,”

in Proc. IEEE Decision and Control, vol. 4, 1994, pp. 3770–3775.
[5] S. Görzig and U. Franke, “ANTS - Intelligent Vision in Urban Traffic,”

in IEEE Conf. Intelligent Transportation Systems, 1998, pp. 545–549.
[6] A. Schmidt, S. Görzig, and P. Levi, “ANTSRT - Eine Software-

Architektur für Fahrerassistenzsysteme,” in Autonome Mobile Systeme

2003. Springer-Verlag, 2003, pp. 44–55.

[7] D. Nystrom, A. Tesanovic, C. Norstrom, J. Hansson, and N. Bankestad,
“Data management issues in vehicle control systems: a case study,” in
Proc. IEEE Euromicro Conference on Real-Time Systems, 2002, pp.
249–256.

[8] T. Dang, C. Hoffmann, and C. Stiller, “Self-calibration for Active Au-
tomotive Stereo Vision,” in Proc. IEEE Intelligent Vehicles Symposium,
2006, pp. 364–369.

[9] M. Goebl, S. Drössler, and G. Färber, “Systemplattform für video-
basierte Fahrerassistenzsysteme,” in Autonome Mobile Systeme 2005.
Springer-Verlag, 2006, pp. 187–193.

[10] J. Stohr, A. v. Bülow, and M. Goebl, “Einflüsse des PCI–Busses auf
das Laufzeitverhalten von Realzeitsoftware,” Institute for Real-Time
Computer Systems, Technische Universität München, Tech. Rep.,
2003.

[11] J. Stohr, A. von Bülow, and G. Färber, “Controlling the Influence of
PCI DMA Transfers on Worst Case Execution Times of Real–Time
Software,” in Proc. 4th Intl. Workshop on WCET Analysis in conj.

with the 16th Euromicro Conference on Real–Time Systems, 2004.
[12] J. Stohr, A. von Bülow, and G. Färber, “Bounding Worst-Case Access

Times in Modern Multiprocessor Systems,” in Proceedings of the 17th

Euromicro Conference on Real-Time Systems, 2005.
[13] R. Gregor, M. Lutzeler, M. Pellkofer, K. H. Siedersberger, and

E. D. Dickmanns, “EMS-Vision: a perceptual system for autonomous
vehicles,” in Proc. IEEE Intelligent Transportation Systems, vol. 3,
2002, pp. 48–59.

[14] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The
Opteron processor for multiprocessor servers,” in IEEE Micro, vol. 23,
2003, pp. 66–76.

[15] J. Stohr, “Auswirkungen der Peripherieanbindung auf das Realzeit-
verhalten PC-basierter Multiprozessorsysteme,” Ph.D. dissertation,
Institute for Real-Time Computer Systems, Technische Universität
München, Mar. 2006.

[16] Sources of the Linux operating system kernel. [Online]. Available:
http://www.kernel.org

[17] H. Kopetz and J. Reisinger, “The non-blocking write protocol: solution
to a real-time synchronization problem,” in Proc. IEEE Real-Time

Systems Symposium, 1993, pp. 131–137.
[18] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: A new

dynamic memory allocator for real-time systems,” in 16th Euromicro

Conference on Real-Time Systems, 2004, pp. 79–88.
[19] A. D. Lattner, J. D. Gehrke, I. J. Timm, and O. Herzog, “A Knowledge-

based Approach to Behavior Decision in Intelligent Vehicles,” in Proc.

IEEE Intelligent Vehicles Symposium, 2005, pp. 466–471.
[20] S. Neumaier, P. Harms, and G. Färber, “Videobasierte Umfelderfas-

sung zur Fahrerassistenz,” in 4. Workshop Fahrerassistenzsysteme,
Löwenstein, Oct. 2006.

[21] V. Yodaiken, “The RTLinux manifesto,” in Proc. of The 5th Linux

Expo, Raleigh, NC, Mar. 1999.
[22] E. Bianchi, L. Dozio, G. Ghiringhelli, and P. Mantegazza, “Complex

Control Systems, Applications of DIAPM–RTAI at DIAPM,” in 1st

Realtime Linux Workshop, Vienna, 1999.
[23] “RTAI - official website.” [Online]. Available: http://www.rtai.org
[24] E. Bianchi and L. Dozio, “Some Experiences in fast hard realtime

control in user space with RTAI-LXRT,” in 2nd Realtime Linux

Workshop, Orlando, 2000.
[25] P. Gerum, “Xenomai - implementing a RTOS emulation framework on

GNU/Linux,” Apr. 2004. [Online]. Available: http://www.xenomai.org
[26] J. Kiszka, “The Real-Time Driver Model and First Applications,” in

Seventh Real-Time Linux Workshop, Lille, Nov. 2006.

ThB1.35

740

