
 

 

 

  

Abstract— Hidden Markov models (HMM) are used to 

identify a vehicle’s manoeuvre sequence and its 

appropriateness for a given urban road driving situation. 

One of the novel aspects of this work has been the 

development of an efficient signal modelling approach to 

form a context-aware, flexible system which proved to 

respond well in urban road scenarios, especially in 

situations where the driver is likely to have an accident 

due to impaired performance. Another contribution has 

been to clarify how HMMs can be used not just to 

recognize vehicle manoeuvres but also to distinguish an 

impaired driver from a normal one in complex driving 

contexts. The system has worked well on simulator data 

and is about to be implemented in the real conditions of 

an urban trajectory.   

 

 

INTRODUCTION 

RIVER  assistance and attention monitoring systems are 

the new focus of active safety research. Attention 

monitoring during highway driving scenarios is being studied 

and state-of-the-art methods for analysing data are employed 

on the data collected during well-designed highway 

simulations or on real roads. [1,2,3,4] However, few such 

studies consider systems for the diagnosis of driver faults in 

urban scenarios, due to difficulties in signal modelling and 

the complexity of possible manoeuvres. The general 

approach requires modelling the signals based on piecewise 

polynomials [5] or Kalman filters [6] and then applying 

larger sequence modelling using stochastic methods such as 

Hidden Markov Models (HMM). Although these methods 

produce a solution scheme for the problem, driver fault 

diagnosis in an urban scenario is not explored using both 

theoretical and experimental techniques coupled with 

sufficient data. Previously proposed signal models indicate a 

quantitative way to express the actual data in terms of 

vectors and coefficients; however, they cannot handle the 

differences amongst the drivers in the data pool. 

We believe that the driver manoeuvre recognition task is 
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crucial if driver assistance systems are to be useful in a 

predictive way. However difficult and complex, if the 

manoeuvres can be segmented into suitable parts 

corresponding to the phases of actual driving activity, 

predicting the sequence of these phases can supply a solution 

for driver assistance systems, as in previous studies [7]. 

Furthermore, if a quantitative measure of the driver 

performance for a particular manoeuvre under examination 

can be derived, these systems can help to diagnose driver 

faults in an urban scenario, allowing safety systems to react 

in time.  

In this study, system architecture in terms of signal analysis 

is proposed and tested with a data base containing twenty 

drivers. Different signal modelling approaches are explored 

and a new graphical method based on local minima and 

maxima is proposed, which takes into account the differences 

amongst drivers. The signals are segmented automatically 

into meaningful phases using this model. Then, the phases 

are recognized and classified by a previously trained 

Artificial Neural Network (ANN). The classes or phases are 

transferred into a code book usable in stochastic modelling, 

namely in training HMMs. After modelling, the whole 

system is tested with samples of good and bad performances 

of the same manoeuvre.  

Here, we will consider the system design, experimental 

procedure and results in order and discuss in the concluding 

section how to extend the work with more sensors and in real 

driving conditions. The aim is to use sound theory and data 

analysis methods to find a practical solution. Therefore, the 

theoretical background in system design is first considered in 

detail, followed by the experimental and results sections. 

I. SYSTEM DESIGN 

Before describing the system architecture in parts, the 

whole system and the signal flow must be understood (Fig. 

1). The signals used in this study are the vehicle speed and 

steering wheel angle (SWA). For the sake of simplicity, only 

these two signals defining the longitudinal and lateral 

movement of the car are considered in this preliminary 

search.  

First, the signals are normalized into a [-1, 1] interval for 

steering wheel angle and a [0, 1] interval for the vehicle 

speed. The signals are then re-sampled into twenty minute 

time spans for easier modelling. This normalisation and re-

sampling comprises the Pre-process step in Figure 1. 
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The second step includes the signal modelling and uses a 

graphical technique exploiting local minima and maxima of 

the signals to segment them into meaningful phases of the 

manoeuvre. Although the graphical model is designed 

through observation, the phase segmentation is executed 

automatically by the algorithm. 

 

 
 

Figure 1. General signal flow and the steps in system design 

 

The third step is the recognition and classification of the 

manoeuvre phases. For this stage, many recognition schemes 

could be used. However, due to the large variety in the 

signals, classification cannot be performed using linear 

approaches. For this reason ANNs have been employed.

 The forth and the final step is to use HMMs to predict the 

sequences of the signals coded in terms of phases which are 

labelled by the ANN. The continuous flow of the signal in 

the system allows autonomous execution which is very 

important if the system is to be applicable in practice. 

 

 

A. Signal Characteristics and Modelling 

For the sake of simplicity, the procedure will be explained 

using only the ‘Right Turn’ manoeuvre signal to prove the 

concept. A well-performed ‘Right Turn’ and an impaired one 

can be seen in terms of steering wheel angle in Figure 2 and 

speed in Figure 3, broken manually into four phases 

(preparation, manoeuvre and recovery). 

A bad and good signal is assessed depending on the ability 

of driver to keep the lane when he/she is manoeuvring. When 

the lane deviation was minimum the steering wheel angle and 

speed signals followed a characteristic pattern as shown with 

solid lines  in Figure 2 and 3. 

 

 

 

 

 

 

 In the preparation stage the speed should be reduced and 

the angle must be constant, during the manoeuvre the speed 

should be kept minimum and the steering angle must be 

reversed smoothly without jerky movements. If Figure 2 and 

3 is looked closely these observations hold for solid lines 

presenting good manoeuvres and not true for the dashed lines 

representing the bad performance.   

 
Figure 2. Comparison of a good and bad performance in steering 

wheel angle signal separated into 4 phases 

 
Figure 3. Comparison of a good and bad performance in speed 

signal separated into 4 phases 

 

The aim of signal modelling is to take the signal 

characteristics into account and segment the signal into 

phases automatically. Initially, conventional methods are 

applied and they indicate a trend in the manoeuvres common 

to the drivers. Piecewise polynomials are used to examine 

their potential in segmenting the signals automatically. 

However, the coefficients and break points as piecewise 

polynomials do not indicate any method of separation, but 

help to observe the same trend for the same manoeuvre 

amongst the drivers studied. (see Figure 4) 
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Figure 4. Piece- wise polynomial coefficients for SWA of two 

driver subjects 

 

For this reason, piecewise polynomials are used to observe 

the trends and a generic manoeuvre is formed using them to 

define the shape of the signal in terms of local and global 

minima and maxima. For the actual segmentation below, 

rules are derived from the generic signal and used to segment 

the test signal automatically. 

Graphical Segmentation Rules: 

• First two seconds are for initial preparation (P1) 

• After first 2 sec find the first  local maximum: 

between t=(2-local maximum 1) is preparation 

phase 2 (P2) 

• Find the second local maximum after the global 

minimum: Between t=(local maximum 1-local 

maximum 2) is manoeuvre phase (M) 

• Between t=( local maximum 2- 20) is the recovery 

phase (R) 

The segmented phases for the whole database can be seen in 

Figure 5 depicting the first and third phases of the ‘Right 

Turn’ manoeuvre. This shows the variability of the signal 

phases within the ‘good’ performance class. .From this point 

on the segmented phases database is used rather than the 

whole signal database. In preparation of this database, the 

good and bad performance examples are separated as well to 

test the whole diagnosis system with different cases at the 

end.  

 

 
Figure 5. Phase 1 and Phase 3 of the ‘Right Turn’ manoeuvre 

showing only the good performances for twenty drivers 

B. Classification and Recognition 

After segmenting the signals into manoeuvre phases, a 

classification and recognition algorithm is needed to label 

them. The classification algorithm has two important roles in 

the whole structure. The first role is to recognize the 

different phases of the signal when it is coming from a data 

stream, and the second is to classify them in such a way that 

the labels of the classification can be used in the next step. In 

sequence modelling, which comes after classification, a code 

book representation of the phases is needed and the accuracy 

of the classification algorithm is very important in getting 

‘realistic’ stochastic models.  

The classification algorithm is thus chosen carefully to 

handle the variation in the common pattern in terms of time 

shift and magnitude changes. These changes are inherent in 

such data-driven systems and any algorithm chosen should 

be able cope with them at an acceptable level, to give correct 

classification percentages of 95% and higher. Due to 

variances, time shifts and magnitude distortions of the 

signals, the classification problem cannot be handled by 

straightforward linear methods. For this reason an ANN is 

trained using 35 correctly performed manoeuvre examples. 

The feed-forward, multilayer perceptron neural network 

architecture (MLP) is used, with back-propagation error 

learning. The network contains 3 layers of neurons in a 10-5-

1 configuration and uses a Levenberg-Marquard learning 

algorithm . The training curve of the network can be seen in 

Figure 6.  
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Figure 6. ANN training curve showing the convergence of the 

training process to performance goal of error=0.015 after 47 

training epochs  

 

The trained network is tested with another set of 35 ‘good’ 

manoeuvres selected randomly from the database and the 

performance of the network can be observed in Figure 7. The 

phases of the manoeuvres are assigned to output levels of [1-

4] in order and the network is able to classify them correctly. 

The class number 1 corresponds to preparation phase 1, 2 to 

preparation phase 2, 3 to manoeuvre and class 4 to recovery 

phase. 

 
Figure 7. ANN output vs. ground truth signal 

 

A second ANN is trained in the same way to classify bad 

performance examples of the same manoeuvre, with outputs from 5 

to 8, representing the same phases of P1, P2, M and R. 

C. Sequence Modelling and Hidden Markov Models 

In this section, HMMs are first described briefly before 

being applied to the particular problem under investigation. 

 

Part1. Theoretical Background 

HMMs are probabilistic tools for modelling time series 

data [8]. The foundation is a stochastic Markov process 

consisting of a number of states and transition between them. 

At discrete time intervals, the Markov process moves from 

one state to another according to a set of probabilities. State 

changes in the Markov process are hidden from the user. 

 

Discrete HMMs can be characterised by: 

• A set of distinct states S={Si} with qt denoting 

a state at time t, with number N 

• The initial state distribution П={ Пi} 

• The state transition probability distribution 

A={aij} 

• Each state can produce one of M distinct 

observation symbols from the set V={Vi} 

• The observation probability distribution 

function in state j, Bj 

 

Therefore HMMs can be written in the form of a vector 

λ={N,M,A,B, Π}. There are methods to calculate the 

probabilities mathematically but they will not be dealt with 

here. An extensive explanation of how HMMs work can be 

found in [8, 9]. 

 

Part2. Application 

A HMM is used here in a bottom-up rather than the top-

down approach used in [10]. The top-down approach uses 

HMM modelling to find ‘drivemes’, (named after the 

‘phonemes’ used in speech recognition) and employs a 

hierarchical approach to establish the basic construction 

units of the manoeuvres. It is an exploratory method. 

However, we use HMMs in this case to recognize the 

manoeuvres and the model is built from bottom to top level. 

The basic construction units are identified by graphical 

signal modelling and by the ANN, manoeuvres being built 

using these units. 

The sequence of the phases in a certain manoeuvre is 

considered as a chain of events, which are probabilistically 

connected. To test our initial system design, the ‘Right Turn’ 

manoeuvre is modelled using a code book of length four 

symbols. These are Preparation 1, Preparation 2, Actual 

Manoeuvre, and Recovery coded as a 1 2 3 4 chain having 

the same labels as the classification algorithm. This chain is 

nearly deterministic because the states are physically 

connected and they have to follow each other in a certain 

manner. Bad performance of the same manoeuvre is coded as 

5 6 7 8 chain. The transition between consecutive states is 

allowed with a transition probability. Additionally, transition 

between a ‘bad’ manoeuvre phase and ‘good’ manoeuvre 

phase is allowed in the model as long as they are consecutive 

events. The transition matrix A is designed to represent all 

these possibilities and can be seen in equation (1). 
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The columns and rows of the transition matrix A represent 

each state from 1-8: the first half (1-4) representing ‘Right 

Turn’ manoeuvre phases in chain form indicating good 

performance, and second half (5,8) representing the same 

manoeuvre phases but with bad performance. 

 

pp: probability of transiting into next phase staying in 

good performance: e.g. A (1,2) : P1(good)�P2(good) 

pq: probability of transiting into next phase changing from 

good to bad performance: e.g. A(1,6) : P1(good)�P2(bad) 

qq: probability of transiting into next phase staying in bad 

performance: e.g. A(5,6): P1(bad)�P2(bad) 

qp: probability of transiting into next phase changing from 

bad to good performance, e.g. A(5,2): P1(bad)�P2(good) 

 

The emission matrix B will be an identity matrix, since the 

states and observations are the same for our model.  

The application of the model to identify real sequences is 

a reverse engineering approach, which gives insight into 

development of a quantitative performance measure. The 

real sequences are used to predict the transition matrix 

probabilities associated with a particular driver, using a 

Viterbi algorithm (a method of finding the most likely 

sequence of hidden states that result in a sequence of 

observed events). These probabilities are then interpreted as 

performance index, i.e. a high pp value indicates that a driver 

tends to stay within the good performance range, whereas a 

high pq value indicates that the driver tends to change from 

good to bad performance in successive phases. A higher 

value of qq means it is more probable that the driver will 

operate in the bad performance range for a longer time, 

whereas qp indicates the possibility of shifting to the good 

performance region. If the probabilities of pq and qp are 

equal or close enough to each other, the driver has an 

inconsistent behaviour, which is also considered as bad 

performance. In the light of this interpretation, a 

performance value is derived from equation (2), using these 

identified transition probabilities. 

[ ] [ ])4..1(1)4..1((1)4..1()4..1( =−+=−+=+== ipqiqqiqpippP  

(2) 

II. EXPERIMENT 

The data were collected during controlled experiments on a 

range of driver subjects in a vehicle simulator, with several 

sensors are attached to the system. However, only speed and 

steering wheel angle signals were utilised for the preliminary 

research. Twenty subjects with different levels of driving 

experience participated in the experiment. Therefore, sets of 

good and bad performance data were obtained for use in 

building a data driven system and testing it. The urban 

driving scenario used contained the following events: 

 

• Right Turn/ Left Turn/UTurn 

• Roundabout 

• Emergency Brake /Reversing 

 

All these events were taken as manoeuvres and subjects were 

asked to repeat the manoeuvres at least five times.  

III. RESULTS  

The manoeuvres were modelled and classified as described 

above and a code book for the HMM was formed. It was 

observed that the HMM was able to predict the manoeuvres 

and also was able to give a quantitative measurement of 

driver performance. In order to visualise different driving 

performances a 2000 length sequence is simulated with  

(i) Good performance [pp=0.9, pq=0.1, qq=0.1, qp=0.9], 

P=3.6 

(ii) Inconsistent performance [pp=qq=pq=qq=0.5], P=2 

(iii) Bad performance [pp=0.1, pq=0.9, qq=0.9, qp=0.1], 

P=0.4 

The results of the simulated sequences can be seen in Figures 

8, 9 and 10. 

 
 

Figure 8. Good Performance with P=3.6, the driver performed the 

manoeuvres mostly in 1-4 range representing good performance 
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Figure 8. Inconsistent performance, P=2 

 

 
Figure 9. Bad performance, P=0.4, the driver is mostly 

performing in the bad performance area between [5-8] 

 

IV. CONCLUSION AND FUTURE WORK 

In conclusion, a different approach has been taken to 

model the driver manoeuvres in an urban road scenario. The 

approach has been demonstrated by examining the method 

step by step over one type of manoeuvre. HMMs are found 

to be promising in terms of modelling the manoeuvres once 

they have been broken down into phases corresponding to 

the physical meaning of the manoeuvre.  

This study is part of the development of a larger system 

design for driver assistance and vigilance monitoring, which 

aims to fill the current gap in solutions for urban driving 

scenarios. In order to exploit fully the potential of the system 

described here, an extensive database containing more 

manoeuvres should be constructed. For this database real 

road experiments will be arranged, including more sensory 

channels. If driver movement and eye gaze signals can be 

included in the prediction of the algorithm, it is believed that 

the system will become less prone to false diagnosis and will 

be more accurate in its prediction of safety risk.  

Future work includes constructing the new data base from 

on-road urban traffic environments containing at least twenty 

different drivers with different levels of driving experience. 

It is also promising to include dynamic time warping idea to 

better synchronise different signals from drivers and 

eliminate the non-linear time shift effects which are 

deteriorating the recognition performance. 

The second important part of future work is to include 

vision-based systems and fuse this information with 

measured vehicle dynamics to get a better prediction of the 

planned manoeuvre.  
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