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Dpto. Teorı́a de la Señal y Comunicaciones, Universidad de Alcalá
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Abstract— In many traffic sign recognition systems, one of the
main tasks is the classification of the shape of the blob, which
is intended to simplify the recognition process. In this paper,
we have developed a new shape classification algorithm based
on Support Vector Machines classifiers and the FFT of the
signature of the blob. The FFT of the signature yields invariance
to object scalings and rotations. Furthermore, the FFT is the
vector input to the classifier. This classifier is trained to cope
with projection deformations and occlusions.

The algorithm has been tested under adverse conditions, such
as geometric distortions, i.e. scaling, rotations and projection
deformations, and occlusions. The experimental results show
good robustness when the system is working with real, outdoor
road images.

I. INTRODUCTION

Automatic road sign detection and recognition have been
studied in several works recently [1]–[4]. Recognition of
traffic signs is an important issue for Driver Assistant Sys-
tems and unmanned vehicles. They can also be used as an
inventory system in order to get a complete catalog of all the
existing traffic signs in a particular road. Furthermore, these
kind of systems can yield information about their state and
condition.

A. System overview

In figure 1 we can see the block diagram of a typical
traffic sign recognition and tracking system, like the one we
have developed. Although the system is mainly intended to
work off-line, that is, a road sequence has been previously
recorded and stored, and processed later, the system can be
easily used as a real time system with the use of specialized
hardware to cope with the real time requirements.

The system consists of four main blocks. The segmen-
tation is the first step, which is designed to separate the
objects of interest, in this case the possible traffic signs,
from the background. Although many techniques have been
proposed, most of them use color information to achieve the
sign segmentation. For instance, for the Spanish traffic sign
set, the most appropriate segmentations are based on red,
blue, white and yellow colors. The output of this block is the
list of blobs obtained from the computation of the connected
components of each segmentation mask.

The shape classification block performs the identification
of each blob according to its shape. As it will be seen later,
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Fig. 1. Block diagram of a traffic sign recognition and tracking system.

in our case, these shapes are the triangle, rectangle, circle
and semicircle.

The following step is the recognition of the meaning of
the sign according to its shape, previously computed, and its
content. The last step performs the tracking of the recognized
signs using the information obtained from the current image,
and information coming from the previous images of the
sequence.

The algorithm described in this paper is related to the
shape classification block in figure 1. The input to this
block is a list of connected components computed from the
different segmentation masks obtained on the segmentation
block. The output will be the same list of blobs updated with
the shape for each blob.

II. SHAPE CLASSIFICATION

The goal of the shape classification step is the identifica-
tion of the shape of all blobs obtained on the segmentation
block. For the traffic sign recognition problem, in our case
for the Spanish traffic sign set, these shapes are typically the
equilateral triangle, the square and the circle. Besides, we
have added the semicircle, since for some signs, specially
those from the “end of prohibition” group, the segmentation
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step generally divides the whole circle into two similar
semicircles.

In this work, the classification is achieved using a pat-
tern recognition module based on Support Vector Machines
(SVMs). The input will be the absolute value of the FFT of
the signature of the blobs as defined and explained in section
II-A.

A. Blob Signature

The signature of the blob is an unidimensional represen-
tation of the contour of an object, and can be generated in
several ways [5]. In this work, we will define the signature
as the distance from the mass center of the object to the edge
as a function of the angle. The mass center can be computed
from the moments of the blob according to:

(xc, yc) = (m10/m00,m01/m00) (1)

where m00 is the area of the blob, and m10 and m01 are its
first order moments. In figure 2 we can see the theoretical
signatures for the four different shapes we have taken into
account in the traffic sign recognition problem.

The signature allows the simplification of the bidimen-
sional representation of the contour of the blob into a unidi-
mensional one, which is easier to analyze using common
signal processing techniques. The main limitation is that
the signature is an accurate representation only for convex
objects with a not so high eccentricity [6]. If this is not
the case, the signature may not be a precise representation
for such objects. Note however, that for the traffic sign
recognition problem, the shapes defined are all convex and
with a small eccentricity, and so, the signature can be an
appropriate tool for the representation of the considered
shapes.

The main advantage of the use of the signature for the
classification of shapes is its invariance to object scaling and
rotation with little modifications. Object scaling becomes
a signature amplification, that is, if the object is imaged
enlarged by some factor, the samples of the signature get
multiplied by the same factor. A signal normalization can
be carried out to get the scaling invariance property. In this
work, the normalization is performed computing the total
energy of the signal and dividing each sample by the square
root of that energy, so that the total energy of the signal is
equal to 1.

With another modification we can also make the algorithm
invariant to object rotations. Rotation implies circular shifts
on the signature of the object. Taking advantage of the
invariance of the module of the DFT to shifts:

y [n] ⇒ Y (Ω)
y [n− n0] ⇒ Y (Ω) ejΩn0

(2)

we can overcome the problem of object rotation by simply
computing the absolute value of the DFT (AbDFT), using
this vector as the input to the classifier. The computational
complexity can be reduced computing the FFT of the sig-
nature instead of the DFT. This is always possible as long
as the number of samples of the signature is a power of
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Fig. 2. Reference shapes and their signatures.

two. Therefore, the signature of the object is sampled at the
following interval for the angle θ:

∆θ =
2π

2n
(3)

where m = 2n is the number of samples of the signature,
which is a parameter that must be chosen. A small value for
m reduces the accuracy for the representation of the object
through the signature. A large value for m increases the accu-
racy, but also the computational complexity of the algorithm.
For the current work, we chose n = 6, or equivalently, the
number of samples of the computed signature m = 64. Since
we are using the samples of the absolute value of the FFT
(AbFFT) of the involved signatures, and the signatures are
real signals, the AbFFT is symmetric, and so, only half of
the samples is required.
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(a) Different shapes and deformations (b) Opened segmentation errors and occlusions (c) Closed segmentation errors and occlusions

Fig. 3. Training set examples

B. SVMs Classification

The next step is the classification of the AbFFT of the
signature according to the classes we have defined: triangle,
circle, square and semicircle. In previous works [7] we
have performed the classification using a simple difference
classifier. This classifier calculates the difference between
the AbFFT of the signature to be classified with respect to
the AbFFT of the signature of the four classes previously
computed. The class assigned is the one with the smaller
difference. This scheme needs some previous preprocess
of the blobs in order to make it invariant to geometric
deformations; the calculus of the second order moments and,
according to this, an affine transformation to restore the
object to its ideal form. Besides, due to physical occlusions
and segmentation errors, the signature may be incomplete
and some solution must be designed to overcome this lack
of information. In [7] we proposed an interpolation algorithm
to restore the lost information, based on the known samples
of the signature.

In this work we explore the possibilities of the SVMs
[8]–[10] in this task. Although the principles of SVMs are
rigorously explained in [8] we extract here some concepts to
best understand the rest of the paper. The goal of SVMs is to
find a classification function based on some of the training
vectors that are near the classification frontier, which are
known as support vectors. This function is expressed as:

f(x) =
l∑

i=1

αiyiK (xi, x) + b (4)

where x is the vector to be classified, xi and yi are the
support vectors and its associated labels, l is the number of
support vectors and the function K () is known as the kernel,
which allows us to obtain nonlinear decision functions. In the
classification problem, the most general case is when not all
vectors can be completely separated. In this case the SVMs
training problem is formulated as follows:

minimize Φ (ω, ξ) = 1
2 〈ω · ω〉+ C

(∑l
i=1 ξi

)k

subject to yi 〈ω · xi〉+ b ≥ 1− ξi

with ξi ≥ 0 and 0 < αi ≤ C

(5)

where ω is the optimal separation hyperplane and, when

using a kernel, is defined as follows:

ω =
l∑

i=1

αiyiK(xi, · · ·) (6)

as appears in the decision function (4). The ξi values in
equation 5 represent the errors made with nonseparable
vectors and C is an “a priori” constant that gives more or
less importance to errors in the minimization process. The αi

values are obtained during minimization and, in conjunction
with the support vectors (xi), give the optimal separation
hyperplane.

The main idea behind the use of SVMs in this work is
to avoid the preprocessing tasks before classification. This
way, the blob could be classified directly using the AbFFT
samples. The SVMs are known to have a good generalization
ability [10] and thus, with a reduced set of training examples,
a good general classifier can be designed. Therefore the
election of the training set is a crucial point in order to obtain
good classification results.

C. Training set

This section describes how we have arranged the training
examples in order to obtain the best generalization and
classification. We have two options in order to build the
training set. The first one is the use of real images extracted
form sequences taken with a video camera. This option
was abandoned since we do not have total control over the
training process and also we would have to analyze a lot
of images to obtain examples for all the deformations and
occlusions cases we needed. The other option, which is the
one we finally decided to use, is the manual generation
of synthetic images, trying to simulate the same shapes,
deformations and occlusions we can find in real images.

The first step is the manual generation of synthetic im-
ages with the reference shapes (triangle, square, circle and
semicircle) which include some geometric deformations in
order to train “generalized” shapes. Some examples of these
training images are shown in figure 3(a) where triangles,
circles, squares and semicircles appear directly and with
some deformations. Ideally, only these images were needed
to succeed in the classification of the shapes, but in real world
the traffic signs can be occluded by obstacles and, sometimes,
the segmentation step is not good enough to extract the whole
shape, and hence we need more training images to include
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(a) Real image (b) Blue mask
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Fig. 4. Example of rotation.

(a) Real image (b) Red mask
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Fig. 5. Example of projection deformation.

these effects into the classifier. In figures 3(b) and 3(c) there
are some examples of these effects, showing shapes with
some parts erased, some of them opened (shape outside) and
some of them closed (shape inside).

The images shown in figure 3 are only a part of the whole
training set. We used a set composed of:

• 7 triangles, 4 circles, 20 squares and 13 semicircles with
several deformations.

• 30 triangles, 24 circles, 144 squares and 39 semicircles
with various opened occlusions and segmentation errors.

• 15 triangles, 12 circles, 48 squares and 26 semicircles
with some closed occlusions and segmentation errors.

In the training process we used images like those in figure
3, except that in each image there are only one type of shape,
e.g. we have images with only triangles, squares, circles or
semicircles. These images are read, segmented and then the

(a) Real image (b) Red mask

(c) Signature

Fig. 6. Example of occlusion.

AbFFT of the signature of each blob is obtained and added
to the training set. Afterwards, the training with these vectors
is performed using the best parameters for the SVMs. The
details about parameters selection and the implementation
used are postponed until section III.

One advantage of using SVMs is that we can improve
classification performance adding misclassified shapes to the
training set. Thus, our training set may be increased if
necessary. This option must be used with care, avoiding
the addition of too noisy, or too specific examples. The
retrained SVMs will always contain the added vectors as
support vectors.

III. EXPERIMENTAL RESULTS

The experimental results have been obtained using an
implementation based on C language and the LIBSVM
library [11]. The classifier we need must separate four
classes, so then we need a multiclass SVMs. There are
several ways to implement multi-classification with SVMs
[12] but for simplicity we use the “one-against-all” scheme
that is implemented in LIBSVM.

In order to evaluate the algorithm, the first step is the
training of the SVMs, as we have described previously. We
decided to use the gaussian kernel since it offers the best
accuracy with the less number of support vectors. This kernel
is defined as follows:

K (x, y) = e−γ‖x−y‖2 (7)

With SVMs based on gaussian kernels we have two
parameters that must be set prior to the training process.
The gaussian γ must be set, taking into account that a high
value makes the gaussian narrower, and then the SVMs tends
to be specific for the training examples and, consequently,
with poor generalization. A low value for γ makes the gaus-
sian wider, and the generalization is increased. The second
parameter to be chosen is the constant C, that appears in the

WeE1.19

378



(a) Correct classifications (b) Incorrect classifications

Fig. 7. Classification results in an artificial set of natural and deformed images

Fig. 8. Classification results examples in a real environment
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minimization of the SVMs training process (equation 5). It
is known that increasing this value the number of support
vectors is sometimes reduced and, besides, the classification
is improved since the nonseparable vectors are taken into
account to find the decision function.

The faster way to find the optimal parameters for the
SVMs is testing some of them and use those with the best
results. In our case, after using a grid search over C and γ
the optimal values were: C = 100 and γ = 1. With these
parameters the training process gives 167 support vectors,
while the number of training vectors used were 380.

The trained SVMs have been applied to different images
in order to prove the performance of our algorithm. In figures
4, 5 and 6 we can see the computed signature for some traffic
signs extracted from real images. In these images we can see
the effect of geometric deformation and occlusions. We can
also see the noisy nature of the signatures computed from
real images. Nevertheless, we have to pay special attention
to the occlusion problem. According to the definition of the
signature as the distance from the mass center to the edge of
the object, if an occlusion makes the edge disappear, as in
figure 6, the occluded samples will not have a valid value. If,
for simplicity, we set their value to zero, this will suppose a
high frequency component, as can be seen in figure 6, (dotted
line), that is, generally, undesirable. Although a complex
interpolation algorithm can be designed to overcome this
problem, the one proposed in this work is simply take the
value of the previous sample as the value for the occluded
sample. This method is faster than any other algorithm,
while maintains a good performance, as was observed in
our experiments.

In figure 7 we show the performance of the algorithm in
a synthetic image that includes only traffic signs extracted
from real images, where some of them have been projectively
deformed in order to observe the robustness of the process.
In this image the algorithm draws the detected shape over
the image areas that must be classified. We can see that most
of the forms has been correctly classified regardless of the
size or the geometric deformation.

Once the correct performance were proved, the algorithm
was tested in several sequences taken in outdoor environ-
ments. In figure 8 some examples of the results obtained
are shown. In this figure we can see that, in real images,
the segmentation can make appear some areas that are not
actually traffic signs, and so their shapes are classified, as
it would with real signs. This must not be considered as
a failure of our algorithm, since we are only concerned in
shape detection, and subsequent blocks of the system should
discard these false alarms. Anyway, we can say that when
the traffic sign is correctly segmented, the shape is generally
correctly classified.

IV. CONCLUSIONS AND FUTURE WORK

This paper describes a new algorithm for shape classifi-
cation of traffic signs, based on Support Vector Machines,
which uses as input the absolute value of the FFT of the
signature of the blob. The shapes considered are the triangle,

the square, the circle and the semicircle. The use of the
signature of the blob has been proved to be highly invariant to
object scaling and rotations. To deal with camera projection
deformation and even sign occlusions, the Support Vector
Machines are trained with a huge set of samples from each
category, which includes different geometric deformations
and occlusions. Furthermore, the samples were generated
synthetically, in order to improve its performance and in-
dependence of real world images.

The algorithm has been tested with real outdoor noisy
images which includes the different kind of geometric distor-
tions considered, that is, scaling, rotations and projective de-
formation, and occlusions. These experiments have reported
good results in the classification of the shapes of the traffic
signs present in the images.

Our future work includes intensive testing of the algorithm
with new sequences to see problems that may appear and
then add new training images if necessary. New types of
input vectors to the SVMs will be explored, for example,
trying to use the signature directly instead of the FFT. Last,
we want to test other kernels in order to reduce calculation
complexity, trying to maintain the good results.
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