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Abstract— Safe vehicle guidance under human or computer
control requires a thorough understanding of the traversed
environment. Consequently if perception systems are to be
introduced into mass market vehicles as part of driving assis-
tance systems, their proper operation throughout the vehicle
working life is needed. Onboard stereo-vision systems can
provide rich information in terms of range, feature recognition,
etc., hence the interest by car OEMs. System performance
depends on multiple factors like light conditions, algorithms
and the mechanical apparatus. Due to inaccuracies produced
by changes in the system physical properties due to vibrations,
misalignment of fixtures, etc. through the vehicle operational
life a reduction in performance will occur. In this paper, an
evaluation framework to estimate the performance of a vehicle
onboard stereo-vision system in terms of 3D measurements
and re-projection errors is presented. The approach considers
changes that might occur in the system during the vehicle
working life. It includes means to evaluate the self-calibration
process often used to correct the effects of physical changes in
the stereo-vision system. The results provide key information
for the design and geometrical specification of automotive
stereo-vision systems. As the potential physical changes in the
geometric configuration of the camera-pair over the vehicle
life time are difficult to predict, it was necessary to simulate
them to generate families of errors that these might trigger on
the system performance. The results of the observations and
analysis are included; these should assit designers to define the
constraints that needed for the layout of cameras as part of the
design process.

I. INTRODUCTION

For several years passive and active sensors have been
used for obstacle detection and vehicle guidance. Whilst
active sensors such as RADAR and LADAR provide direct
range measurements in a reliable manner, they suffer from
low resolution, limited field of view and cost; nevertheless
they could be very effective for different car applications
and operate in complement to vision-based systems [1].
By contrast range estimations using stereo-vision systems
offer dense images, ample field of views, at affordable
cost. Their constraints, include the matching of features
across images due to image noise [2], [3], [4], [5]. Another
limitation originates in the estimation inaccuracy of the
geometrical and optical parameters of the cameras due to
the calibration process. Further, these parameters will vary
when systems are mounted onboard vehicle platforms due
to motion, vibration, shock and other external factors. Thus,
there will be a performance degradation of such systems
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over their working life. The successful deployment of stereo-
vision systems in mass market vehicles will depend on the
capability of ensuring the same performance despite physical
changes that might occur. In this paper, a framework to
quantify the performance of these systems is presented in
terms of range estimations and re-projection errors. These
are based on a theoretical formulation and extensive use of
simulation techniques for validation purposes. The results are
also used to determine the directions of the displacements
and angles that might affect more the performance of a
stereo-vision system. These are then formulated as a set of
constraints to be taken into account by designers of stereo-
vision systems. The remainder of this paper is organized
as follows: Section II presents the camera parameters and
the criteria used to quantify the system performance. Sec-
tion III details the method developed to evaluate the effects
of parameter deviations. It includes the associated results
from simulation runs. Section IV portrays the self-calibration
method adapted to automotive stereo-vision systems and the
developed evaluation method. Section V concludes the paper
and discusses results.

II. STEREO-VISION SYSTEMS FOR AUTOMOTIVE
APPLICATIONS

A. Principle

A typical stereo-vision system uses a camera pair sepa-
rated by a fixed baseline B to capture synchronised images
from the same scene. The observation of the 3-D scene
produces a parallax effect on the captured images. This
difference is then used to recover depth information from the
image pairs and to generate a disparity map. Figure 1 shows
a typical configuration including the reference frames used in
the analysis. Cl and Cr are the camera centers with reference
frames Rcl and Rcr , where Rv is the vehicle reference frame.
A 3-D point Q observed by the cameras projects into the 2-D
points ql and qr in the image planes. If the camera geometry
is known, the 3-D coordinates of point Q can be recovered
from the projections ql and qr in the image planes, a process
known as 3-D reconstruction.

The system functional description used in this work is
shown in Figure 2; correlation is used to generate the
2-D pair matches whilst the triangulation process outputs
the estimated 3-D points. These processes need a priori
knowledge of the camera-pair geometry to run the associated
algorithms. This a priori knowledge is represented by system
parameters that describe the optical and spatial relationships
embedded in the captured images. The correlation algorithm
searches for a given point ql , in the left image, a similar
point qr, in the right image. This similarity evaluation is
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Fig. 1. Stereo-vision sensor in standard configuration, includes the optical
cameras center Cl and Cr plus their reference frames Rcl and Rcr , Rv is
the vehicle reference frame.

Fig. 2. Data flow diagram for the stereo-vision process.

often computationally expensive [2], [4]. Taking into account
prior knowledge of the system parameters (i.e. both images
are aligned), the search space of the corresponding point
qr can be reduced to a line. If the parameters are incorrect
the wrong search space will be given and the correlation
may fail. The triangulation process reconstructs a 3-D point
Q by intersecting the lines of sight associated to the 2-D
matched points ql and qr. The intersecting lines of sight
presume knowledge of the system parameters, therefore
any parameter variation results in inaccuracies and in a
3-D reconstruction error bias. It can be therefore stated
that other than light conditions, estimation errors of the
cameras parameters would result in accuracy errors in the
3-D reconstruction of the observed scene, or may cause
the system to fail. When stereo-vision systems are mounted
onboard vehicles, variations in the system parameters due to
calibration errors and mechanical rigidity of the system will
occur. In the following sections a new method is proposed
for the evaluation of the output accuracy of a stereo-vision
system for automotive applications. Section II-B details the
(external and internal) camera parameters as well as the
system geometry. Finally Section II-C defines the evaluation
performances.

B. Camera parameters

In this paper, cameras are represented by a pinhole model
with radial distortion. The camera projection model is de-
composed in: Internal parameters which represent the linear
projection function and the non-linear radial distortion. Ex-
ternal parameters which represent the camera poses (position
& orientation) with respect to the world reference frame.
Since there are two cameras, the external parameters can be
re-written in a manner to differentiate the internal geometry
of the stereo-head from its external representation.

1) Internal camera parameters: The projection of a 3-D
point expressed in the camera system coordinates onto the

sensor of a single camera is determined by its internal
parameters. The linear part of the projection function can
be expressed as:

∃α 6= 0,

 αx
αy
α

=

 f /sx f /sx cosθ x0
0 f /sy y0
0 0 1

Qc, (1)

where f is the focal length in mm, sx and sy are the horizontal
and vertical distances between pixels on the camera photo-
sensor in mm, x0 and y0 are the principal point coordinates
in pixel, θ is the angle between the u and v axes, Qc is the
3-D point expressed in the camera reference frame Rc, and
(x,y) are the image coordinates of q. We assume θ = 90◦,
since this hypothesis is satisfied by most modern cameras.
Let fu = f /sx and fv = f /sy, therefore Eq. 1 becomes:

∃α 6= 0,

 αx
αy
α

 =

 fu 0 x0
0 fv y0
0 0 1

Qc. (2)

The function in Eq. 2 is insufficient to model a real cam-
era the effects of short focal lengths or other distortions
introduced by the use of low cost lenses are not included.
These effects can be taken into account by making the
following transformation. Let r2 = (x − x0)2 + (y − y0)2;
the new normalized point coordinates (x̂, ŷ) are defined as
follows:

x̂− x0 = (x− x0)(1+κ1r2 +κ2r4) (3)

ŷ− y0 = (y− y0)(1+κ1r2 +κ2r4) (4)

Video cameras are seldom the same, it is therefore important
to take into account their own internal parameters.

2) External camera parameters: The external camera
model describes the transform of the 3-D point Qw, from
the world reference Rw into a 3-D point Qc, expressed in
the camera reference Rc, this is represented by the matrix
transform Γc

w. The internal model can be applied only after.
Γc

w is described by the camera pose (position and orientation)
with respect to Rw. The 6 degrees of freedom of the pose
are described by the position of the origin and orientation of
the reference frame, i.e. a 3-component vector for the origin
and a 3-vector matrix (or a 3× 3 rotation matrix) for the
orientation. Interest resides in range measurements of objects
in the driving environment with respect to the vehicle and not
with respect to Rw or Rc, therefore a new reference frame
Rv attached to the vehicle is considered. The transformation
from Rv to Rc is defined by:

Qc = Γ
c
v(Qv) (5)

Qv = Γ
v
w(Qw). (6)

Eq. 6 can be ignored because we are only interested in
points relatively to the vehicle frame, thus the 3-D points
Qv are directly considered. To estimate range, each camera
is considered, Eq. 5 is therefore applied to both cameras:

Ql
c = Γ

cl

v (Qv) and Qr
c = Γ

cr

v (Qv). (7)
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Fig. 3. Internal geometry of the stereo-vision system

3) Internal geometry of the stereo-head: If the camera
pose is known with regard to a particular reference frame,
this representation can be made with regard to any other
frame, if and only if the full parameters of the transformation
matrix are known. For the obstacle detection, it is necessary
to know the transformation between the vehicle frame and
each camera frame. The pose of every camera with respect
to the vehicle should be known, however this information
is difficult to obtain unless special techniques are used. If
the internal geometry of the sensor from the stereo-head
position in the vehicle can be separated, it would be easier
to understand the sensor’s behavior. For this purpose a
partitioning can be made by adding a frame Rs attached to
the sensor. The relationship between Rv and Rci (i ∈ {l,r})
can be written by splitting Eq. 7 as follows:

Ql
c = Γ

cl

s (Γs
v(Qv)) and Qr

c = Γ
cr

s (Γs
v(Qv)). (8)

where Γcl
s (resp. Γcr

s ) is the transformation from the stereo-
head reference frame Rs to Rcl (resp. Rcr ), and Γs

v is the
transformation from Rv to Rs.

Fixing the first camera as the stereo-head reference is a
possible choice. Although, having a reference linked to the
baseline seems to be more appropriate as shown in Figure 3).

The baseline B connects the optical centers Cl and Cr of
the both cameras. Let Zci , Ci and V i be the optical axis,
the optical center and vertical axis of the camera i. yl ,
yr, pl and pr represent the yaw and pitch angles of both
cameras, with p representing the relative pitch angle between
both cameras. The following equations describe the internal
geometry parameters of the camera-pair:

b = ‖Cr −Cl‖, B =
Cr −Cl

‖Cr −Cl‖
,

yi = arccos(Zci ·B)−90, ri = arccos(Yci ·B)−90

V i =
Zci ×B
‖Zci ×B‖

, p = arccos(V l ·V r),

where b is the length of the baseline, B is the baseline vector,
yi the yaw angle, r the roll angle and p the relative pitch
angle. All angles are expressed in degrees, × is the cross-
product operator and · the dot product operator.

C. Performance Quantification

To evaluate in a quantified manner the performance of a
stereo-vision system, a measurable set of criteria is needed.
For this purpose, two criteria are defined, namely, 3-D
reconstruction accuracy and reprojection error. They form
a set of independent evaluation variables that permit the
quantified assessment of stereo-vision systems. The first
criterion represents the maximum accuracy of such system
whilst the second represents the compliance of an internal

Fig. 4. 3-D reconstruction error due to yaw variation of the the right
camera.

constraint needed by the algorithms. A third criterion, namely
the parameter deviation, is used for the self-calibration stage.
It is obtained by comparing the estimated system parameters
to the actual system parameters and represents the estimation
error of the self-calibration method.

These three criteria are not linearly dependent and give rise
to different aspects of the system performance. The following
paragrphs explain these three criteria and how to evaluate
them more precisely.

1) 3-D measurement error: The most significant criteria
is the 3-D reconstruction accuracy that can be obtained by the
system. This is quantified by comparing reconstructed points
estimated by the stereo-vision system (measured points) with
a set of points known as the ground truth. The resulting
difference is defined as the 3-D measurement error along the
3-axis. It provides a quantification of the degree of accuracy
of the stereo-vision system. The deviation is expressed as the
Root Mean Square error (RMS) defined for each axis as:

RMSK =

√
1
N

N

∑
i=0

(Ki− K̄i)2, (9)

where Ki is one of the 3-D coordinates (Xi,Yi,Zi) of the ith

ground truth point, and K̄i is the same for the ith estimated
point. Fig. 4 shows the type of 3-D reconstruction error
generated due to changes around the yaw angle in the
right hand camera alone. This will produce errors on the
estimation of depth on the observed scene. In the example a
positive yaw angle means that the image will appear nearer
to the vehicle then what it is in reality (Q and Q̄).

2) Reprojection error : A low reprojection error is
required by the internal process of the stereo-vision system.
It represents the compliance of a geometric constraint used
in the correlation process. It can provide information on the
possible failure of the correlation process and then the subse-
quent entire system failure. That is, left and right images in
a camera pair are acquired at the same time, the cameras
are roughly aligned and their geometrical relationship is
known. This configuration induces a relationship between
both images, called the epipolar constraint. If this constraint
is not consistently verified, either the correlation may fail or
the epipolar constraint has to be relaxed. For the latter, the
triangulation process will be unsuccessful, thus the lines of
sight of the two matching points will not intersect, and no
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Fig. 5. 2-D reprojection error due to pitch variation of the the right camera.

reconstructed point can be determined. In practice, the epipo-
lar constraint is not verified, and triangulation algorithms
return the optimal 3-D point for the given measurements.
Consequently, the image projections of the reconstructed
points do not match the initial measure. The reprojection
error can be expressed in pixels as the distance between the
reprojected 2-D point and the 2-D measure from which it
is issued. For this purpose the Root Mean Square error is
computed for the y coordinates of the 2N points (left and
right images) as follows:

RMSk =

√√√√ 1
2N ∑

j∈{l,r}

N

∑
i=1

(k̄ j
i − k j

i )2, with k ∈ {x,y}. (10)

That is, the reprojection error means that the epipolar con-
straint is not verified. In fronto-parallel case, the epipolar
lines are horizontal, a pure reprojection error along the x-
axis will give a point belonging to the epipolar line. That
is a contradiction for a point that should break the epipolar
constraint. Consequently the value for the RMSx is ignored.
Fig. 5 shows the 2-D reprojection error that occurs due to
variations around the pitch angle of the right hand camera
in the stereo pair. This type of error might produce the
wrong estimations of the obstacle height and thus the wrong
decision could be taken. Since the reprojection error is
induced by inconsistent epipolar geometry, it will inform
whether or not this constraint has been satisfied, though it
does not provide a direct measure of the sensor accuracy.
But, since the triangulation process relies on this constraint,
a hight reprojection error informs about the high probability
of failure of that process.

3) Deviation of camera parameters: This is definied as
the difference between the true and estimated parameters.
Therefore, parameters estimated after the self-calibration pro-
cesses are available. Whilst the deviation of the estimations
with respect to true values does not inform of the 3-D
reconstruction accuracy, it provides feedback that helps to
have a better understanding of error propagation through the
calibration process. In order to facilitate the visualization of
external parameters, we present them with respect to the
frame Rs (c.f. II-B.3) of the stereo-vision system. For the
same reasons, only the focal length will be presented for the
internal parameters.

Fig. 6. Evaluation Process to evaluate the performance of the stereo-vision
system due to parameter deviation.

III. SYSTEM EVALUATION DURING THE SYSTEM
LIFE-CYCLE

Calibration is a very important process in stereo-vision and
should be performed in the factory floor. Once the vehicle is
in operation, it will suffer from strong mechanical vibrations,
changes in temperature or small shocks and thus the spatial
relationship and other camera parameters will vary. Changes
in the spatial relationship between cameras will results in
changes on the calibration properties of the sensor and this
will become invalid. For example, depth estimation errors
would occur. Therefore for a vehicle manufacturer, it is
important to determine the expected errors that might exist
for a given parameter deviation. For this purpose a method
is proposed to observe the potential effects of such changes.
The fundamental question here is: What is the expected error
for a given parameter deviation?

A. Method to Evaluate the Consequences of Parameter
Changes

In order to evaluate the stereo-vision system, the system
inputs and outputs are generated. First, this way we can
control the data as well as the noise which can be added to
the inputs. Second, because the exact ground truth is known,
the estimations obtained by the algorithms can be compared.
Whilst, it could have been possible to use synthetic images
with the algorithms, it was preferred to use numerical data
only in order to overcome search problems.

The three synthetic inputs used are the true parameters of
the stereo-vision system, the true parameters plus a known
deviation, and a set of known 3-D points distributed in the
the near and far zones. By applying the system process over
both sets of data it is possible to obtain the pairs of 2-D true
points, and the pairs of measured 2-D points corrupted with
noise. These are then used to reconstruct the 3-D corrupted
points. The measurement error is obtained by comparing the
corrupted 3-D points with the original ones. The reprojection
error is obtained by comparing the measured 2-D points
obtained by the reprojection of the rebuilt 3-D points. The
block diagram in Figure 6 illustrates the principle as a modi-
fication to the original stereo-vision process described in the
previous section. Because the method is based on runs, each
possible configuration could be tested. However the number
of possible configurations is too high for all to be tested.
For the simulations, a single parameter variation at a time is
taken into account. Consequently configurations having only
the variation of a single parameter are considered. Assuming
that the variations are small and that the function is locally
linear, a combination of multiple simultaneous variations is
less or equal to the sum of the errors obtained from the same
variations are considered independent. Moreover, considering
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Fig. 7. Experimental setup for evaluation purposes. Reference points for
self-calibration are generated for 5.5m ≤ Zv ≤ 30m.

one parameter at a time also allows us to limit the evaluation
to parameters of a single camera, others can be obtained by
symmetry. That is the results obtained for the right camera
can be extended to the left camera. Other specific parameter
variations could be considered, for example, the simultane-
ous variation of the focal-lengths of both cameras due for
example to temperature changes affecting both cameras, but
these are considered as special cases.

B. Experimental Setup

The numerical results obtained depend on the camera
parameters (true and deviated values), but also the 3-D points
used to sample errors. In the results presented, the input and
evaluation values have been fixed to representative ones. The
pair of stereo-vision synthetic cameras used is located behind
a vehicle windscreen. That is at its middle top part, around
the rear view mirror. The baseline (B) of the cameras is
40 cm. The cameras have a focal length of 6 mm for a
1/3” imaging sensor, with a resolution of 640×480 pixels (
f = 800 pix), and radial distortion coefficients set to zero. The
principal point for each camera is placed in the middle of the
image. The vehicle reference frame Rv is defined as being
on the road plan along the vehicle longitudinal axis and the
origin of the vehicle hood as shown in Fig. 7. The cameras
are therefore defined as being at (∓0.2m,1.4m,−1.5m) in
Rv.

C. Results

Whilst different amplitudes for the distortions were exam-
ined in the experimentation phase, in this paper due to space
constraints only deviations by 0.5◦ in yaw and pitch angles
as well as a 0.5% deviation in focal length are used for
illustration purposes. These values are extreme with regard
to the measurements made on a test vehicle. The errors
generated by these three variations are shown in Fig. 8. A
summary of the numerical results of the referred variations
are shown in Table I. They demonstrate how a 0.5◦ deviation
on the yaw angle has a strong impact on 3-D measurement
accuracy, while the reprojection error remains insignificant.
By contrast, a small deviation of pitch angle has a strong
effect on reprojection error while 3-D measurement accuracy
remains acceptable. In the first case, the system returns
an inaccurate measure, whilst in the second the correlation
process may totally fail leading to the entire system failure.
The table also shows that measurement imprecision is more

Fig. 8. 3-D Reconstruction error for (a) yr + 0.5◦, (b) pr + 0.5◦ and (c)
f r +0.5%. Vectors represent the deviation and trips are iso-surfaces of the
norm vector function.

TABLE I
Results of Pitch, Yaw and Focal Length deviations the perception

zones of interest of the stereo-vision system
deviation pitchr +0.5◦ yawr +0.5◦ f ocalr +0.5%

sample dist. (m) 3 30 3 30 3 30
RMSX (cm) 1.03 10.2 22 570 5 265
RMSY (cm) 2.6 14.4 8.7 31.3 1.5 11.2
RMSZ (cm) 2.7 20.8 74.6 1480 13 528

RMSy (pixel) 3.54 3.49 0.11 0.02 0.2 0.04

important in range (depth). The worst case for the loss of
precision occurs when there is a variation around the yaw
angle, in particular for points which are located far from
the vehicle. It should be noted that this miss-calibration
does not lead to a violation of the epipolar constraint which
would result in a large reprojection error. A total of 4800
3-D points were used located at the nearest and furthest
zones, that are detailed as follows. The maximum errors
are for each lane entry are represented in bold. As referred
previously, the results depend very much in the 3-D samples
used in the evaluation of the error. Fig. 8 indicates that the
measured error of a stereo vision system depends on the
relative position of the measured point. For example, the
uncertainty is generally bigger for far away points. It has
been necessary therefore to segmend the perceived space of
20×27m into various zones of interests. Fig. 7 present the
two zones used in the evaluations: the closest one in green
(at 3m in front of the vehicle) and the furthest also in green
at 30m from the vehicle. These zones are the areas of interest
sampled by the grids of 3-D points. As it is emphasize in
table I, small deviation of yaw has a strong impact on 3-D
measurement accuracy, while reprojection error remains non-
significant. At the opposite, a small deviation of pitch has a
strong effect on reprojection error while 3-D measurement
accuracy remains acceptable. In the first case, the system
returns an inaccurate measure, whilst in the second case,
the correlation process may totally fail leading to the entire
system failure.

IV. SELF-CALIBRATION PROCESS

It has been shown in Section III that when the camera pa-
rameters deviate, the system returns corrupted measurements
or even breaks down. For systems to be mounted onboard
mass market vehicles the only way will be to recalibrate the
cameras, most likely based on the corrupted measurements
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rather than using conventional calibration targets due to
the logistics involved [6]. Therefore, a stereo-vision system
equipping a series of vehicle must be able to re-calibrate
itself, or at least to self-diagnose system failure in order to
ensure its usability. One approach is to apply a bundle ad-
justment to the stereo-vision rig in order to effect some self-
calibration. In this paper, the focus is on evaluation method
that identifies potential sources of inaccuracy occurring in
the self-calibration process. This is verified through a set of
simulations similar to those presented in the previous section.

A. Self-calibration method applied to case of an onboard
stereo-vision system

A recent focus of research has been in the area of
self-calibration. The rationale being that it is possible to
calibrate cameras from the data available during use rather
than having to rely on special purpose calibration data. A
versatile and accurate self-calibration method is the bundle
adjustment. Based on a non-linear minimization, it produces
joint parameter estimates and 3-D reconstruction. Basically,
the minimized cost function relies on reprojection error
criteria. Generic methods for bundle adjustment [7], [8] are
not well-adapted to the particular case of automotive stereo-
vision system, notably because the 2 points of view are
close to each other, and the scene configuration (quasi-planar
road) is a degenerate case for these methods. To make the
process efficient, additional constraints should be considered.
[9] chose to add some prior knowledge by placing visible
targets fixed to the car. We do not prefer adding features to
the car but to use properties of the mechanical behavior of
the cameras. The cost function becomes:

α2D

m

∑
i=1

D(q̄c
i ,q

c
i )

2+ ∑
c∈{l,r}

n

∑
j=1

α j(p̂c
j − pc

j)
2+αb(b̂−b)2 (11)

with m equal the number of measured pair of points, n
equal the number of estimated parameters, qc

i is the ith point
projected in the image c, q̄c

i the measure of the same point,
D the Euclidean distance, p̂c

j and pc
j the initial and estimated

parameters for camera c, b̂ and b the initial and estimated
baseline length, and finally α the normalization factors. The
camera model must be specified with a minimum number of
parameters p j. Most of internal parameters are very difficult
to recover with the bundle adjustment. This is the reason why
we evaluate only the focal length. All external parameters are
estimated in the vehicle reference frame Rv.

The reprojection error was introduced based on the as-
sumption of a Gaussian error distribution of the reprojected
points. This assumption is valid when all the matches (cor-
respondences) are correct. However, in our application, we
also need to consider the error caused by false matches. If
we consider these outliers, the error distribution is no longer
Gaussian. This error can be handled in the optimization
procedure by applying robust estimation techniques on the
term ∑

m
i=1 D(q̄c

i ,q
c
i )

2 of Eq. 11, such as M-Estimator [10],
[11].

Fig. 9. Evaluation of the system performances of self-calibration method
facing parameters deviations.

B. Evaluation method extended to systems including self-
calibration process

Stereo-vision systems with self-calibration capabilities are
in general more complex than those with standard fixed pa-
rameter configurations. Therefore it is important to estimate
the benefits brought by self-calibration methods in particular
if these are to be incorporated as part of automotive solutions
in order to ensure the proper operation of applications based
on stereo vision systems. The proposed evaluation method is
summarized in block diagram form in fig. 9. It is formulated
under the same scheme used for the evaluation of standard
stereo vision systems discussed earlier. First, a deviation is
added to particular parameters of the stereo camera pair,
for example, the yaw angle of the stereo-vision system can
be modified to emulate the loss of accuracy either during
assembly or following a vehicle collision. Then, a first set
of points (the blue points in fig. 7) is used to perform the
self-calibration. These points are projected in each image
according to the stereo-vision system deviated parameters
(i.e. as they are). The obtained projections are use to perform
the self-calibration. The resulting system parameters are then
considered as the current state. Once the parameters have
been updated, another set of points (the green points in fig. 7)
is used to estimate the current system accuracy as described
in Sec. III. The reprojection and 3-D error, the distance
between the initial camera parameters and the estimated
camera parameters are considered. This framework can be
used to estimate the maximum error resulting of deviations
on a set of stereo-vision parameters. To analyze further the
benefits of the self-calibration process to coupled deviations
of the parameters, the proposed method can be applied as
sets of deviations generated as a random process on all
the system variables that are susceptible to change. In that
case, sets of random parameters can be generated to allow
a statistical analysis of the benefits induced by the self-
calibration process according to a large number of camera
parameter deviations. In such a case, it should be necessary
to perform a design of experiment analysis.

C. Experiment and Results

The same experimental setup as for the calibration process
is used. The results of the calibration process have shown
the effects on the system performance on variations along
the yaw and pitch angles as well as focal length.

In this experiment, it is assumed that these changes can
be detected and consequently the self-calibration process has
been applied. A very important issue is thus to determine
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TABLE II
Evaluation of the bundle adjustment technique for the variations
presented in Fig. I. 800 points the blue volume of Fig. 7 were
used to self-calibrate the system with σ2D = 0.1pix; evaluation

was made with 4800 3-D reference points at 30m distant (green
zone on Fig. 7).

Deviation pitchr +0.5◦ yawr +0.5◦ f ocalr +0.5%
RMSX (cm) ∼ 0 209.9 56.5
RMSY (cm) ∼ 0 27.6 11
RMSZ (cm) ∼ 0 898 184
RMSy (pix) ∼ 0 3.5 3.4
f l
u× f l

v (pix) 800×800 800×800 800×799.7
f r
u× f r

v (pix) 800×799.9 799.9×799.9 799.9×800.2
b (mm) 399 399 40

p (◦) 0.50 ∼ 0 ∼ 0
rl |rr (◦) 0.06|0.06 −0.08|−0.08 0.12|0.12
yl |yr (◦) 0.95|0.77 −0.22|−0.10 6.24|6.20

how the effects of these changes have been corrected or
reduced once the self-calibration process has been applied.
Application of the formulated performance criteria gives a
very good insight into this issue as demonstrated in Table II.
It summarizes the results of the evaluation. This has been
applied on 800 points within the blue volume in fig. 7. These
were used to calibrate the system with σ2D = 0.1 pixel.
For furthest distance at 30m, the furthest green volume in
fig. 7, 4800 points were used. The results summarized in
Table II indicate that the self-calibration method does not
respond equally. It changes according to the variations. For
example the error due to an angular change around the yaw
axis was equal a RMS error of 1480, after an application
of the self-calibration process, the RMS error became 898.
Whilst there is an overall improvement to 66%, there is still a
substantial error. It should be remarked that a 0.5◦ variation
around the yaw angle might represent a large magnitude,
and that the distance at which the error is calculated, it is
the furthest. The self-calibration results around the variations
in the pitch angle are very good, the 3-D and the reprojection
errors are completely corrected. Self-calibration also corrects
the variation effects on the focal length. Table II shows
also that a RMS depth estimation error of 528 for a 0.5%
variation in focal length becomes equal to an RMS of 184, an
improvement of 34.84%. It is clear that the variations in yaw
are corrected but not sufficiently whilst variations in the pitch
angle are completely recalibrated. This can be understood
as self-calibration seeks parameters that satisfy the epipolar
constraint whilst a yaw variation does not affect very much
this criterion. For a designer of automotive stereo vision
perception systems, this is very important because fixtures
for example have to privilege constraints around the yaw
angle rather than pitch. The table II shows that the presented
method works better against pitch deviation than against yaw
deviation. Since the method minimize the reprojection error
and a pitch deviation leads to hight reprojection error

V. CONCLUSION

The quantitative evaluation of stereo-vision systems on-
board of mass market vehicles has been presented in this
paper. The fundamental evaluation is made by considering
the geometric relationships that exist when a camera-pair

is used for stereo-vision purposes. The method takes into
account the system configuration and variations which might
occur during the vehicle working life. For this purpose
two issues were examined, the effects of variations in the
physical properties of the system and the effects on the
range estimation process, as well as the performance of self-
calibration processes as applied to these variations. Both
results enable system designers to asses what is expected
when confronted with variations but also to assess the perfor-
mance of self-calibration methods. As a result, design rules
can be generated to constraint mechanically the variations
along or around certain directions like in the case of the
yaw angle. The simulations have allowed the exploration of
a large number of possible configurations. This evaluation is
made following two criteria, the first looks into the precision
of the measurement and the second is with respect to the
epipolar constraint necessary for stereo-vision algorithms to
work in a good manner. The results have shown that the
stability of the yaw and pitch angles are very important as the
precision of the measurements depends very much on them.
It was also possible to infer that self-calibration methods can
correct successfully variations around the pitch angle whilst
for corrections around the yaw angle, this is more difficult.
The results are to be incorporated into the design criteria to
be used for the deployment of stereo-vision systems in mass
market vehicles.
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