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Abstract— The need to increase road safety is a major
concern, with millions of road users and pedestrians being killed
in traffic accidents each year. The Centre for Computational
Intelligence (C2i) at NTU has developed an intelligent driving
system based on hybrid fuzzy neural networks, which is able to
park autonomously, drive on highways, and take some decisions
such as lane changing, car following, and overtaking. This paper
presents a new approach to autonomously adapt the speed of a
vehicle by learning from a human driver and using anticipation.
The architecture of the system is a specific fuzzy neural network
realized at C2i: the Generic Self Organizing Fuzzy Neural
Network using the Yager inference scheme (GenSoFNN(Yager)).
Experiments have been conducted in simulation to test the
longitudinal control and the ability of the system to anticipate
curves. Results found are very promising.

I. INTRODUCTION

A world report on road traffic injury prevention has been
published by the World Health Organization, estimating that
1.2 millions people are killed in road crashes each year, and
as many as 50 millions are injured [1]. Projections indicate
that these figures will increase about 65% over the next
20 years. The global cost of road crashed and injuries is
estimated to be US$ 518 billions per year. The causes of
these accidents are attributed to human error, alcohol, bad
weather, heavy traffic or bad infrastructures. Some of these
causes can be managed by measures, but the primary cause
is human error, which is independant with the problem of
road security. Autonomous driving systems have resulted
from researches to decrease the risk of human error.

The Intelligent Autonomous Vehicle focuses on modeling
the human driver in aspects of perception of the environment,
learning and reasoning. While several researches have been
made and proved effective on highways, with simple
scenarios (lane marking, slow changes in curvature, no
crossing, . . . [2] [3] [4]), automated driving in more diverse
and complex environments is still far away from being
implemented. An average person can easily drive in a city
with stops, pedestrian crossing, lane changing, accelerating
or slowing down according to the environment changes, but
trying to automate these tasks raises a lot of problems. Even
on Highways Automated Systems, longitudinal control of
the vehicle uses simple behaviors (such as accelerating until
the speed limit, braking or decelerating if there is an obstacle
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in front of the vehicle, accelerating for overtaking...) but
more complex behaviors, such as anticipating the curves,
have not yet been implemented.
Intelligent Speed Adaptation are systems which can regulate
the vehicle speed on roads [5] [6]. They have been tested
and proved efficient in several countries, but these systems
only react to the speed limit of the road, some more
complex systems being able to adapt their speed to the
road and weather conditions. But none of them can slow
down when the car dangerously reaches a curve, which can
cause the vehicle to go off the road and create an accident.
Though anticipating curves is important for the security of
the driver, very few research has been made on this subject,
this topic being quite innovative in the Intelligent Speed
Adaptation domain.
Driving can be modelled as a continuous decision-making
process involving a set of rules that relate sensory input to
control output. But designing these rules is quite difficult,
so the simplest way is to learn from human expertise for
extracting the rules. Our approach uses a type of hybrid
intelligent system, a Fuzzy Neural Network, developped by
C2i: the Generic Self Organizing Fuzzy Neural Network
mapped with the Yager inference scheme GenSoFNN(Yager).
A fuzzy neural network is a combination of a neural network
and a fuzzy system, which provides advantage of both:
the learning and generalization of neural networks, and
the reasoning strength and ease of interpretation of fuzzy
systems. A simulator, also developped by C2i, has been
used to test the capacity of the GenSoFNN(Yager) to learn
how to drive from a human [7] [8]. Successful manoeuvers
achieved so far include reverse parking, U-turn, as well as
automated driving [9] [10] [11].

This paper is organized as follow: section 2 presents
the structure and caracteristics of the GenSoFNN(Yager).
Section 3 describes how the GenSoFNN(Yager) has been
adapted to autonomously control a vehicle. Results of gen-
erated rules and anticipation are then analysed in section 4.

II. PRESENTATION OF THE GENSOFNN(YAGER)

The GenSoFNN(Yager) is a specific Fuzzy neural network,
based on the structure of the Generic Self-Organizing Fuzzy
Neural Network (GenSoFNN, described in [12]), and using
the Yager Inference Scheme to interpret the fuzzy relations
of the rules.
Section A describes the structure and learning of the Gen-
SoFNN(Yager). Section B introduces the Yager Inference
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Scheme, and the mapping of the Yager Inference Scheme
into the GenSoFNN(Yager) is described in section C.

A. Generic Self-Organizing Fuzzy Neural Network

The Generic Self-organizing Fuzzy Neural Network (fig.
1) is a fuzzy neural network with a generic connectionist
structure [12]. This network is able to automatically generate
fuzzy rules, from a training data set, and has a strong noise
tolerance by using the Discrete Incremental Clustering (DIC)
technique [13].

Fig. 1. Schematic structure of the GenSoFNN(Yager)

The GenSoFNN(Yager) consists of five layers of nodes.
Each input node has a single input, the vector X =
[x1, . . . ,xi, . . . ,xn1] represents the inputs of the Gen-
SoFNN(Yager), and each output node computes a single
output, the vector Y = [y1, . . . ,ym, . . . ,yn5] denotes the out-
puts of the GenSoFNN(Yager) with respect to the X input.
In addition, the vector D = [d1, . . . ,dm, . . . ,dn5] represents
the desired network outputs required during the parameter
learning phase of the training cycle.
The input and output labels in layers 1 and 5 are determined
by DIC [13] during the self-organizing phase. The nodes of
other layers (2, 3 and 4) are created during the rule for-
mation phase. The training phase of the GenSoFNN(Yager)
consists of three phases : self-organizing, rule formulation
and parameter learning. The negative gradient descent back-
propagation algorithm is employed in order to tune the
parameters of its fuzzy sets in label layers [14].

B. The Yager Inference Scheme

The original fuzzy inference scheme extends the con-
ventional modus ponens rule which states that from the
propositions:

P1: IF X is A THEN Y is B
P2: X is A

it can be deduced that Y is B.
The proposition P1 concerns the joint fuzzy variable (X,Y)
and is characterized by a fuzzy set over the cross product
space U ×V . Specifically, P1 is characterized by a possibly
distribution, given in equation 1.

Π(X |Y ) = R (1)

There are two approaches to interpret the fuzzy relation R.
One is based on the conjunctive model of fuzzy relation and
the other one is based on the implication-based model of
fuzzy relation.
The Compositional Rule of Inference (CRI) scheme adopts
the first approach [15]. This is illustrated in equation 2.

µR(x,y) = min{µA(x),µB(y)} (2)

µA(x) and µB(y) are the membership functions of set A and
B.
On the other hand, the Yager Rule of Inference adopts the
second approach, which is based on implication model of
fuzzy relation [16] (as shown in equation 3).

µR(x,y) = max{(1−µA(x)),µB(y)} (3)

It should be noted that both formulae correspond to the
logical transition of P1 interpreted in different ways. The
second formula corresponds to the statement ¬A∪B, which is
essentially the same as A→ B in crisp logic. The implication
based model of fuzzy relation is exactly the core concept that
underpins the Yager Inference Scheme.

C. Mapping of Yager Inference Scheme

The mapping of the Yager Inference Scheme into the
Generic Self-Organizing Fuzzy Neural Network allows the
allocation of the different operations used in the different
layers.
• Layer 1 (Fuzzyfication) : This layer consists of input

nodes, which fuzzify the crisp inputs the network re-
ceive.

• Layer 2 (Antecedent Matching) : The fuzzified in-
puts from layer 1 are then compared against their
corresponding input labels that form the antecedent
section of the fuzzy rules in the GenSoFNN(Yager).
The antecedent matching between the inputs and the
antecedent section is essentially to compute the negation
of membership values of the inputs with respect to the
input fuzzy sets.

• Layer 3 (Rule Fulfillment) : The third layer of the
GenSoFNN(Yager) contains the fuzzy rule base of the
network. Each rule node Rk computes the degree of
fulfillment (i.e. the overall similarity) of the current
inputs with respect to the antecedents of the fuzzy rules
it denotes. In a fuzzy relation, the antecedent sections
of a fuzzy rule Rk are connected by “AND” conjunctive
and therefore operator min is used to compute the
aggregated rule fulfillment of Rk.

• Layer 4 (Consequent Derivation) : Layer 4 contains
output term nodes that represent the output fuzzy sets of
the consequent of the rules in layer 3. Each output term
may be connected to multiple fuzzy rules indicating that
they may have the same consequent. GenSoFNN(Yager)
uses implication-based model of fuzzy relation therefore
conclusions of parallel rules will have to be combined
conjunctively.

• Layer 5 (Output defuzzification) : The output nodes are
responsible for the defuzzification of the derived fuzzy
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Fig. 2. The throttle/brake subsystem scheme

outputs from the GenSoFNN(Yager) before presenting
them as crisp outputs. For each output ym, the derived
fuzzy conclusions for all its output labels are aggregated
using a modified center of averaging (COA) technique
to produce the final output.

III. ADAPTATION OF THE GENSOFNN(YAGER)
FOR CONTROL OF THE VEHICLE

The GenSoFNN(Yager) already proved its efficiency for
highways driving and some tactical maneuvers, such as lane
changing, overtaking, car following, and collision avoidance
[17] [18].
But if lateral control has been a big focus of research during
these last years [19] [20], longitudinal control is still in its
first experiments [21] [22] [23]. The GenSoFNN(Yager) was
used to implement longitudinal control of a vehicle, in order
to autonomously adjust its speed according to the upcoming
curve. The main advantage of using a fuzzy neural network
instead of a classical neural network is the ability to extract
the rule base from the system, and then to understand the
functioning of the network.

A. Implementation of the Longitudinal Control

In order to implement the longitudinal control, two net-
works are used, one for the throttle, and another for the brake.
The inputs used for the both networks are the same: the speed
of the car and an anticipation variable (as shown in fig. 2).
These inputs are based on experiments made on human
drivers, in order to understand what processed information
is acquired while they are driving [24] [25] [26] [27].

The speed variable vary between 0 and 200km/h is linearly
normalized before being fed into the network.
The anticipation variable is used to memorize the shape of
the upcoming curve. When humans are driving, they accel-
erate or brake according to their analysis of the road (they
don’t only use the last image they recorded). Consequently,
a simple sensori-motor control can’t be applied to anticipate
the upcoming curves.
The main idea was to calculate anticipation in a variable,
which is then fed to the GenSoFNN(Yager).

Every time step, the angle of the curve is calculated at a
certain distance of the car (the distance depends of the speed,
as shown in table I).

The returned value is then added to a list, which contains
the description of the shape track for 1.6 seconds. This
list is then used to calculate the anticipation of the curve
(described in algorithm 1). The result value is an angular
speed, normalized between −PI and PI.

TABLE I
THE DISTANCE OF THE CURVE, DEPENDING OF THE SPEED

speed (in m/s) distance (in m)
x < 4.7 5

4.7 < x < 7.8 10
7.8 < x < 10.9 15
10.9 < x < 14.1 20
14.1 < x < 17.2 25
17.2 < x < 20.3 30
20.3 < x < 23.4 35
23.4 < x < 26.6 40
26.6 < x < 29.7 45
29.7 < x < 32.8 50
32.8 < x < 35.9 55

x > 35.9 60

Algorithm 1 Calculate the anticipation variable
anticipation← 0
for i = 1 to length(curve) do

if curve[i > 0]∧ curve[i+1 > 0] then
anticipation← anticipation+ curve[i+1]−curve[i]

time step
else if curve[i < 0]∧ curve[i+1 < 0] then

anticipation← anticipation+ curve[i]−curve[i+1]
tim step

else if curve[i < 0]∧ curve[i+1 > 0] then

if −curve[i] > curve[i+1] then
anticipation← anticipation+ curve[i]−curve[i+1]

timestep
else

anticipation← anticipation+ curve[i+1]−curve[i]
time step

end if
else if curve[i > 0]∧ curve[i+1 < 0] then

if curve[i] >−curve[i+1] then
anticipation← anticipation+ curve[i+1]−curve[i]

time step
else

anticipation← anticipation+ curve[i]−curve[i+1]
time step

end if
end if

end for

Given the algorithm, it is now possible to see if the curve
is soft or sharp (the larger the value is, the sharpest is the
curve), and also to know if this is the beginning or the end
of the curve. At the beginning, the curve become sharper,
then the result is positive, and at the end the curve become
softer, and the result is negative.
Consequently, the vehicle does not react as soon as it
detects a curve, but when a limit is reached (the variable
anticipation become bigger and bigger while the car
approaches a curve). So the variable depends not only from
the sharpness of the curve, but also from the distance the
car is from the curve. This allow the system to have the
shape of the road for the next 1.6 seconds.
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Fig. 3. Training data collection [7]

B. The Driving Simulator

The first simulator used at C2i has been developed and
improved by Toh Mary et al. and has been involved in
many projects [7] [28] [9]. The aim of this simulator was to
provide a realistic environment to experiment on automated
vehicles, using data from a human driver, and then learning
with a fuzzy-neural network.

The main problem with this simulator is that the driving
physics, such as the centripetal force that causes the car to
slip from its turning course during high speed cornering,
aren’t well implemented. Or it is from the physics model
that accurate experimental results can be obtained to justify
the reliability of the GenSoFNN(Yager) to handle the
driving of a real car. TORCS (http://torcs.sourceforge.net),
an open-source racing car simulator, has been chosen and
modified for our purpose.

The simulator is used to collect the training data that
capture different driving maneuvers in a given road scenario.
The drivers use the visual feedback to decide the subsequent
action to be taken. For instance, if the driver see a turn
ahead, he/she might respond by turning the steering wheel
in a certain direction. Figure 3 summarizes the training data
collection of human driving performance. The log file stores
all the actions taken including the sensor information of each
simulation time interval. The information is then used to train
the neuro-fuzzy system within the simulation.
Once the human training set recorded, files are used to train
the network. If the training set is coherent, the system should
be able to automatically drive the car, reproducing the human
driving. The network having a capacity of generalization,
the system shall also be able to manage new situations, as
humans do when they learn to drive: a monitor shows how
to drive on a specific road, but then it can be generalized to
drive on every road.

IV. EXPERIMENTAL RESULTS

This section describes the results obtained with the Gen-
SoFNN(Yager), for the longitudinal control of the vehicle.
Section A describes the experimental setup. Section B anal-
yses the semantic of the generated rules. Section C studies
how the rules are fired in the system, and section D analyses
the results obtained with anticipation.

1 2 3

4 5 6

Fig. 4. schema of tracks used for the tests

Fig. 5. Labels of the two inputs, absciss is the value of the input and
ordinate is the degree of membership

A. Experimental Setup

During the test, 6 tracks were created (as shown in fig. 4).
For the analysis of the generated rules (section B and C),
only track 1 was used, the other tracks being used for the
anticipation test. A driver was asked to drive 3 turns on this
tracks, and data were recorded as described in the previous
section. Then data was used for the learning of the network,
which was able to reproduce the driving process. The aim of
this test was to study the generated rules, which are described
in the following section.

B. Rules Semantic Analysis

There is a total of 12 rules, linked to 9 input labels and 4
output labels. The inputs have two features: the speed of the
vehicle and the degree of curvature of the road. The speed
of the vehicle has 2 fuzzy sets, and the curvature has 7 fuzzy
sets. The throttle output has 4 fuzzy sets.
The fuzzy sets of the antecedent layer described the different
fuzzy values the inputs can have (as shown in fig. 5), we
can attach linguistic terms to these values :
• input “Speed” (S) = {slow, fast}
• input “Angle Curvature” (C) = {straight, soft left, right,

soft right, hard right,extreme right, left}
For the consequent layers, only the centroid of the kernel is
needed, which is given by table II.

Values can be interpreted as follow:
• output “Throttle” (T) = {normal acceleration, slow

acceleration, hard acceleration, no acceleration}
The corresponding fuzzy rule extracted from the rule base
of the throttle system can be formulated with the linguistic
terms as follow:

1) IF S is slow AND C is straight THEN T is slow accel
2) IF S is slow AND C is soft left THEN T is slow accel
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TABLE II
CENTROID OF THE KERNEL

Neuron Centroid
1 0,46
2 0,33
3 0,59
4 0,06

Fig. 6. Rule Firing Strength, absciss is rule number and ordinate is
cumulative strength

3) IF S is slow AND C is right THEN T is normal accel
4) IF S is fast AND C is hard right THEN T is no accel
5) IF S is fast AND C is soft right THEN T is normal accel
6) IF S is slow AND C is soft right THEN T is normal accel
7) IF S is fast AND C is soft left THEN T is fast accel
8) IF S is fast AND C is left THEN T is fast accel
9) IF S is fast AND C is extreme right THEN T is no accel

10) IF S is slow AND C is hard right THEN T is no accel
11) IF S is fast AND C is straight THEN T is fast accel
12) IF S is fast AND C is right THEN T is no accel

The rule base is obviously coherent with the human way
of driving, apart for the left turning (which is normal,as the
tracks have no right turn the system could learn from). Rule
1 shows that if the car speed is slow, and the road is straight,
acceleration is slow. This is due to the fact, that the car speed
is slow on a straight line only at the start (then the car speed
is always fast on straight lines). So when the system start
driving, he first go slowly, and then increases the speed (such
as driver does).

C. Rule Firing Analysis

A study of the rules fired in the network was conducted
to analyze the network ability to maintain the consistency
of the rule base. A concise and consistent rule base is
significant to ensure good performances and a critical
factor when applied to an embedded control system with
limited storage capacity. A consistent rule base is shown by
comparing the proportion of rules actually used compared to
the total number of rules in the network. A consistent rule
base is best displayed by a wide spread of the rules being
fired over the total number of rules for all possible driving
situations. The experimental results for the rule firing
strength throughout the experiment process are summarized
in fig. 6.

The rule base generated by the GenSoFNN(Yager) is
consistent, as all the rules are used (the main rule being
the number 12, and rules 3, 4, 5 and 11 being the auxiliary
rules).

Comparing the rule semantics with the rule firing strength,
the graph illustrates that the first rule is not often used (just
when the car starts the race). The 3 left turning rules are
also not often used, as for the slow and soft right rule (the
car doesn’t arrive slowly on a soft curve). The most used
rule is the number 12, which means that the car often tries
to go fast on right curves, when they are not too sharp (this
rule is the most often used as the car more often drives on
the right curves than on the straight lines).

Fuzzy rules are intuitive to human cognitive process. It
is also very easy to extract the rules of the fuzzy neural
network, and so to understand it, compared to the “black
box” of the neural networks.

D. Anticipation Analysis

1) First test: driving on curves of same radius
During this test, a human was asked to drive on 3 turns tracks
2 and 4, and tests were reproduced on tracks 2, 3, 4 and 5.
This test was done to study the capacity of generalization of
the network (by interpolating and extrapolating the curves
it learned), and to compare the autonomous driver with the
human driver.
After training of the network, the autonomous driver was
able to correctly drive on each of the test tracks. The results
obtained for comparision between the human driver and
robot driver on track 2 (with curves of 90 degrees) are
described in the table III.

TABLE III
COMPARISION BETWEEN THE HUMAN AND ROBOT DRIVER

human driver robot driver
MSE 1.18 2.93

TIME (in sec) 169 164
MAX SPEED (in km/h) 152 128

Anticipation (mean in m) 38 45

Results show that the robot driver can drive faster than the
human driver, without exceeding the limit (130 km/h). The
driver exceeds it, particulary when he is concentrating on
the road, and doesn’t look at the speedometer. The human
anticipation was also really differing in each curve (varying
between 22 to 70 meters), but the robot anticipation is
always around 45 meters before the curve.
The only driving skill the robot driver was not as good as
the human driver was for the lateral driving (the robot was
more driving near the left lane than in the middle of the
lanes), this is shown by the Mean Squared Error (MSE)
which is higher for the robot.
In conclusion, the robot drives in a safer way than the
human driver. It doesn’t exceed the road limit, slows
down graduatly quite in advance and has a smoothly
acceleration/deceleration.
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2) Second test: driving on the 45 degree curves
For this second test, the human drives on a track with 8
curves of the same degree (45 degrees), but with different
radius (50,100,150 and 200 meters, track 6 on fig. 4).
The goal of this test was to see if the robot driver reacts
differently according to the radius of the curve.
Data of the human driver was first recorded, then the network
was trained with these one. Table IV shows the average of
time the driver begins to slow down before arriving in the
curve. Results show that the driver slows down according

TABLE IV
SLOW DOWN PERFORMANCE, ACCORDING TO THE RADIUS

Radius next curve (in m)
200 0
150 32
100 44
50 53

to the radius. This means that the sharper is the curve (i.e.
the higher radius), the sooner the robot driver begins to slow
down.
The results found are the one that should be expected for
a human driver. Coupled with the last test, they are very
promising.

V. CONCLUSIONS AND FUTURE WORKS

Experimental results proved that the GenSoFNN(Yager)
was able to correctly learn how to anticipate curves, and
to adapt its speed according to the shape of this curve.
Semantic analysis of the system was possible due to the
capability of extracting the rule base created by the network.
These tests, though being preliminary results of the project,
are very encouraging for the future work.

Next step of the project is to improve the lateral control of
the system by adding anticipation, such as on the longitudinal
control. For the moment, only longitudinal control has been
developed with this new method, and gave us very promising
results. Improving the lateral control in the same way will
allow the system to autonomously drive on any type of track.
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