
 
 
 

  
Abstract—Vehicles instrumented with location tracking and 

wireless communication technologies (i.e., the so called probe 
vehicles) can serve as sensors for monitoring traffic conditions 
on transportation links. This paper is focused on estimating 
queue lengths in real-time at a signalized intersection approach 
based on the location and time data from probe vehicles that 
may constitute a given percentage of the total traffic. The paper 
also addresses the evaluation of the accuracy of such estimates. 
Using a virtual queuing model and conditional probability 
distributions, new expressions are derived for the variance of 
the estimates to understand how accuracy is affected by the 
percentage of probes in the traffic stream and by the type of 
information collected, which include (i) location of probes in 
the queue and (ii) both the location of probes and the 
times/instances at which they join the back-of-the queue. 
Numerical examples are presented to compare and contrast the 
accuracies of these two cases. The findings and the formulation 
presented in this paper could be used in evaluating and 
designing a traffic monitoring system that relies on probe 
vehicle data for queue length estimation at signalized 
intersections.  

 

I. INTRODUCTION 
HIS paper investigates the estimation of queue length at 
signalized intersections based on data from vehicles 

instrumented with wireless communication and location 
tracking technologies (e.g., GPS). Estimating queue length 
in real-time enables optimal control through efficiently 
allocating the available capacity (i.e., green time) such that a 
defined performance metric is optimized (e.g., minimize 
total delays or minimize the maximum queue length). To 
estimate these performance measures in real time, various 
surveillance technologies are being employed today (e.g., 
inductive loops, video) to measure traffic flow parameters 
(e.g., volume, density) which are subsequently utilized in 
models for delay estimation/prediction. Such signal systems 
are called real-time traffic-responsive or traffic-adaptive 
control systems [1]. However, these detection technologies 
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are not effective in estimating queue lengths. It is hoped that 
as the vehicle-based information collection technologies 
gain momentum, there will be great interest on capitalizing 
on the probe data for traffic monitoring. In order to support 
the development of these applications, research is needed to 
understand how probe vehicle technology could potentially 
improve the estimation of desired parameters. One key issue 
that pertains to the vehicle-based data collection systems is 
understanding the relationship between the market 
penetration (or the percentage of probe vehicle population) 
and the accuracy of the estimated parameters. The 
relationship between the accuracy of the queue length 
estimates and the probe percentage is explored in this paper.  

 It is assumed that probe vehicles can communicate 
(send information) to a roadside unit (e.g., signal controller) 
that uses the data for queue length estimation. The paper 
does not discuss the technologies for wireless 
communication neither the details of the information flow 
and network. It rather focuses on the impacts of such 
technologies on traffic data collection and system state 
estimation. Two important data elements that are assumed to 
be collected include the relative location of probe vehicles in 
the queue and the time instances when they join the back of 
the queue. The use of these data in queue length estimation 
is explained in the subsequent sections.  

Earlier studies on vehicle probes and their application to 
traffic engineering deal with understanding the relationships 
between the market penetration and the reliability of the 
travel time estimates [2]-[4]. Network coverage is also an 
important issue that is addressed in the literature [5]-[7]. 
Due to the complexity of the problem, none of these studies 
develop analytical models or closed form solutions that 
relate the number of probes to the reliability of the estimates. 
Instead, empirical analyses are performed in these studies 
that require data to be generated for numerous scenarios 
with different probe vehicle percentages. Typically, data 
from microscopic traffic simulation models are used for that 
purpose since real-world data with a large number of probes 
to support such analyses are not available.  

In this paper, analytical models are developed to assess 
how queue length estimation is influenced by the percentage 
of probe vehicles in the traffic stream. These models require 
the marginal probability distribution of queue length to be 
known. Even though this distribution may not be readily 
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available, the proposed analytic approach is better than the 
simple empirical approaches cited above, which require data 
to be generated for numerous scenarios. The application of 
the proposed approach is illustrated through numerical 
examples for an isolated intersection with fixed signal 
timing. The arrivals are assumed to follow a Poisson 
distribution whereas the vehicles are assumed to queue 
vertically for simplicity.  

It should be noted that there is a vast body of literature on 
queues at signalized intersections. Since fixed cycle traffic 
light allows a detailed analytical analysis, it has been studied 
by many researchers. One of the earliest studies is by 
Webster [8] who generated relationships for the number of 
stops and delays by simulating traffic flow on a one-lane 
approach to an isolated signalized intersection. In particular, 
the curve he fitted to the simulation results has been 
fundamental to traffic signal setting procedures since its 
development. Miller [9] found an approximation to the 
average overflow queue for any arrival and departure 
distributions. Later, Newell [10] derived an analytical 
approximation to the mean queue length for general arrivals. 
McNeill [11] derived a formula for the expected delay and 
approximate mean of the overflow queue length for general 
arrival process and constant departure rate.  

Other than the studies on the estimation of mean, there 
have been some attempts to obtain the probability function 
for the queue length. Some researchers obtained the 
conditional probability distribution of the overflow queue at 
the end of one period given the queue length at the 
preceding period assuming homogenous Poisson arrival 
process [12]-[14].  Yet some others derived the probability 
generating function (p.g.f.) of the stationary overflow queue 
[15], [16] in the hope of obtaining the probability functions 
for delays and queue lengths. Obtaining a probability 
function from a p.g.f. involves inverting the p.g.f. function 
[17], and this inversion process is quite complicated and 
entails finding complex roots and numerical evaluations of 
parameters [18]. Therefore, the applicability of this 
procedure is very limited and complicated. Following 
similar methods presented in [12], Olszewski [19] used 
Markov chains to obtain the probability distribution of 
overflow queue, and developed a computer program that 
estimates the mean queue length and its variance under 
different conditions such as stationary and non-stationary 
arrival processes, and variable service rates.  

II. PROBLEM STATEMENT   

A. Definition 
As mentioned above, this paper focuses on queue length 

estimation based on data from probe vehicles; where data 
include location/position of vehicles in the queue as well as 
the time stamps at which they join the queue. The authors in 
a recent study have investigated the use of only location 
information in queue length estimation [20]. This paper 

extends the models developed in [20] to account for the time 
stamp information. Hence, the problem is to determine, if 
any, the contribution of this new data in queue length 
estimation.  

Figure 1 illustrates a snapshot of a signalized intersection 
approach at the end of a red phase. Solid rectangles 
represent probe vehicles. The main objective is to estimate 
the queue length, N, if the locations of probe vehicles in the 
queue and the times they joined the queue are known. To be 
more precise, N is a random variable to be predicted that 
represents the total number of vehicles accumulated in the 
queue at the end of red interval. It is assumed that the time 
and the location or position of probe vehicles in the queue 
can be measured. In Figure 1, there are three probe vehicles 
and the location of the last probe, Lp, is 8. The value of N is 
estimated in real-time at the end of each cycle (end of red 
period) based on time and the location of probe vehicles. 
Even though the models are developed for vertical queues, 
this figure is included to clarify the notation. In vertical 
queuing models, it is assumed that vehicles do not occupy 
space and can accelerate and decelerate instantaneously.  

The models developed in this paper are based on the 
assumption that only time stamps and locations of probes are 
observable. As it is demonstrated in [20], Lp is sufficient for 
estimating the queue length (when the estimate is based only 
on the location data); neither locations of other probe 
vehicles nor the total number of probes vehicles in the queue 
(Np) are needed. This result was obtained when it is assumed 
that the percentage of probe vehicles in the traffic stream (p) 
and the marginal distribution of N are known.  

In order to estimate N in real-time, the conditional 
expectation of N given the probe information is needed. The 
next section presents the formulation whereas Section IV 
provides examples and analysis.  

 
Figure 1. Snapshot of an intersection right before the red interval terminates. 
The positions of vehicles in the queue are measured from the stop bar.  

B. Notation 
The following notation will be used in the development of 

the models.  
R = red period in seconds. 
p = the proportion of probe vehicles in the entire vehicle 

population.  
λ = arrival rate per second– number of arrivals per cycle. 

Arrivals are independent identically distributed (i.i.d.) with 
rate λ. Probe vehicles arrive with rate λp, while other 
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vehicles arrive with λ(1−p). 

β = the mean inter-arrival time (seconds), 1 /λ.  
N = total queue length at the end of the red period. 
N1 = queue length measured from the stop bar until the 

location of last probe (including the last probe). 
N2 = queue after the location of last probe that is the 

number of arrivals from the time of last probe until the end 
of red period. 

LP = location of last probe (equal to N1). 
NP = total number of probes in the queue.  
TP = the clock time last probe joins the back of the queue 

measured relative to the beginning of red. 
Xi = independent identically distributed inter-arrival 

times.   

III. ANALYTICAL FORMULATION 
In this section, queue length estimation under two cases is 

investigated. In the first case, the only data 
available/collected from probe vehicles is the location of 
probes in the queue. For the first case, only a short summary 
is provided below since the details can be found in [20]. In 
the second case, both location data and the time instances 
the probes join the queue are utilized for queue length 
estimation.  

 

A. Estimating Queue Length Based on Location Data 
In order to estimate the total queue length from location 

data, one needs to formulate the conditional distribution of 
the queue length given the locations of probes. For any 
given arrival (or queue length) distribution, the derivation is 
illustrated below.  

Assuming that the percentage of probe vehicles (p) is 
known, the relationship between the total number of probe 
vehicles (Np) and the total vehicles in the queue (N) at the 
end of red period can be written as follows.  
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The equation above asserts that every vehicle has an equal 
probability of being a probe vehicle. Both N and Np are two 
discrete random variables. The formulation is for a general 
probability mass function (p.m.f.) for N, which is denoted by 
P(N=n). Given N = n, it follows that the number of probe 
vehicles in the queue has the following binomial 
distribution. 
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Given N=n and Np =np, the probability distribution for the 
location of last probe (Lp) can be derived by considering the 
number of possible combinations. It can be verified that the 

conditional probability of Lp given n and np is as follows.  
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As mentioned before, the main purpose is to estimate the 
conditional distribution of the queue length given the 
location of last probe and the total number of probes, i.e., 
P(N=n|lp, np). This conditional distribution can be written by 
using the Bayes’ rule:   
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Substituting the respective equations and performing 
some simplifications, the following conditional distribution 
function for the queue length is obtained.  
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 As it turns out, this probability only depends on the 
location of last probe (lp) and does not depend on the total 
number of probes in the queue (np). It should be noted that 
equation (6) is valid for any probability distribution of N, i.e. 
for any arrival distribution.  

Based on the above conditional probability distribution, 
the expected queue length can be easily computed as 
follows.  
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The equation above gives the best prediction of the queue 
length given the probe location information. For real-time 
applications, this equation can be used to estimate the queue 
length, provided that P(N=n) is known.  

In order to assess how accuracy of this estimated queue 
length changes by the proportion of probe vehicles (p), some 
additional results are obtained. First, the conditional 
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variance of queue length (given lp) can be written as follows. 
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Since the above variance depends on lp, a more general 

measure that does not depend on lp is needed to determine 
the effects of p on accuracy. The error in the estimates, 
denoted by D, can be treated as a random variable that is the 
difference between the actual queue length (N) and its 
estimate:  

 
)( plnNEND =−=  (9) 

 
If the expectation of both sides of this equation is taken, it 

can be seen that the expected error is zero (Since E[E(N|lp)] 
= E(N)). On the other hand, the variance of error, shown in 
(10), is obtained by the law of iterated expectations:  

 

( )[ ]p

p

lnNVarE

lnNENVarDVar

|

)]([)(

==

=−=
 (10)  

The expected value on the right hand of this equation can 
be calculated as follows.   
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This expected value in essence represents the weighted 
variance over all possible values of lp. To calculate this 
weighted variance, the marginal probability distribution of 
Lp is needed. This marginal distribution can be readily 
written in terms of the conditional distributions obtained 
thus far.  
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Then, the marginal distribution of Lp becomes (for Lp>0), 
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The formulation presented above can be utilized to assess 
the relationship between the percentage of probes (p) and 
the accuracy of the estimated queue lengths. The main input 
required is a probability function for the total number of 
vehicles in the queue, P(N).   

 

B. Estimating Queue Length Based on Location and Time 
Data 
In the previous section it is shown that the location of the 

last probe (Lp) is sufficient in estimating queue length. In 
this section, the time instance at which the last probe joined 
the back of the queue (Tp) is also utilized in the estimation. 
Inclusion of time data adds to the complexity of the 
formulation since the probability distribution of time Tp also 
needs to be considered. To make the derivation manageable, 
it is assumed that the arrivals follow a Poisson distribution. 
In addition, the formulation is carried out for a simplified 
situation where the overflow queue (the leftover queue from 
a previous cycle) is assumed to be zero. A more general case 
where the overflow queue is also modeled will be 
considered in the future.  

The total queue length, N, can be written as the sum of 
two queue lengths, N1 and N2, by the assumption of iid 
Poisson arrivals. Thus, the total queue length given the 
location and time of the last probe can be expressed as 
follows. 

 

pppppp TLNTLNTLN ,,, 21 +=  (14) 

 
The expected conditional total queue length becomes, 
 

),(),(),( 21 pppppp TLNETLNETLNE +=  (15) 

 
The first conditional expectation is constant since LP is 

given, and the expected value of N2 corresponds to the 
number of arrivals in the given time interval that is equal to 
R-Tp, the time period during which no probe vehicle has 
arrived. Therefore, the arrival rate during this period is 
λ(1−p).Then, N2 is distributed with POI (λ(1−p)(R- TP)). 
Thus the overall expected value given in (15) becomes, 

 
 )()1(),( pppp tRplTLNE −−+= λ  (16) 

 
Similar to the expression in (7), the above expectation is 

the best predictor of the queue length given both location 
and time information of the last probe vehicle. In order to 
assess how accuracy of this estimate changes by the 
proportion of probe vehicles (p), some additional results 
need to be obtained as well. First, the conditional variance of 
the queue length (given Tp and Lp) can be written as follows. 

 
)()1(),( ppp tRpTLNVAR −−= λ  (17) 

 
Since the first term in (14) is constant (N1= lp) its variance 

is zero. The second term in (14) specifies a Poisson 
distribution with a parameter λ(1−p)(R-tp), which gives the 
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conditional variance in (17). Similar to the analysis 
performed in the previous section, the variance of the 
difference D shown below is needed to assess how error is 
changing with respect to the percentage of probes, p.  
   ),( pp TLNEND −=  (18) 

 
The variance of D, for Lp>0, is then as follows.  
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After substituting the conditional variance by the 

expression in (17),  
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The expected value of Tp, E(TP), is needed to compute the 

variance given above. Even though the marginal probability 
distribution of Tp is not known to compute this expected 
value, it is not difficult to define the conditional probability 
distribution of TP given LP, f(Tp|Lp). Since the arrivals are 
Poisson the interarrival times (Xi) are i.i.d. Exponential with 
parameter β = 1/λ. Then, this conditional distribution is the 
sum of LP Exponentials, which is equivalent to a Gamma 
distribution with parameters (LP, β). 
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The expected value of Lp in (21) can be obtained from the 

marginal probability distribution of Lp given in (13).  
It should be noted that the formulation above is relevant 

when Lp > 0, i.e., when there is at least one probe vehicle in 
the queue. When there is no probe at all, then the estimated 
queue length will be equal to (1-p)λR, which is equal to the 
expected number of arrivals other than probe vehicles. In 
that case, the error of the estimate will also be equal to (1-
p)λR because of the property of Poisson distribution. 
Therefore, the overall variance will be the weighted average 
given below. 
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Where, P(Lp=0) = exp(-λ(p)R).  

IV. NUMERICAL EXPERIMENTS 
    In order to show how the overall error behaves with the 

percentage of probe vehicles (p) an example case is 
illustrated. The queuing at an intersection approach where 
the overflow queue is assumed to be zero is considered. The 
red duration (R) is assumed to be 45 seconds whereas the 
average interarrival time is 4.5 seconds. Therefore, the 
arrival rate during the red interval, λR, is 10 vehicles. Using 
the formulation developed in the previous section, the 
overall variance of D (the difference between the estimated 
and the actual queue length) is computed for both cases; see 
(11) and (22). The results for various probe percentages are 
plotted in Figure 2 for both cases.  As anticipated, the error 
decreases with increasing p and becomes zero when p 
approaches to 100%. In addition, when there is no probe 
vehicle the variance is equal to the variance of the Poisson 
process as one would expect. The more important result is 
the fact that error is always smaller when both location and 
time information is utilized in the estimation. The absolute 
difference between the two is largest at about 25-30% and 
then diminishes when p changes in both directions. Even 
though this example ignores the overflow queue, the overall 
conclusions would not be affected in a more realistic case 
where overflow queue is also represented [20].  
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Figure 2.  Variance of the difference between the estimated and actual 
queue length. The curve labeled varD(Lp) is for the scenario where  only 
location of the last probe vehicle is utilized in queue length estimation. The 
second curve, varD(Lp, Tp), represents the variance when both location and 
time of the last probe vehicle in the queue are utilized in the estimation 
model. 

V. CONCLUSION 
This paper presents a statistical formulation for real-time 

estimation of queue length at a signalized intersection 
approach from probe vehicle data. The presented 
formulation allows evaluation of the accuracy of estimates 
analytically for Poisson arrivals. The models are developed 
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to estimate queue length from the location of probe vehicles 
as well as from data both on location and time of arrivals. It 
is found that using both time and location information 
provides relatively more accurate estimates. The formulation 
presented could be used in evaluating and designing a traffic 
monitoring system that relies on probe vehicle data for 
queue length estimation at signalized intersections. Some 
future research is needed to generalize the formulation to 
more realistic settings (e.g., including overflow queue, 
unknown prior knowledge of P(N), oversaturated and time 
dependent cases).  
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