
 
 

 

  
Abstract— A new feature level fusion approach for object 

classification is introduced. The system is implemented to fuse 
sensor data of a laser scanner and a video sensor. A new 
method of video feature extraction incorporates features, 
which are obtained from the laser scanner, to handle the 
problem of multiple views of cars. The laser scanner’s 
estimates of contour information can identify the discrete 
sides of rectangular objects. These object sides are 
transformed to the video image. A perspective reconstruction 
compensates deformations as well as size differences in the 
video image. Afterwards, an object detector is applied. A new 
method performs a feature extraction from this detector. The 
classification algorithms fuse these new features with 
additional features, which are obtained from the laser scanner 
and the tracking algorithms. The complete system is 
applicable in real time. An evaluation with labeled real world 
test data is given. 

I. INTRODUCTION 
DVANCED Driver Assistant Systems (ADAS) are in the 
focus of today’s research and development. Although 

recent ADAS usually rely on an exclusively used sensor, 
future systems can benefit from a shared sensor platform. 
For this purpose, a common data processing unit is needed, 
which can fuse different sensors and provide the 
preprocessed information in terms of a vehicle environment 
model to several applications. This environment model 
should contain a list of observed objects, coupled with 
information like dynamic state and class. 

A laser scanner based approach for object detection, 
tracking, and classification was proposed in former works 
[1]. However, the appropriate usage of additional sensor 
information usually can significantly improve the 
performance of such a system. The successful application 
of a feature based fusion of laser scanner and video data for 
the purpose of tracking was already demonstrated [2].  

A new feature level fusion approach for the purpose of 
object classification extends these tracking algorithms. This 
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approach is implemented and analyzed for a laser scanner 
and a video camera. Five classes are distinguished by the 
classification: “Pedestrian”, “Bike”, “Car”, “Truck”, and 
the remaining objects of the class “Unknown”.  

The primary objective of this fusion approach is the 
improvement of the laser scanner’s classification 
performance for non-moving objects. While the laser 
scanner based framework already showed good results in 
the classification performance, several objects are still 
misclassified. One reason of misclassifications consists of 
the relatively high influence of the estimated object 
velocity on the classification result. Objects are often 
misclassified, if they are not moving or due to missing 
velocity information during the first time steps of the 
Kalman Filter based tracking. The aim is to improve the 
classification of these objects, if they are in the field of 
view of the video camera. 

II. SYSTEM OVERVIEW 
A general layout is introduced, which can fuse multiple 

sensors at the feature level (Figure 1). Based on the 
available sensors, several features for the purpose of 
tracking and classification are extracted.  

A tracking is performed by Kalman Filter estimation. A 
box object model is applied, which enables the estimation 
of position, size, and velocity [3]. Since improvements of 
the tracking by feature level fusion are discussed in [2], the 
following sections will concentrate on a feature level fusion 
approach to improve the object classification. 
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Fig. 1.  System layout: Features are extracted from several sensors as well 
as from the tracking algorithms. The classification algorithms fuse all 
features and estimate membership values for each of the distinguished 
classes. The classification output and the selected object class can be 
optimized to different requirements of different applications 
simultaneously.
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Based on the tracking, additional features are extracted 
to support the classification. The classification combines 
statistical and rule based approaches and calculates 
membership values for each of the distinguished classes. 
The output of the framework can be adapted to different 
requirements of different applications simultaneously.   

III. SENSOR SETUP 
The introduced fusion framework is implemented for 

evaluation purposes. This work uses an IBEO ALASCA 
XT laser scanner and a PCO Pixelfly video camera. In 
addition, it is possible to integrate DGPS and precise digital 
maps [4].  

While the laser scanner’s field of view (FOV) is very 
large, the field of view of the video camera is rather small 
(Figure 2). A wide angle lens is used for applications in 
urban scenarios, while a telephoto lens is recommended for 
highway scenarios. The use of the video camera is 
nevertheless promising, because the camera’s FOV covers 
directly the area that the test vehicle will pass. It is 
expected, that the video camera can improve especially the 
classification performance for objects with low or zero 
velocity (non-moving cars, pedestrians, bikes, or trucks). 

 

 

IV. FEATURE EXTRACTION 
Several types of features are calculated for the purpose 

of object classification. Some features like detected 
reflectors or contour and size information are directly 
calculated based on the laser scanner measurements. Other 
features like velocity are obtained from the tracking 
algorithms. Details about these two groups of features can 
be found in [5].  

The last group of features is calculated by the application 
of pattern recognition algorithms on the video image. These 
features are described in the following section. 

V. VIDEO FEATURES 

A. Object Detection with a Boosted Cascade 
The task of feature extraction from video images is 

performed by a complete object detection system. The 
cascaded classifier, which was developed by Viola et al. 
[6], is known from literature. The system is based on Haar 
like features. Appropriate feature combinations are selected 
by AdaBoost. Several combinations are used in a classifier 
cascade. Each stage of the cascade discards some of the 
object hypotheses. The remaining objects, which pass the 
last stage, are usually used as detected objects (Figure 3). 

 

 
This classifier was initially developed for face detection, 

but due to its performance it was already successfully 
applied to a wide range of objects (i.e. pedestrians [7], [8], 
heads [9], rear ends of cars [7], [10], [11]).  

The detection of cars without restrictions to the viewing 
angle seems to be challenging, because a car’s view 
significantly changes with its orientation to the video 
sensor. In addition, cars are the most frequent object class 
besides the class unknown, which represents the 
background. Therefore, the feature level fusion approach 
will be demonstrated for this class.  

Features to detect pedestrians can be obtained from an 
additional cascade. First experiments already showed 
promising results, but the complete evaluation for 
pedestrian was not finished yet. Bike features may be 
calculated in a similar manner to car features. A feature 
extraction for trucks in the proposed manner seems only to 
be useful, if the trucks are completely in the field of view 
of the camera. 

B. Challenges 
There are several challenges corresponding to the car 

detection task. If only a single video sensor is used for 
object detection, there will be a lot of object hypotheses, 
which must be evaluated. Objects must be expected at all 
possible positions and in all possible sizes in the video 
image, if no additional knowledge is available. This is 
usually performed with image pyramids. The complete 
image scanning procedure then needs a lot of processing 
time. There are approaches, which reduce the available 
object hypotheses by a flat world assumption [11]. This 
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Fig. 3.  Classifier cascade: Each cascade stage rejects some of the object 
candidates. The hypotheses, which pass the last stage, are usually used as 
detected objects. 

Laser 
scanner

Video 
Camera

Laser 
scanner

Video 
Camera

 
 
Fig. 2.  Field of views (FOVs) of the used sensors: The FOV of the laser 
scanner is very large. The FOV of the video camera is rather small. 
Nevertheless, the camera’s FOV covers the area in front of the vehicle, 
which is the most important area for ADAS. The detailed video 
measurements are expected to improve the classification in this area. 
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approach benefits from the correlation of object position 
and size. Unfortunately the flat world assumption does not 
hold for traffic scenarios on bumpy or hilly roads.  

A more promising approach is the sensor fusion of 
distance sensors and video cameras. The distance sensors 
measure obstacles. The corresponding positions in the 
video image can be calculated, if the sensors are 
synchronous and calibrated. This approach enormously 
reduces the possible object size and position. Present works 
only concentrated on rear views of vehicles [2], [10]. 

Usually, the orientation of observed vehicles is only 
restricted on highways. At intersections and in urban areas, 
vehicles can occur in all possible orientations to the video 
sensor. The vehicle’s appearance changes with its 
orientation to the video sensor (Figure 4).  

Usually, pattern recognition concentrates on contour and 
texture information. For this reason the detection task 
becomes more complex. 

 

 
This fact is considered by Schneiderman and Kanade 

[12]. They trained a detector with samples of different 
viewpoints. Thus, a complex detector, which can represent 
all views, was necessary.  Another possibility is to train 
several detectors to cover different viewpoints with 
different detectors. Consequently many detectors have to 
be applied to the same image, since each detector can only 
cover small changes of the orientation.  

Both solutions lead to quite high computational costs. 
Therefore, this work extends the idea of hypotheses 
selection by additionally obtaining the object’s orientation 
from a laser scanner. This orientation allows for a 
reconstruction of a perspectively warped side of a vehicle 
(e.g. rear end, left side, right side, or front). Thus, only four 
different patterns have to be detected. For this purpose, the 
earlier mentioned pattern recognition system based on 
contour information and texture can be used. Experiments 
have shown that it is possible to train one detector for 
combined recognition of left and right side and one for 
front and rear ends, respectively. 

C. View Decomposition 
The laser scanner and the video camera work 

synchronously and are calibrated. Therefore, the positions 
and the orientations of the sensors relative to the vehicle 
are known. Usually, a sensor provides its measurements in 
its own coordinate system.  

The calibration enables a transformation of a point from 
the laser scanner coordinate system to the image plane by 
applying rotational and translational matrices and the 
pinhole camera model [2]. An example of transformed laser 
scanner measurements is shown in Figure 5. 

 
 

  
The three dimensional shape of cars is approximated by 

a cuboid (Figure 6, left). This three dimensional object box 
is localized for all objects by the sensor information of the 
laser scanner.   

The laser scanner estimates contour information. The 
calculated features provide information about the object 
distance, orientation and a visible corner (Figure 5, 
middle). 

The video sensor provides a mixture of the visible object 
sides (Figure 6, right).  The influence of a car roof on this 
mixture will be quite small due to the camera position. For 
this reason, the upper side will be ignored by further 
algorithms.  

 

 
The laser scanner measurements of an object provide 

information about the vehicle’s horizontal position and 
orientation. The laser scanner usually measures one or two 
sides of a cuboid. Consequently, a 3D object box can be 
fitted into the measurements. The fixed value of the 
cuboid’s width and length is defined by the maximum 
length of a car. The vertical dimension of the box is quite 
uncertain, but it is possible to calculate an upper and a 
lower bound. The upper bound is given by the sum of the 

 
 
Fig. 4.  The appearance of cars significantly changes with the orientation
to the video sensor. For this reason, the car detection task becomes more 
complex, because video object detection is usually based on texture and
contour information. 

 
 
Fig. 6.  The box as three dimensional object model (left), the contour 
information, measured by the laser scanner (middle) and the two object 
sides, which mainly influence the appearance of the object in the video 
data (right). 

 
 
Fig. 5.  Coordinate transformation: The measurements of the laser scanner 
as well as corresponding object features can be transformed to the video 
coordinate system due to calibrated and synchronous sensors. The 
example shows the transformed laser scanner measurements in the image.
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laser scanner’s lowest measurement and the maximum 
height of a car. The lower bound is given by the highest 
laser scanner measurement and the maximum car height.  

The cuboid is transformed to the video coordinate 
system. Several features, which describe the size and 
position of the cuboid in the video coordinate system, are 
handed over to the video feature extraction. 

The box side with the best visible orientation to the 
camera is used as the region of interest (ROI) for the object 
detection. This ROI is increased by 15 percent to ensure 
that it also contains some background, which is necessary 
for the object detection algorithms. An example of such a 
ROI is given in Figure 7. 

 

 
As the transformed box side describes the position and 

deformation of the original object side in the video image, a 
perspective warping can reconstruct the original view of 
the object side. The ROI has a fixed length in m in world 
coordinates. The warping creates a rectangular image of a 
fixed size in pixel. This process performs a compensation 
of distance based object size differences. For this reason, 
the later applied pattern recognition system can benefit 
from the a priori knowledge about the expected 
reconstructed object size. Only a small range of positions 
and sizes have to be evaluated by the detector. The 
reconstructed object side view is shown in Figure 8. 

 

 
In general, real objects do not exactly fit the cubical 

object model. This results in errors in the appearance of the 
reconstructed object sides. If the reconstructed object is not 
a vehicle, it can appear in any three dimensional shape. 
Therefore, the reconstruction error can be much higher than 
for cars. Fortunately, it does not seem to be likely that the 
reconstructed side of such an object is similar to a side 
view of a car. 

In the case of vehicles, the error of the reconstruction is 
quite small. Thus, the reconstructed side is quite similar to 
the real object side. All background pixels and object parts, 
which are not aligned to the cuboid’s side, are deformed in 
an undefined way. Strange deformations are possible as 
shown in the left part of the warped image. In addition, 
there even can be some errors at the reconstructed object 
side. This is due to the fact that car sides are not completely 
vertical as assumed by the object box model. Especially the 
front of a car often can only be reconstructed below the 
hood. However, the perspective warping creates object side 
views, which are much more similar to the original view 
than the mixture of deformed views in the video image.  

The reconstructed views can now be used for the 
cascaded pattern recognition algorithm described above, 
which detects objects based on shape and contour 
information. Two cascades are applied. The first one 
detects car front and rear views and the second one side 
views. 

D. Feature Extraction 
The object detection with two cascades already performs 

excellent vehicle detection. Unfortunately, it is subject to 
several restrictions. The video sensor’s field of view is 
rather small and the detection system can not classify 
objects, which are occluded or outside the ROI. In addition, 
the detector only performs the object detection for one 
object class. In order to create a consistent vehicle 
environment representation with multiple classes, a fusion 
of the single detector’s results with the laser scanner 
features seems to be necessary. 

For this purpose, several features in terms of floating 
point values are calculated. The primary feature describes 
the current output of one cascade.  All object hypotheses in 
the evaluated ROI of an object are considered. The 
maximum stage smax of the cascade, which is passed by at 
least one hypothesis, defines the main rating of this feature. 
If the last stage slast is passed, the feature value will be 10. 
If only the stage before the last is passed, the feature value 
will be 9 and so on. The minimum feature value is 0.  

An offset to the primary feature is calculated by 
considering multiple detections, which are usually 
generated by the cascaded object detector in cases of 
positive objects. The number of hypotheses h, which pass 
the maximum stage, defines an offset between 0 and 1. Due 
to experimental results, a maximum of 20 passing 
hypotheses is considered. Each hypothesis, which passes 
the maximum stage, increases the feature value by 0.05.  

The detector can not be applied, if the object is occluded 
or not in the field of view. In this case, the feature value 
will be -1. The primary feature f is calculated by: 
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Fig. 8.  Perspective reconstruction of the object side: Deformations as
well as size differences caused by different distances to the video sensor
are compensated.  

 
 
Fig. 7.  Video ROI: An appropriate side of the object cuboid, which is 
estimated by the laser scanner, is transformed to the video image. The 
side is increased to contain some amount of background pixels around the
object. 
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The described feature type is calculated for each 
detector. The maximum of the two feature values of both 
vehicle detectors defines a third feature. 
 Since the objects are often occluded in the field of view 
of the video sensor, the temporal maxima of the three 
features are stored as three additional features.  

VI. CLASSIFICATION 
The feature level fusion is performed by the 

classification part of the framework. The layout of this part 
is illustrated in Figure 9. A pattern classifier calculates 
membership values for each of the distinguished classes by 
applying statistical classification. The pattern classifier is 
based on neural networks. Details about this classifier were 
described in [13]. 

Afterwards, a rule based classification part is applied to 
verify and correct the output of the pattern classifier. The 
membership values are manipulated according to the rules. 
This part can also be used to guarantee a specific behavior 
of the system. A temporal mean filter stabilizes the output 
of the classification. 
  

 

VII. OUTPUT ADAPTATION 
An advantage of the framework is the type of the 

classification output, which consists of the provided 
membership values. This output configuration allows for a 
simultaneous optimization of the membership values and 
the selected class depending on the different requirements 
of the applications [1]. 

VIII. RESULTS 

A. Evaluation Measures 
The proposed system is evaluated with a set of labeled 

test data, which was not used for the training of the pattern 
classifier. The test set consists of several sequences of 
urban, suburban and highway scenarios with a total of 
approximately 50000 frames. 

The application of classification is usually a tradeoff 
between low numbers of false alarms (false positives) and 
high numbers of correct detections (true positives). In 
statistics, the numbers of true and false positives are 
described with the following measures: 

 

negativesfalsepositivestrue
positivestrueratedetection
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Different combinations of both measures can be plotted 

as a ROC (Receiver Operating Characteristic). 
Unfortunately, the number of true negatives is not 

exactly defined for the vehicle environment perception 
task. The amount of background objects is usually much 
higher than the number of other classes’ objects. Therefore, 
only objects of the other classes are labelled. Furthermore, 
it is often not possible to estimate the correct number of 
background objects (i.e. when the sensors measure areas 
with bushes, woods or gardens). For this reason, another 
measure is used to describe the number of false alarms: 

 

positivestruepositivesfalse
positivesfalseratedetectionfalse

  
   

+
=

  

 
This measure describes the ratio of false alarms to all 

detections. Operating Point Curves (OPC) will show the 
detection rate over the false detection rate. 

B. Vehicle Detector 
The first evaluation only evaluates the performance of 

the car detection system, which consists of two cascaded 
classifiers. The corresponding operating point curve for the 
test data is shown in Figure 10. 

 
 The video car detector already performs very well, but 

due to the small field of view of the camera it is not 
possible to detect all cars in the test vehicle’s environment. 
Therefore, the feature level fusion system is designed to 
present a more complete vehicle environment model. 
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Fig. 10.  Operating point curve for the video car detector: This plot shows 
the detection rate over the false detection rate.  
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Fig. 9.  Classification:  All available features are combined by the pattern
classifier, which calculates membership values for all distinguished
classes based on statistical classification. The rule based part also 
evaluates the features and verifies and corrects the output of the pattern
classifier. A temporal mean filter also includes classification results of
former time steps. 
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C. Complete Fusion System 
The fusion system was also evaluated with the test data 

in the complete field of view of the laser scanner. Figure 11 
shows two Operating Point Curves. The blue dotted curve 
shows the performance of the system, which only uses a 
laser scanner. The red curve shows the curve of the 
complete feature level fusion system. Obviously, the pure 
laser scanner based classification already performs very 
well. The improvement of the feature level fusion is rather 
small. There are several reasons for this small 
improvement.  

Firstly, the field of view of the video camera is much 
smaller than the laser scanner’s field of view. Thus, the 
classification can only be improved for some of the objects. 
Secondly, the laser scanner already performs a good 
classification of moving objects. Detailed analyses of the 
test sequences have shown that the achieved benefit is 
primarily on non-moving cars, but the evaluated scenarios 
contain a much higher amount of moving cars than non-
moving cars.  
 

 
However, the small amount of cases, which are 

improved by the video camera, is nevertheless of 
importance. Non-moving objects, which are poorly 
classified by the pure laser scanner approach, can 
especially cause dangerous situations, if they are located in 
front of the test vehicle and therefore in the field of view of 
the video camera. 

D. Processing Time 
The complete system was applied in real time at the 

sensor measurement frequency of 12.5 Hz on an Intel 
Pentium 4 3.2 GHz desktop computer.  

IX. CONCLUSION 
A real time feature level fusion system for object 

classification was introduced. The approach was 
implemented and analyzed. While the extracted video 

features at the moment were only evaluated for the 
classification of cars, other works already have 
demonstrated that the described video feature extraction 
will also work for other classes. First experiments with a 
cascaded pedestrian detector already showed promising 
results and have to be evaluated in future works. 

The statistical improvement of the fusion approach 
compared to the pure laser scanner based approach is rather 
small, but detailed analyses of the improved cases have 
shown, that the video sensor can improve the classification 
of non-moving objects, which can be of outstanding 
importance, as they are directly located in front of the test 
vehicle. 
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Fig. 11.  Operating point curve for the complete system: The blue dotted 
line shows the performance of the pure laser scanner based approach. The 
red line shows the performance of the feature level fusion approach. 
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