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Abstract—This paper presents the problematic of
localization under the IMM (Interacting Multiple
Model) approach. The localization is often tackled
under the accuracy problem. In order to achieve the
goal of the assessment of an accurate ego localization,
one often uses the merging of data coming from
both exteroceptive and proprioceptive sensors. In our
approach, we don’t focuss much on the accuracy,
but more especially on both the confidence and the
robustness of this positioning. In fact, the IMM ap-
proach is based on the discretization of the vehicle
evolution space into simple maneuvers, represented
each by a simple dynamic model. In order to reach our
objective using IMM, we assume that at every time
period the true mode under which the vehicle goes
is represented. After a review of different traditional
filters used in vehicle localization, an IMM method is
proposed and the comparison is mainly based on some
robustness criteria that are presented in this paper.

Index Terms—Estimation, Multiple model, Sen-
sors Data fusion, Kalman Filtering

I. Introduction

Most of the systems developed in the area of the driver
safety have limitations resulting from the range of the
perception devices. Safety system can either be auto-
matic devices that correct vehicle trajectory, according
to driver intentions, such as ESP or ABS, or systems that
warn driver on incoming hazards. However, in order to
include the driver in the reaction loop, safety systems
must detect hazard on longer range. On highway, for
instance, to warn driver on a hazard at least 5s before
arriving on it, range of perception should be about 200m.
European project CVIS1 and SafeSpot2 aim at increas-
ing road safety, cooperating with the driver. In order to
achieve a long range of perception, they propose to merge
data from different sources, which could be vehicles, or
sensors based on the infrastructure. This fusion process
will require both accurate location and good confidence
in the measure. American project EDMap3 deeply inves-
tigates this problem, creating three levels of location for
each application: they are identified as a WHATROAD,
WHICHLANE, or WHEREINLANE dependent applica-
tions. In increasing order of map matching accuracy, a

1CVIS home page www.cvisproject.org
2SafeSpot home page www.safespot-eu.org
3Enhanced Digital Map project : www-nrd.nhtsa.dot.gov

WHATROAD application needs road-level map match-
ing to operate; a WHICHLANE application requires map
matching to a particular lane to operate, and finally
a WHEREINLANE application requires map matching
laterally within a lane to operate.
All these projects conclude on the critical aspect of the
location task as it is used either for warning and control
applications, which need not only high accuracy and con-
fidence in the measure, but also a good robustness of the
algorithm. Common localization processes use a Kalman
filter in order to achieve the fusion of both proprioceptive
(INS, Odometer, Steering wheels angle ...) and extero-
ceptive (GPS) sensors within a vehicle model [1], [2].
This approach of the problem has drawbacks, such as
the confidence in the vehicle model and the quality of
the modeling regarding various driving situations. This
could lead to a bad confidence on the final positioning
algorithm. An alternative is to use the IMM structure to
solve this problem. By discretizing the vehicle evolution
space into simple maneuvers - each represented by a
simple model - and making these models run in parallel,
we increase the robustness of the algorithm especially
during strong maneuvers. So, the contribution of this
work can be stated as follows: when we consider the
state of art of localization methods and some robustness
criteria such as the maximum position error during
strong maneuvers and the uncertainty ellipse areas, the
IMM method - based on an adapted model set - globally
shows better performances than a single model Kalman
filter.
The sequel of the document is organized in 5 sections.
Next section explains traditional approaches on localiza-
tion problem. Third section is devoted to the multiple
model algorithm. Following section presents results on
experimental data. And finally, we conclude on section
five.

II. Some Traditional Methods

A. Probabilistic Localization

A number of probability based localization methods
for outdoor vehicles have been studied and published
since many decades. We mean by Probabilistic Local-
ization, the process of getting a vehicle state vector X
based on a probability determination, given some sensor
inputs un and some executed actions bn(n = 1...N). This
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is possible when a quasi-perfect knowledge of the data
set is available. Generally, the localization algorithm is
performed by combining triangulation from landmarks
or map matching, with dead-reckoning that uses an Ex-
tended Kalman filter [1], [2]. Other famous probabilistic
methods include the Grid-based Markov localization [3],
[4] and the Monte Carlo methods [5].
These methods have been used and show quite good
results. However, the recent particle filters, for example,
remain limited by their computational cost (not yet
adapted for real time problems), in spite of the good
accuracy they can provide. It was proved [6] that the
Kalman filtering - given good inputs - improves the ef-
fectiveness of these methods, and remains more adapted
- in terms of precision - to the problem of mobile vehicles
localization.

B. An Overview of Kalman Filtering Approach

In the hybrid localization systems, the vehicle state
vector is estimated from exteroceptive and propriocep-
tive sensors data. The Kalman filter has become famous
in solving this critical issue [2]. One of the characteristics
of this filter is its ability to output the estimation error.
Moreover, it remains optimal when the minimum of
variance is considered and when the system is linear.
When we assume that the sensors data have a random
noise with an a priori known distribution, the estimation
problem is reduced to solving a system of equations. This
one is based on two models: a process model (1) and a
measurement model (2). Let f be the process function
and h the measurement function, the estimation problem
is

Xk+1 = f(Xk, u∗
k, wk) (1)

Yk = h(Xk, vk) (2)

u∗
k is the noised input, w and v are respectively

the process noise and the measurement noise. The fi-
nal estimation algorithm resembles that of a recur-
sive predictive-corrective algorithm for solving numerical
problems as shown in figure 1.
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Fig. 1. Kalman Filtering Algorithm

In road vehicles localization, it is difficult to use
linear functions in the process or measurement models.

By linearizing the non linear functions around current
estimated state, we obtain sub-optimal estimators: one
of the famous, the Extended Kalman Filter EKF is based
on the first order Taylor development of the functions
around the current state. Some other methods include
the Unscented Kalman Filter (UKF), the Divided Differ-
ences filters of first and second order (DD1, DD2) and
the Central Difference Kalman Filter (CDKF). The UKF
is founded on the (scaled) unscented transformation. The
DD1, DD2 and CDKF are very similar and based on
the Stirling interpolation. For more information about
these Kalman filter variants for nonlinear models, it is
recommended to see [7]–[9].

III. Multiple Model for Road Vehicles

Localization

A. Limitation of a mono model system

To perform a reliable maneuvering road vehicle local-
ization, it is necessary to use a model that better fits
the observed process. Therefore the vehicle model should
take into account an adapted number of parameters that
affect the vehicle displacement. Its complexity depends
on the application for which the system is implemented
for state estimation. Non linear dynamic models, for
example, better suit higher speed and maneuvering road
vehicle.
Problem: the complex dynamic models usually have a
very specific domain of validity and their computational
complexity can highly increase when a large number
parameters is considered. Thus the confidence in the
the final algorithm, regarding driving situation can be
seriously reduced. The question is how to maintain a
good robustness of our system when the observed process
is not properly modeled.

B. Multiple Model applied to Maneuvering vehicles

A solution to this problem was proposed in [10].
In fact, many dynamic models are optimized to many
single maneuvers (each model corresponds to a single
maneuver) and the condign model is chosen following
certain rules. This approach is known as a multiple model
filter. Multiple model methods are generally applied to
solve two main problems: First when the vehicle motion
mode is uncertain, and second in the case of nonlinearity
(maneuvering vehicle).
We define as a mode, a pattern of behavior of the
vehicle while a model is the mathematical representation
or description of the phenomenon pattern at a certain
accuracy level. One of the main advantages of using the
multiple model estimators is that not only one filter is
used, but a bank of Kalman filters running in parallel
and corresponding each to a particular driving situation.
The model set M is obtained by discretizing the vehicle
evolution space S into simple modes which are easy to
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compute. Both M and S have the same cardinal at a
given time. If the cardinal of S is constant during the
process, the system is said to be of fixed structure and
when it varies, it is of variable structure [12].

C. The Interacting Multiple Model

Many multiple model methods are available in the
literature [12]. Recent study has proven that the Inter-
acting Multiple Model (IMM) algorithm has the best
computational complexity among the most popular al-
gorithms that are used in tracking or localization .
Its unique feature is based on the combination of the
state estimates and covariance matrices according to a
Markov model for the transition between vehicle maneu-
ver states. Moreover the IMM has appeared to be the top
choice for its computational cost. It is computed in four
main steps:

• Interaction: Each filter estimate X̂
(i)
k−1|k−1 is

mixed with others using a predicted model probabil-
ity µ

(i)
k|k−1 and πji which are the Markov transition

probability, i.e. the probability that the transition
occurs from state j to state i.

µ
(i)
k|k−1 =

∑

j

πjiµ
(j)
k−1|k−1 (3)

The mixing weights are given by

µ
j|i
k−1|k−1 = πjiµ

(j)
k−1/µ

(i)
k|k−1 (4)

The mixing state estimates and their covariances
can be computed as follows:

X̄
(i)
k−1|k−1 =

∑

j

X̂
(j)
k−1|k−1µ

j|i
k−1|k−1 (5)

Let’s take

∆X̄
(ij)
k−1 = (X̄

(i)
k−1|k−1 − X̂

(j)
k−1|k−1)

then

P̄
(i)
k−1|k−1 =

∑

j

µ
j|i
k−1|k−1[P

(j)
k−1|k−1+∆X̄

(ij)
k−1(∆X̄

(ij)
k−1)

′]

(6)
i,j = 1,2,...M (number of models).

• Specific Filtering: Each filter predicts its state
X̂(i) and covariance P (i) using a dynamic model.
First, the predicted states X̂

(i)
k|k−1 and covariances

P̂
(i)
k|k−1 are computed from the mixing states, co-

variances and inputs uk−1. The corrective step com-
prises the computation of the measurement residual
ỹ
(i)
k , the residual covariance S

(i)
k , the updated state

X̂
(i)
k|k estimate and its covariance P

(i)
k|k.

• Mode Probability update: Each predicted mode
probability is updated with respect to the model
innovation. The mode likelihoods Λ

(i)
k are computed

in equation (7), and then the model probabilities

µ
(i)
k|k are updated (8).

Λ
(i)
k =

exp[−0.5(ỹ
(i)
k )′(S

(i)
k )−1ỹ

(i)
k ]

|2πS
(i)
k |1/2

(7)

µ
(i)
k|k =

µ
(i)
k|k−1Λ

(i)
k

∑

j

µ
(j)
k|k−1Λ

(j)
k

(8)

• Estimate fusion: The output estimate and its
covariance are computed from weighted state esti-
mates.

X̂k|k =
∑

i

X̂
(i)
k|kµ

(i)
k|k (9)

Pk|k =
∑

i

µ
(i)
k|k[P

(i)
k|k + (X̂k|k − X̂

(i)
k|k)(X̂k|k − X̂

(i)
k|k)′]

(10)

D. Vehicle evolution models

In this subsection, we present the vehicle models
that were used to perform localization. To derive the
vehicle dynamic models, it is assumed that the evolution
sequence is divided in almost constant dynamic behavior.
The free motion models can be represented by the quasi-
Constant Velocity (CV) and the quasi-Constant Acceler-
ation (CA) models. For the lateral dynamics, we can use
the quasi-constant yaw rate with constant velocity: the
Constant Turn model (CT). In order to take into account
both the longitudinal and lateral dynamics, a simple BI-
CYCLE model (BIC) and a General Curvilinear model
(GC) have been derived.

1) Linear models: The dynamic state of the vehicle
for linear models is given by the state vector XLM =
[x, y, ẋ, ẏ]′. [x, y]′ is the position vector and [ẋ, ẏ]′ is
the velocity vector. The acceleration vector [ẍ, ÿ]′ is the
input vector for the constant acceleration model, and
the yaw rate ω is used to periodically update the CT
transition matrix. The transition matrix for the CV and
CA are taken identical:

FCV = FCA =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









(11)

where T is the time period. The CT transition matrix
is:

FCT
ω|k =















1 0
sinωkT

ωk

cosωkT − 1

ωk

0 1
1 − cosωkT

ωk

sinωkT

ωk
0 0 cosωkT −sinωkT
0 0 sinωkT cosωkT















(12)
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The GC model takes as input the tangential accelera-
tion γt and has the same transition matrix with the CT
model ie FGC

ωk
= FCT

ωk
[11]. The input matrix is given by

BGC
γT (θ,ωk) =























−
1

ω2
k

cosξk+1 +
1

ω2
k

cosθk −
1

ωk
Tsinθk

−
1

ω2
k

sinξk+1 +
1

ω2
k

sinθk +
1

ωk
Tcosθk

1

ωk
sinξk+1 −

1

ωk
sinθk

−
1

ωk
cosξk+1 +

1

ωk
cosθk























(13)
with

ξk+1 = θk + ωkT (14)

where θk is the yaw angle at time k.

The model noise covariances were calculated according
to the strategy described in [13]. These matrices are
obtained from a general white noise covariance matrix
Q∗

T and σ2 which is the model process noise variance,
according to equation (15):

Qk = σ2Q∗
T (15)

with Q∗
T =









0.25T 4 0 0.5T 3 0
0 0.25T 4 0 0.5T 3

0.5T 3 0 T 2 0
0 0.5T 3 0 T 2









2) Nonlinear model: The BIC dynamic state is given
by XNLM = [x, y, v, θ]′. v is the vehicle velocity and θ the
yaw angle. Equations (16) show the discrete computation
of the state vector.







































xk+1 = xk + vkTcos(θk)
yk+1 = yk + vkTsin(θk)

vk+1 =
△Top

T
D

θk+1 = θk + ωkT
or

θk+1 = θk + T
1

l
vktan(φk)

(16)

Where l is the distance between the two axles of the
vehicle, φk is the steering angle of the wheels; D is the ve-
hicle displacement between two odometer measurements
and △Top is the number of odometer tops during a
time period T . When an odometer measurement is not
available, vk+1 can be computed from the acceleration
γt|k as follows:vk+1 = vk + γt|kT

IV. Results based on Real Measurements

A. Measurements and Test road Track

Data from various sensors was analyzed. The position,
velocity and acceleration were obtained using a GPS
at 1Hz, an Inertial Navigation System INS at 100Hz
and an odometer at higher frequency. The yaw rate
measurement was obtained by a VG400 gyrometer. The
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Fig. 2. (a): Survey track, (b): Localization system based on IMM

rough Data were time stamped and post-processed with
the SensorHub tool chain. Therefore the GPS data were
filtered before being used; this filtering module corrected
relevant problems regarding multipath propagation or
sensor outages occurrence. The car true trajectory was
obtained using a RTK GPS. Data exploited in this
work were collected from the Satory test road track in
Versailles, France, See figure 2.a.

B. System Architecture and model-set parameters

The system that was implemented can be described
as a FSIMM with model adaptation at every time pe-
riod, when a new proprioceptive sensor measurement is
available; i.e. the system updates the various model tran-
sition matrices and predicts the vehicle state vector. The
correction occurs only when a new GPS measurement is
available, then the output is computed. See figure 2.b.
The Markov transition probability matrix is set as Π1for
the first IMM system with CA, CT and CV models, with
initial probabilities µ1 = [0.400; 0.400; 0.200] . For the
second IMM with CA and CV models, this matrix is
Π2; The initial probabilities are µ2 = [0.550; 0.450]

Π1 =





0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9



 and Π2 =

[

0.95 0.05
0.05 0.95

]

The standard deviation of the noise in the position
estimate of various models are taken as follows: σv

CV =
1m/s, σv

CA = 2m/s, σv
CT = 1.5m/s and σv

GC = 2m/s.
For the BIC model, σvx

BIC = 2.5m/s and σvy
BIC = 0.5m/s,

while the noise in the yaw angle is σω
BIC = 0.05rad/s

C. Longitudinal and Lateral dynamics

1) Vehicle dynamic behavior: Strong accelerations
and decelerations occur in various situations: at the
starting, turnings and at the stop. Two model-sets CA-
CV-IMM and CA-CT-CV-IMM were implemented and
performed a good estimation on straight lines with
quasi constant velocity. On figure 3.a, it is shown the
estimation error of the velocity. This error increases
when the vehicle strongly accelerates or decelerates.
The multiple model systems and the general curvilinear
model perform better than the EKF, their maximum
velocity errors around 65s, are all under 5 m/s. The EKF
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Fig. 3. (a): Observed Velocity and Velocity estimation error, (b):
Estimation Error, (c): CACTCV-IMM probability regimes, (d):
CACV-IMM probability regimes

velocity maximum error, which is about 5m/s is obtained
at the end of course.

The IMM position error generally remains less than
those for single models. At times the IMM position error
can grow higher than that of single models: this is mainly
observed when the vehicle passes from a straight line
to a turning. Around 50s, the CACTCV-IMM position
error peak is the higher. An analysis of the probability
regimes (figure 3.c and figure 3.d) shows an increase of
the position and velocity error on figure 3.a, but also an
increase of the uncertainty ellipse areas (figure 4) when
the true mode is changing.

2) Estimation uncertainty: The Kalman filter gives
an a posteriori position with an uncertainty symbolized
by an ellipse. We can compute the size of the axes of
that ellipse by getting the eigenvalues of the covariance
matrix Pk|k weighted by the factor k =

√

−2log(1 − Pa),
where Pa is the membership probability [7]. In our sys-
tem, Pa = 0.55. The uncertainty ellipse areas are shown
on figure 4. Strong variations are visible on the multiple
model uncertainty ellipse areas, while monomodels are
almost constant, but they globally remain higher.
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D. Discussion

To study both the longitudinal and lateral behaviors of
the vehicle, we used IMM with simple models specialized
for the longitudinal and lateral control. Results from a
CACTCV IMM and CACV IMM were compared to sim-
ple BICYCLE model and to General Curvilinear model.
This comparison is based on the following criteria, to
evaluate each system robustness regarding modeling er-
rors. The first criterion concerns the peak of the position
error during strong longitudinal and lateral dynamics,
the second concerns the mean area of the uncertainty
ellipses, see Table 1. First, the CACV-IMM shows as
good results on straight lines as traditional EKF. The
position and velocity during longitudinal maneuvers are
better estimated using adapted models CA and CV. The
CACVCT-IMM appeared better adapted than a simple
EKF or a GC, to estimate the position in turnings and
straight lines. However, this IMM architecture shows
some deviations from some assumptions which are con-
stant velocity and zero turn rates on straight lines, hence
the frequent switchings between models: Figure 3.c and
3.d. On straight lines, the turn rate is assumed zero,
but this assumption is not so true. The fact that non
zero turn rates are detected implies that the CT model
doesn’t have a zero probability. Same for the CA model
when a non zero acceleration is detected. But for both
IMM architectures, a good noise reduction was obtained
and the uncertainty ellipse areas were also reduced,
compared to EKF or GC model. A low uncertainty
ellipse area means that there is a better confidence in the
estimation output. Finally, it is remarkable that IMM
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TABLE I

Comparison of Localization algorithm performances

is a good estimator for vehicle localization because it
shows a high flexibility for dynamic systems. From Table
1 above, we conclude that in some situations, multiple
model may degrade the accuracy of the localization. In
fact if we consider that only one mode is true at a
given time, this degradation comes from the use of other
modes with non zero likelihoods - see the error peaks
- However, the multiple model increases the confidence
in the estimation through the reduction of areas of
uncertainty ellipses.
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V. Conclusion

A multiple model approach for outdoor vehicle local-
ization is presented. IMM is proposed and compared
to single Extended Kalman filters in the situation of
longitudinal and lateral dynamics. The performances
were evaluated with measurements from an INS, a GPS,
an odometer and a gyrometer. The CACV-IMM and
CACVCT-IMM show good results in estimation error
reduction for maneuvering vehicles. The comparison was
done on the basis of two robustness criteria which are
the position and velocity error peaks, and the mean
uncertainty ellipse areas. One of the main advantages of
this approach is its ability to model the vehicle evolution
space at any time from very simple dynamic models. In
order to avoid the variations observed in the estimation
error covariances, future work could use instead of prob-
ability, another sensors data modeling. The aim would be
to better characterize the different dynamic models, to
quantify and reduce conflict and to assess the confidence
on the various integrated models. All this improvement
will be done using the belief theory. Finally, to get
the vehicle state estimation without exteroceptive data,
it could be interesting to optimize the IMM estimator
during the predictive step by using an adaptive model
switching mechanism.
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