
 
 

  
Abstract— The development of a system that can be used 

for a safe, reliable, highly available onboard lane keeping 
support system is a critical research topic. One of the most 
important functions in driver assistant systems is the detection 
of unintentional lane departures. Current lane departure 
warning systems focus mainly in the detection of lane 
markings using vision sensors, such as CMOS cameras. In 
order to increase accuracy and robustness of such systems the 
utilization of digital maps is necessary. The goal of combining 
camera and map data is to extend the road geometry in 
further distances and eliminate false alarms based on 
unintentional maneuvers caused by the driver. The overall 
system efficiency is increased furthermore by using also 
vehicle dynamics and road geometry calculated using radar 
data. 

I. INTRODUCTION 
OAD safety can be increased by using lane departure 
warning systems, that inform the driver in the case the 

vehicle is leaving the ego lane and is entering one of the 
adjacent lanes. Nowadays, existing systems are capable 
only in detecting lane changes but not to recognize the 
intention related with the maneuver.  In the future more 
active systems should be capable of detecting non-
intentional departures and then to cause opposite force to 
the steering system in order to reinstate the vehicle to the 
initial lane. Using these systems accidents in the lateral 
field of the vehicle can be avoided increasing the overall 
safety in the road. Field operational tests have shown that a 
large amount of traffic fatalities and injuries can be avoided 
by using such systems [1], [5]. 

Current research efforts focus in satisfying the requests 
for developing a system that works under various road and 
driving conditions [2], [3]. This means that the system must 
be capable of dealing with situations where lane markings 
are missing or ambiguous, or the visibility is restricted due 
to weather conditions that limit the performance of vision 
sensors. Other factors that must be taken into account are 
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the additional traffic, the driver intention or complex 
situations like overtaking. The main application field is the 
driving of commercial- and passenger vehicles, like trucks 
and cars, on motorways and rural roads. The functional 
development in such systems is accompanied by 
investigations aiming at a unification process for lane 
keeping support systems. 

The goal of this paper is to enhance previous developed 
systems using vision sensors by utilizing multiple sources 
of information resulting in a situation-adaptive system for 
enhanced lane keeping support. This can lead to the 
development of the technology for a safe, reliable, highly 
available, acceptable and legally admissible onboard lane 
keeping support system for use in commercial and 
passenger vehicles on motorways and rural roads. The 
system reaction in critical lane departure situations 
comprises the control of warning actuators and an active 
steering actuator. 

The proposed system includes except from a CMOS 
camera, also a positioning system utilizing digital maps, 
radar for detecting traffic and on-board inertial sensors for 
estimating ego vehicle dynamics. The camera provides the 
road geometry using a clothoid model. The positioning unit 
provides the most likely path as a list of shape points. A 
shape point includes the geographical coordinates of a 
specific point of the road and is retrieved from the map data 
database. This path is the most probable route that the 
vehicle is about to follow. The radar sensor provides all the 
tracked objects that are moving inside the road. Finally 
using the inertial sensors the curvature of the road is 
calculated supposing that the vehicle is not performing 
complex manoeuvres. 

The paper is organized as follows: In Chapter 2, the 
algorithm for estimating the road geometry is introduced, 
whereas in Chapter 3 the lane data fusion method is 
presented using the four sources of information described 
above. The algorithm that is presented for the road 
estimation using the map data is extending the existing 
techniques that are used in applications using cameras or 
radars for estimating road geometry by using multiple 
clothoids in order to increase the accuracy in greater 
distances. Results regarding the performance and the 
evaluation of the algorithms are presented in Chapter 4. To 
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evaluate the performance of the proposed algorithms real 
data were used coming from a truck equipped with the 
sensors described above. 

II. ROAD GEOMETRY CALCULATION USING DIGITAL MAPS 

A. Introduction 
The positioning unit is using a digital map database to 

extract information about road segments lying ahead of the 
vehicle. The output of this procedure is called the 
“Electronic Horizon” and it includes all the possible routes 
that the vehicle can follow. The Electronic Horizon can be 
used to extract the most likely path which is the path with 
the higher probability regarding the intention of the driver 
to choose it between all the possible branches of the road. 
The main objective is to calculate the trajectory that best 
fits to the actual road that the vehicle is about to cross using 
the list of shape points that describe the most likely path. 
The processing includes transformation to the local 
coordinate system, grouping of the points according to 
specified rules and filtering of data to extract the 
parameters that describe the road geometry. The processing 
steps are shown in the next figure. 

 
 
Fig. 1. Scheme for estimating road geometry using map data 

 
The shape points formulating the most likely path (green 
line) are the red dots and the blue circles are indicating the 
segments in which the road is split. 

B. Algorithm 
The mathematical model that is used for describing the 

geometric properties of the road is the clothoid model and 
is given from the following equation: 

3120
0 62

xcxcxthyy ⋅+⋅+⋅+=                          (1) 

lccc ⋅+= 10                                                                 (2) 

where 10 , cc  is the curvature and curvature rate 

respectively and th  is the tangent of the heading angle in 
the beginning of the road segment. Due to the very long 
road lengths ahead of the vehicle it has to be considered the 
use of multiple clothoid filters in order to acquire a more 
accurate prediction of the road geometry. 

The algorithm for estimating the road borders includes 
the following steps. First, the transformation from the 
geodetic coordinate system to the Earth – fixed Earth – 
Centered (ECEF) coordinate system. Then it is following 
the transformation from the ECEF system to the local 
tangential system which is a Cartesian coordinate system. 
The equations used for the first transformation are the 
following: 

( ) ( ) ( )φλ coscos ⋅⋅+= hNX  

( ) ( ) ( )φλ sincos ⋅⋅+= hNY  

( )[ ] ( )λsin1 2 ⋅+−⋅= heNZ                                         (3)   
where e  is the eccentricity of the ellipsoid (for WGS-84, 

0818.0=e ) and 

( ) ( )λλ 22 sin1 ⋅−= eaN                                        (4) 
The equations for the second transformation are the 
following: 
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Secondly the segmentation of the list containing 
transformed coordinates of shape points. This task is 
performed according to a set of rules regarding the total 
length and density of the segments that are going to be 
created. More specifically the segmentation is performed 
according to the following steps: 
1) The shape points are divided to segments according to 

the local maximums and minimums in both 
dimensions. 

2) Every segment is further divided by using a threshold 
for the maximum length of a segment. 

3) In the next step segments with a low density of shape 
points, like in the case of a straight road are united in 
one segment. 

4) In the final step in order to ensure the continuity 
between successive segments, two shape points in the 
beginning of every segment are assigned also to the 
previous segment. 

In each segment the heading angle is estimated 
geometrically at the beginning of it. Then all the 
coordinates of the shape points are transformed to the new 
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coordinate system that has its center located to the first 
shape point and its x axis parallel to the initial heading. 

The output of the segmentation is a list with shape point 
segments which is defined as: 
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where N  is the number of segments and iL  is the length 

of thi −  segment. 
Finally, Kalman filtering is applied for estimating road 

parameters using the clothoid model. For this purpose a 
bank of Kalman filters is used, in which the filters are 
identical and have the following parameters. The state 
vector of the filter is the parameters of the clothoid 
equation. 

[ ]Tiiii
i ccthyx 100=                                              (7) 
The measurement vector includes all the 
−y coordinates of the shape points belonging to the 

specific segment and is the following: 

[ ]TLiii i
yyy ,1, K=                                                  (8) 

The transition matrix is the following: 
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where ( )dydx,  is the translation of ego vehicle in both 
axes and is given by the following equations: 
As it can be seen the update model that was chosen for the 
offset and curvature is the clothoid (1), (2) respectively and 
for the heading and curvature rate a constant update model. 

The measurement matrix is: 
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Finally the process iQ  and iR  measurement noise 
covariance matrices are respectively: 

T
i qSqQ ⋅⋅=                                                               (11) 
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where 
iLyy ,1, , σσ K  are the standard deviations of the 

measured y  coordinate of shape points and 
1

, cth σσ  are 

the standard deviations of the heading and curvature 
process noise respectively. In order to evaluate the 
efficiency of the algorithm the final output is accompanied 
with a confidence value for every segment which is 
calculated as followed: 

( )SP
MINMMAXM

MINMM
M Nn⋅

−
−

= 2
,

2
,

2
,

2

σσ
σσ

σ                           (14) 

where 2
Mσ  is the variance of the estimated variance, n  is 

the number of shape points forming the segment and SPN  
is the maximum number of shape points allowed. 

III. LANE DATA FUSION 

A. Introduction 
The role of this module is very important as it is leading 

in increased robustness of the overall system and is 
extending the detected lanes by the camera sensor to 
greater distances using information from the positioning 
unit [7]. Cases where the camera fails to detect the lane 
markings due to restricted visibility or ambiguous markings 
can now be handled using a special filter which keeps 
estimating the offset and updates the rest of the parameters 
from the map data. Also in normal conditions the final 
estimation is refined as the module combines the camera 
data in lower distances with the map data in greater 
distances. 

B. Algorithm 
The main fusion algorithm is performed using the 

processed data coming from the vision sensor which are 
delivered in the form of clothoid parameters. The other 
source of information is the lane attributes delivered by the 
electronic horizon of the positioning unit as described in 
the previous section. The core of the algorithm for fusing 
the lane attributes is described in the following section and 
is the following: 
1) If both camera and map data are available then the 

final output is a combination of this two sources of 
information. 
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2) If only one of these two sources is available the final 
output is equal to it. 

3) If none of the camera or map data are available then 
the final output is a combination of the geometry 
extracted using the radar data and the vehicle 
dynamics. 

Because the offset of the vehicle from the lane marking 
is provided only by the vision sensor, a special lateral 
Kalman filter is used in the case that camera data are not 
available. This filter continues to provide estimations of the 
offset for a specific amount of time when there is a failure 
of the vision sensor. The time threshold LFT  which defines 
the capability of the filter to provide lane offset estimations 
continuously without measurements is set usually below 2 
seconds. The state and measurement vectors of this filter 
are the following: 

[ ]T
LL wAVyx 0=                                             (15) 

[ ]Tcamcam wyy 0=                                                       (16) 

where 0y  is the offset from the middle of the lane where 
the vehicle is moving and w  is the width of this lane. 

camcam wy ,0  are the offset and width provided by the 

camera respectively. LL AV ,  are the lateral velocity and 
acceleration of the vehicle (first and second derivative of 
the offset) respectively. For the three first states a constant 
acceleration model is used while for the last state (width) a 
constant state model is used. 

The combination of the camera and map data in order to 
extract the final trajectory that best describes the road is 
done using the following equations. 

MMCCf ywywy ⋅+⋅=      Cdx ≤  

Mf yy =                                 Cdx >                          (17) 

where fMC yyy ,,  are the camera, map and fused 

trajectories respectively. Cd  is the maximum distance of 

the camera trajectory. MC ww ,  are the weights for the 
camera and the map geometry respectively and are given 
from the following equations: 

( )MCCCw σσσ +=  

( )MCMMw σσσ +=                                                (18) 
where: 
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where 2
Cσ  is the variance of the estimated curvature from 

the camera and x  is the distance from the ego vehicle. 

Mσ  is the confidence calculated for the first segment of 

the map data (14). The main weight for the camera and the 
map data is based on the variance of the estimated values. 
When the variance is increasing then less confidence is 
assigned to the specific source of information. Also, the 
distance from the ego vehicle is regarded. As the distance is 
increasing, more weight is assigned to the map data than to 
the camera as the estimation error for the camera is getting 
very big for large distances ahead and more specifically for 
distances greater than 50m or 60m. 

When there is no map or camera data then the road 
geometry is given from the following equations: 

EVf yy =                             EVdx ≤  
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                EVdx >                          (20) 

where EVd  is a distance threshold and RN  is the number 
of objects detected by the radar. The curvature and 
curvature rate in the case of the radar objects is calculated 
using polynomial fitting to the buffer which holds all the 
previous locations of the objects. The curvature using 
vehicle dynamics is calculated using the following formula: 

010 == cVc ω                                                      (21) 

where V,ω  are the yaw rate and velocity of the ego 

vehicle provided by the can bus. The weight i
Rw  for the 

radar object is calculated as: 
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In both cases the offset in order to calculate the lateral 
displacement y  using the clothoid model is provided from 
the lateral filter described above. 

IV. RESULTS 
The algorithms have been implemented in C++ and have 

been tested using real data acquired using an experimental 
truck equipped with a camera for lane detection, a radar for 
traffic detection, a positioning unit with digital maps and 
inertial sensors for vehicle dynamics estimation. 

The application of the road geometry estimation 
algorithm using maps, applied in a specific scenario, is 
presented in the next figure. The shape points are displayed 
using the circles and the different colors correspond to the 
different segments. The continuous line represents the 
estimated trajectory for the road. Using the maps the road 
geometry can be extended to large distances, even in 300m 
or 400m as it is seen in the next figure. 
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Fig. 2. Road geometry extracted using map data 
 

In the following figure it can be seen the estimation of 
the road geometry using maps and how it can extend the 
predicted lane boundaries detected by the camera (red and 
green circles). The red circles in the middle of the lane are 
the shape points of the most likely path. The blue triangles 
are the Gps detections of the future position of the vehicle. 
It is seen that in sharp curves the map estimated borders 
increase the accuracy of the final output of the lane 
detection system. 

 
 
Fig. 3. Camera versus Map road geometry 
 

An example of the lateral filter is shown in the next 
figure where it is shown a case of a camera failure. The 
failure is indicated with the transition of the blue line from 
2 to 3. The green line is the estimated offset from the 
camera and the red line is the output of the lateral filter. It 
is seen that the system continues to provide the lateral 
offset of the vehicle from the middle of the lane for 2 
seconds even if the camera fails to detect the lane markings 
of the road. 

 
 
Fig. 4. Lateral Filter 
 

In the next figure it is shown the estimated curvature 
using the lane data fusion algorithm. The blue line 
represents the image processing estimated values, the red 
represents the curvature estimated from the maps and the 
green represents the fused curvature. 

 
 
Fig. 5. Curvatures from camera and maps versus fused curvature 
It is seen that the maps-estimated curvature has greater 
noise when compared to the one estimated using the 
camera detections. Also, the fused curvature is reducing the 
estimation error introduced by the two individual sources 
and provides a more realistic representation of the lane 
trajectory as it receives values between the two different 
levels of estimated curvature from camera and maps. 

In the next table are shown some results after testing the 
algorithm in 4 different scenarios. More specifically the 
table is showing the length of the scenario in seconds, the 
percentage of failure of the individual lane geometry 
sources and the failure factor of the lane data fusion (LDF) 
proposed method. Failure is defined when the 
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corresponding sensor fails to provide to the system 
information regarding the lane geometry or when the 
confidence associated with the provided information is 
below a certain threshold. In our case this threshold is 
defined to be 0.4. The percentage is extracted by dividing 
the total number of failures with the total number of scans. 

The lane data fusion algorithm is considered to be failing 
when the estimated confidence is below the value 0.4, or if 
the time threshold LFT  of the lateral filter of LDF module 
is expired. That is the reason why in the forth scenario the 
failure percentage of LDF is so big. The detection 
capabilities of the camera in the specific scenario are very 
limited due to environmental conditions (bad weather) and 
as a result there is a limited performance of the vision – 
lane detection system. Though, the final estimated lane 
geometry is improved due to the usage of the combined 
algorithm. 

In the first scenario both sources have a very good 
performance and the fusion process further improves the 
final output. In second and third cases there are some 
scenarios where there is decreased performance from the 
maps lane geometry system. Though, the final output is 
very good due to the usage of the camera detected 
geometry. 

V. CONCLUSION 
Using map data it is feasible to extend the road geometry 

to greater distances in respect with existent sensors like 
radar and camera. It is also possible to increase the 
robustness of lane detection systems as it is now possible to 
continue to detect the lane geometry even if one of the 
active sensors of the vehicle fails to perceive the 
environment. 
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TABLE 1 
LANE GEOMETRY ESTIMATION SOURCES EFFICIENCY 

Scenario Length 
(sec) 

Failure (%) 

Camera Maps LDF 

1 101 2.82 1.88 1.17 
2 100 3.75 21.05 3.17 
3 95 3.03 19.23 2.02 
4 64 54.48 2.06 45.33 
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