
 
Abstract— The VIP-II, a new multi-processor architecture 

developed by Infineon, provides the required performance for 
future camera-based advanced driver assistance systems. The 
integration of data-processing, control and communication, an 
optimized set of peripherals and low power consumption will 
help to reduce the overall systems costs required for a future 
wide market penetration.  The VIP-II software tool-chain 
supports a PC-based application development process from a 
first functional reference design up to further development 
steps including parallel programming. The paper proposes a 
multi-threading processing framework for image feature 
extraction and motion estimation. Performance measurements 
show an achievable performance in the range of today’s 
desktop processors. 

I. INTRODUCTION 
Advanced driver assistance systems (ADAS) are one of 

the emerging automotive markets, driven by a wide public 
and industrial interest in improved safety and comfort. 
Applications like lane departure warning, automatic cruise 
control, parking aids or night vision have already been 
introduced. Further and more advanced applications like 
pedestrian detection, emergency brakes or automatic lane 
change assistance are under development. ADAS sense the 
driving environment to provide information or vehicle 
control, where several sensors per vehicle are necessary to 
provide a complete understanding of the current traffic 
situation. Today products are available for commercial cars 
or as options in the luxury passenger vehicle segment. To 
address the full potential of the automotive market the 
reduction of the overall system costs is one important step.  

Besides radar, lidar or ultrasonic cameras are one key 
technology for ADAS.  In contrast to other sensors cameras 
produce a projection of the driving environment with a high 
spatial resolution, which can be directly displayed to the 
driver (e.g. night vision, rear view cameras) or interpreted 
for lane departure warning, blind spot detection, pedestrian 
detection etc. But the interpretation of images with high 
spatial resolution requires powerful data processing 
capabilities.  Today, prototypes and products of camera-
based ADAS are based on high performance general purpose 
DSPs, 
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combinations of FPGAs and DSPs as well as application 
specific processors ([6], [5], [2]). These solutions point out 
the need of a computational performance in the range of 
desktop processors. At the same time the automotive 
embedded systems must fulfil automotive requirements like 
automotive qualification and reduced power consumption. 
For all approaches a reduced power consumption results 
from parallel processing capabilities (VLIW, SIMD, multi-
core) and decreased processor frequencies.  

Infineon researches new multi processor architectures for 
communication and video applications. The current 
prototype, which is further called VIP-II (VIP-II stands for 
the 2nd generation of Vision Instruction Processor), offers 
the required computational performance, supports SIMD as 
well as MIMD operations, and fulfils low power 
requirements as it is also designed for handheld devices. 
Pure SIMD architectures, proposed in [2] and [6], can only 
be used for low level processing. In contrast to this the VIP-
II supports the complete processing chain. Due to its low 
power consumption and optimized interfaces for camera 
applications, a cost advantage to general purpose processors 
is expected.  On the other side parallel programming at the 
data and task level is required to benefit from the VIP-II’s 
SIMD and MIMD support. The paper will discuss how 
camera-based application development is supported by the 
development environment of the VIP-II. An application 
example - including a motion estimation approach based on 
a tracking of feature points - is presented. 

Section  II and  III describes the main features of new multi 
processor architecture and its software environment. Section 
 IV discusses the process of application development. The 
paper ends with summary and outlook in section  V. 
 

II. PROCESSOR ARCHITECTURE 
Application software for camera-based ADAS shows 

different kinds of parallel processing. Figure 1 illustrates the 
principle processing chain. First steps of the image 
processing chain are data intensive. The same instructions 
are performed at every pixel to identify significant image 
parts or feature points. This can be expressed by SIMD-
instructions (single instruction multiple data). Further 
processing steps cover object detection, tracking and 
classification up to application specific situation analysis. In 
contrast to the first steps the processing is now based on a 
reduced but more abstract dataset. The required algorithms 
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are more complex and control-based. Parallelism can be 
found on object level (e.g. tracking of several vehicles 
parallel to lane detection and/or traffic sign recognition).  
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Figure 1: General processing chain for automatic video surveillance 
systems. 
 

The VIP-II integrates all processing modules required for 
camera-based ADAS (see figure 2.).  Cameras can be 
connected via the video interface. The video interface 
provides parallel and serial (LVDS) data links for input and 
output. The interface supports a transfer to and from the on-
chip memory at a data rate of up to 22MSamples/s without 
any control of the SIMD cores. A sample corresponds to a 8 
or 16 bit data values. Higher data rates are possible, but 
requires control of the SIMD cores. The VIP-II prototype 
offers 512kByte on-chip memory. Additional external 
memory is accessible via a 16bit wide external bus unit. To 
support the complete processing chain the VIP-II provides a 
multi processor approach to support SIMD as well as MIMD 
operations. The principle architecture of the VIP-II is 
illustrated in figure 3.  
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Figure 2: Components of a camera system for ADAS. The VIP-II is 
designed to integrate all processing modules form image capturing to 
vehicle communication. 

The multi-processor approach based on a cluster of multi-
tasked SIMD cores is suited for the data-intensive low-level 
operations as well as for medium- and high-level operations. 
This scaleable approach supports different performance 
requirements of different applications as well as a further 
evolution of applications.  
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Figure 3:  Principal architecture of the VIP-II 
 
An additional general purpose processor core, the ARM9, 

is linked via a bus bridge to the SIMD-cluster. The ARM9 
was integrated with a rich subset of its standard peripherals. 
For ADAS applications the ARM9 can be used for 
communication tasks and the main control-flow. 

A multi-layer bus system provides simultaneous memory 
accesses of the SIMD cores. The first prototype consists of a 
cluster of four SIMD cores. 

 The SIMD core is based upon previous work [3]. Each 
SIMD core contains four processing elements and operates 
with a clock frequency of 300 MHz. It supports special 
instructions like saturating operations and finite-field 
arithmetic, and long-instruction word (LIW) features for 
performing arithmetic operations and memory accesses in 
parallel. The execution pipeline is four stages long, which is 
used to relax the timing requirements for the memories and 
to reduce the memories’ supply voltage and thereby the 
power consumption. However, a long pipeline reduces the 
performance in case of data dependencies between 
instructions from the same task. That is why here each of the 
pipeline stages contains an instruction from one of four 
separate tasks. Therefore, each SIMD core can be seen as a 
multi-tasked SIMD core. To execute four independent tasks 
on one core without any penalty due to context switching, 
the instruction caches, the local memories and the registers 
are replicated to store four different contexts at the same 
time. Every clock cycle a new context is selected in a round-
robin schedule. A general purpose core inside every SIMD 
core controls the processing of the four processing elements. 
Corresponding to the multi-tasked SIMD core a multi-tasked 
general purpose processor is required, which can also be 
used for multi-tasked sequential processing. 
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Form the programmer’s perspective the VIP-II can be 
seen as a cluster of 16 independent task-cores (four multi-
tasked SIMD cores, where each core can handle four tasks in 
parallel). As the system runs with 300MHz the remaining 
performance of a single task-core is 75MHz. Each task-core 
consists of a general purpose core and an array for four 
processing elements. The current prototype provides a 
computational performance of 14.400 MIPS (including the 
PE-array), 3000 MIPS (without the PE-array) and 9.600 
MMACs (16b input and 32b output). It is designed in 90nm 
CMOS technology and available in a BGA package (12mm 
x 12mm) with 310 pins. The power consumption is expected 
to be lower than 500mW (the first VIP-II prototype is 
currently under test.). 

III. SOFTWARE ENVIRONMENT 
 

The general purpose controller of the SIMD cores and the 
additional ARM9 support “C” programming.  The complete 
“C” based tool chain, a library for image processing and an 
operating system are available. Figure 4 illustrates the 
compilation process. Because “C” does not support data 
parallel programming a SIMD-compiler based DPCE 
language was developed (data parallel C extension). The 
SIMD-compiler supports the declaration of multi-
dimensional objects and their operations in a “C” oriented 
way. Assembling on GP cores, the PE array and the ARM9 
is also supported.  

 

*.asm

*.asm

•OS
•libraries

*.c *.dpc

SIMD 
compiler

C compiler

linker /
assembler

multi-threaded
program  

Figure 4: Illustration of the compilation process 
 

Application development requires a real-time operating 
system (RTOS) running on the general purpose core and on 
each SIMD core. The RTOS contains all the necessary 
functions for thread creation and synchronization, interrupt 
handling, access to peripherals, and input/output. The 
operating system is available as a “C” library. Each core of 
the VIP-II is able to execute the main thread and to create 
and control further threads. Currently no dynamic 
scheduling is supported. Therefore, the thread schedule must 
be defined before execution time. Scheduling can be 
developed and simulated on a standard PC running with an 

operating system with a multi-threading functionality.  If the 
required functions of the VIP-II’s operating system are 
renamed to the functions of the PC’s operating system, the 
same “C”-sources of the multi-threaded application can be 
used in both environments. 

The API provides access to a library of optimized image 
processing functions, peripherals, and operating system 
functions. The image processing library follows Intel’s 
“Integrated Performance Primitives” library (IPP), by 
keeping a close relation to the IPP API. The image 
processing library provides a broad set of often used low-
level operators for image processing, which can easily be 
integrated into “C”-programs. The image processing library 
of our vision processors can be easily mapped on Intel’s IPP. 
This allows a comfortable and efficient application 
development in a PC-environment. 

 

application level

high-level (multi-threaded, “C”+assembler)
feature extraction, motion estimation

VIP-II
SIMD-cores + ARM9

low-level:
image processing library, camera control

operating system:
multithreading, synchronization, peripherals 

 
Figure 5: VIP-II’s software architecture 

 
On higher application levels reference examples explain 

the way of multi-threaded programming and provide a 
framework for general application tasks like frame 
capturing, external memory access, thread synchronization 
and data output. 

IV. APPLICATION DEVELOPMENT  
To illustrate the application development process on the 

VIP-II’s multi-processor architecture a reference application 
example is discussed. The application covers the low-level 
processing step of the image processing chain and performs 
an extraction of different image features (edges, corners, 
lane markers) and a motion estimation on corners (see figure 
6).  Further high level application parts could be integrated 
into the proposed processing framework based on the 
extracted feature set. 

Images are processed on the fly (without storing a 
complete image), only the extracted features with their 
assigned information like motion trajectories are stored. 
Therefore, the implementation offers low memory 
consumption and requires only the on-chip memory. This 
could be a benefit for a future embedded solution  
 

To develop this reference application the following 
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approach was used: 
1. A first implementation was programmed in “C” on a 

standard PC. 
2. Multi-threading and data parallel operations were 

introduced in the PC-based implementation: 
a. The multi-threading support functions of VIP-II’s 

operating system were mapped on Window’s multi-
threading library. Only these functions were used to 
generate a multi-threading program on the PC. 

b. The functions of VIP-II’s image processing library 
were mapped on Intel’s IPP. Only these functions 
were used to introduce data parallel processing on the 
PC. As a side effect the performance of the PC-based 
implementation was increased. 

3. The PC-based implementation generated in step 2 was 
compiled with the VIP-II tool chain and executed on the 
VIP-II’s virtual prototype. With the limitation of a file 
based input and output, no additional modification on the 
source code is required. The VIP-II’s virtual prototype 
produces cycle-accurate performance values. 

4. Depending on the performance results of step 3 
optimization steps of the multi-threading program 
became necessary. This was first implemented and 
verified on the PC and afterwards on the virtual 
prototype. 

5. The application is than loaded and performed on the real 
hardware. 

 

 
Figure 6: Illustration of extracted features and motion trajectories: edges 
(blue); corners and lane markers (green); trajectories (red) 
 

The reference application extracts three different features: 
• Edges correspond to a significant change of the local 

image contrast. Typically, they are detected as local 
maxima of the image gradient (see figure 7). The result 
of this edge detection approach is the information at 
every pixel, if it is an edge or not. Additionally, the 
magnitude and the direction of the image gradient for 
each edge point are provided. The gradient magnitude 
can be used as a confidence value. Figure 6 displays the 
result of edge detection. [4] provides further details of 
the implemented  approach. 

• Corners correspond to pixels where the change of the 
contrast describes a geometrical corner. The 
implemented corner detection uses an approach of Harris 
and Stephens [1]. The implemented approaches of edge 

and corner detection uses the same preprocessing (image 
smoothing and the computation of the image gradient; 
see figure 7). Similar to edges a value is computed, 
which can be used as a confidence value for corners. 
Figure 6 shows the result of the corner detection 
approach. 

• Lane Markers: Particularly for camera based driver 
assistance systems the detection of lane markers and the 
road geometry is a basic processing task. Typically, lane 
markers are identified as dark-bright-dark contrast 
changes. The implemented approach detects these 
contrast changes only in row direction and only at pixels 
with significant image intensity. The implementation 
uses the output of the image gradient computation, which 
is also required for edges and corner detection. Figure 6 
shows the result of the implemented approach. 

 

gauss filter

image gradient

edge detection

corner detection

lane markers

loop over frames

motion estimation

gauss filter: i(x,y) = gauss_filter_3x3(I(x,y))

x-gradient: ix(x,y) = i(x+1,y) – i(x-1,y)
y-gradient: iy(x,y) = i(x,y+1) – i(x,y-1)

ixx(x,y) = ix(x,y) x ix(x,y)
iyy(x,y) = iy(x,y) x iy(x,y)
mag(x,y) = ixx(x,y) + iyy(x,y)

edge detection: local maximum 
with gradient interpolation on sub-
pixel level

a b  
Figure 7: Illustration of the main processing steps of the reference 
application (a) and the required operations for edge detection (b) 

 
In addition to the extracted features, corners are tracked 

over time to provide motion information to higher 
application software levels. As the implemented corner 
detection approach produces stable corners over time, a 
simple and fast tracking algorithm is used. For every frame 
the detected corners are saved as a list of points including a 
description of the image neighborhood around this corner 
pixel. To find a corresponding corner in the previous frame, 
the list for previous corners is scanned. The corner, which 
posses the highest similarity of the local image descriptor 
and which fulfills a distance constraint, is defined as a 
predecessor of a new corner. The motion trajectory is 
updated and linked to this new feature point. The result of 
motion estimation is also displayed in figure 6. 

Figure 7 displays the main processing step of the 
presented feature extraction approach. Data parallel 
operations are easily identified in the image based 
processing steps of the Gaussian filtering, the image gradient 
computation and the following edge detection step. 
Corresponding library functions are provided in Intel’s IPP 
library as well as in the VIP-II’s image processing library. 
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The final local maximum detection to define single pixels as 
edges is implemented in standard “C” on the PC as well as 
on the VIP-II.  
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overlap
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Figure 8: The camera image is divided and processed in single row-blocks 
(a); every row-block is divided in several sub-blocks, which are processed 
in parallel (b). 

 
In contrast to use of data parallel processing power by 

including optimized library functions it is much more 
challenging to use the multi-thread capabilities. To reduce 
the required memory of the final application the camera 
image is divided and processed in single row-blocks (see 
figure 8).  At least the memory for two row-blocks is hold in 
the on-chip memory, where one row-block is required for 
reading pixels from the camera interface and the other row-
block is required for processing. This allows reading and 
processing in parallel. Because feature extraction requires 
local neighborhood operations an overlap of the row-blocks 
must be considered (see figure 8).  

For further multi-threaded processing each row block is 
split into several sub-blocks. Each sub-block is processed on 
a single task-core of the VIP-II. Therefore the maximum 
number of sub-blocks per row-block should be 16 according 
to the number of available task-cores on the VIP-II. Due to 
the real-time constraints of a specific application lower 
numbers of sub-blocks are reasonable. According to the 
problem of local neighborhood operations as mentioned 
above an overlap of the sub-blocks must also be considered 
(see figure 8). 

Figure 9 shows a general block diagram of the multi-
threading program. The main thread, which is executed on 
one of the SIMD-task-cores, runs some initialization steps 
including the creation of the processor threads and the 
corresponding synchronization objects. The main thread 
reads the incoming pixels from the camera interface and 
distributes them into a memory structure, which is prepared 
for the following parallel processing. After all pixels of one 
row-block are captured, the sub-blocks are ready for 
processing and the corresponding synchronization object is 
updated accordingly. Triggered by this synchronization 
signal the worker-threads start the processing of their sub-
blocks. Parallel to the worker-threads the main-thread 
continues to read and distribute the incoming pixels to a 

second memory field. This second memory field is necessary 
to dissolve accesses from worker-threads and the main-
thread. After all row-blocks are processed the main-thread 
waits until the worker threads have stored the extracted 
features to a common data structure. Then the schedule is 
repeated for the next frame. 
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Figure 9: Scheduling and synchronization of tasks for parallel feature 
extraction in sub-blocks. 
 

Figure 10 displays performance results of the proposed 
multi-threading feature extraction approach. The figures are 
based on VGA resolution and the processed data is 8 or 
16bit wide. For the VIP-II implementation, the image was 
divided in 10 row-blocks and 16 sub-blocks. The 
performance measurement includes all synchronization 
overhead. On the Pentium the image was processed as one 
single block to minimized effects of thread synchronization. 
Furthermore Intel’s IPP functions were used to exploit the 
full computational power of the Intel architecture. The 
figures demonstrate that the processing power of the VIP-II 
exceeds the Pentium IV by a factor in the range of 2 to 6. It 
should be noted that the VIP-II operates at 300MHz. The 
four SIMD-cores provide computational performance of 
1.2GHz, which is less then the 1.8GHz of the Pentium. 
 
 

VIP-II [ms] PIV, 1.8GHz [ms]
basis image operations
copy (16bit) 0,35 1,92
add (a+b=c, 16bit) 0,57 3,02
sub (a-b=c, 16bit) 0,57 3,04
mul (a*b=c, 16bit) 0,58 3,02
edge detection
3x3 image filter (8 bit) 0,80 2,00
image gradient (x and y, 16bit) 1,20 4,23
gradient magnitude (16bit) 1,56 6,94

Computational performance on 
VGA resoluton (640x480)

 
Figure 10: Performance figures of VIP-II versus Pentium IV. The 
performance values of the PC are based on Intel’s IPP implementation 
running on a 1.8GHz Pentium IV processor. 
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V. SUMMARY AND OUTLOOK 
 

First camera-based ADAS have been introduced into the 
automotive market in commercial cars as well as an option 
in the luxury passenger vehicle segment.  To expand the 
benefit of these new safety features as a standard option over 
all vehicle segments, the system costs must be reduced.  
Here, new processor architectures, which offer the required 
computational performance and decrease the systems costs, 
will be a significant factor. The VIP-II, a new multi-
processor architecture developed by Infineon, provides the 
required performance for advanced ADAS. The integration 
of data-processing, control and communication, the 
optimized set of peripherals and the low power consumption 
will reduce the overall systems costs. Because the processor 
is scalable in hardware as well in software, a wide range of 
varying applications could be supported by a future 
processor family strategy. The application developer will 
profit form the software scalability in terms of a reduced 
time to market. 

On the other side the multi-processor approach requires 
multi-threaded programming as well as the introduction of 
data-parallel operations. The software tool-chain of the VIP-
II supports a PC-based application development process. 
The PC can be used for the first functional reference design 
as well as for all further development steps (introduction of 
data-parallel and task parallel processing). Another useful 
aspect of development on PC is benchmarking of algorithms. 
In particular the available operation system and image 
processing library supports an application development on 
“C” level. The available virtual prototype of the VIP-II can 
be used to verify the application directly in a PC 
environment.   

To explain the application development process the paper 
presents a multi-thread feature extraction framework. The 
achieved performance shows that VIP-II allows to integrated 
further processing steps without real-time conflicts. 
Furthermore the framework fits into the on-chip memory 
and allows smart system integration.  

Future work will cover hardware and software aspects. On 
the hardware side the peripheral set will be further improved 
and optimized according to the requirements of camera-
based ADAS. Application analysis to identify parallelism 
and a parallel programming support will improve the current 
software tool chain. 
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