

Abstract— The VIP-II, a new multi-processor architecture

developed by Infineon, provides the required performance for
future camera-based advanced driver assistance systems. The
integration of data-processing, control and communication, an
optimized set of peripherals and low power consumption will
help to reduce the overall systems costs required for a future
wide market penetration. The VIP-II software tool-chain
supports a PC-based application development process from a
first functional reference design up to further development
steps including parallel programming. The paper proposes a
multi-threading processing framework for image feature
extraction and motion estimation. Performance measurements
show an achievable performance in the range of today’s
desktop processors.

I. INTRODUCTION
Advanced driver assistance systems (ADAS) are one of

the emerging automotive markets, driven by a wide public
and industrial interest in improved safety and comfort.
Applications like lane departure warning, automatic cruise
control, parking aids or night vision have already been
introduced. Further and more advanced applications like
pedestrian detection, emergency brakes or automatic lane
change assistance are under development. ADAS sense the
driving environment to provide information or vehicle
control, where several sensors per vehicle are necessary to
provide a complete understanding of the current traffic
situation. Today products are available for commercial cars
or as options in the luxury passenger vehicle segment. To
address the full potential of the automotive market the
reduction of the overall system costs is one important step.

Besides radar, lidar or ultrasonic cameras are one key
technology for ADAS. In contrast to other sensors cameras
produce a projection of the driving environment with a high
spatial resolution, which can be directly displayed to the
driver (e.g. night vision, rear view cameras) or interpreted
for lane departure warning, blind spot detection, pedestrian
detection etc. But the interpretation of images with high
spatial resolution requires powerful data processing
capabilities. Today, prototypes and products of camera-
based ADAS are based on high performance general purpose
DSPs,

Axel Techmer is with the Corporate Research of the Infineon
Technologies AG, D-81730 Munich, Germany; phone: ++49 89 234 40055;
e-mail: axel.techmer@infineon.com

combinations of FPGAs and DSPs as well as application
specific processors ([6], [5], [2]). These solutions point out
the need of a computational performance in the range of
desktop processors. At the same time the automotive
embedded systems must fulfil automotive requirements like
automotive qualification and reduced power consumption.
For all approaches a reduced power consumption results
from parallel processing capabilities (VLIW, SIMD, multi-
core) and decreased processor frequencies.

Infineon researches new multi processor architectures for
communication and video applications. The current
prototype, which is further called VIP-II (VIP-II stands for
the 2nd generation of Vision Instruction Processor), offers
the required computational performance, supports SIMD as
well as MIMD operations, and fulfils low power
requirements as it is also designed for handheld devices.
Pure SIMD architectures, proposed in [2] and [6], can only
be used for low level processing. In contrast to this the VIP-
II supports the complete processing chain. Due to its low
power consumption and optimized interfaces for camera
applications, a cost advantage to general purpose processors
is expected. On the other side parallel programming at the
data and task level is required to benefit from the VIP-II’s
SIMD and MIMD support. The paper will discuss how
camera-based application development is supported by the
development environment of the VIP-II. An application
example - including a motion estimation approach based on
a tracking of feature points - is presented.

Section II and III describes the main features of new multi
processor architecture and its software environment. Section
 IV discusses the process of application development. The
paper ends with summary and outlook in section V.

II. PROCESSOR ARCHITECTURE
Application software for camera-based ADAS shows

different kinds of parallel processing. Figure 1 illustrates the
principle processing chain. First steps of the image
processing chain are data intensive. The same instructions
are performed at every pixel to identify significant image
parts or feature points. This can be expressed by SIMD-
instructions (single instruction multiple data). Further
processing steps cover object detection, tracking and
classification up to application specific situation analysis. In
contrast to the first steps the processing is now based on a
reduced but more abstract dataset. The required algorithms

Application Development of Camera-based Driver Assistance
Systems on a Programmable Multi-Processor Architecture

Axel Techmer

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

FrE1.9

1-4244-1068-1/07/$25.00 ©2007 IEEE. 1211

are more complex and control-based. Parallelism can be
found on object level (e.g. tracking of several vehicles
parallel to lane detection and/or traffic sign recognition).

camera(s)

vehicle

object level
• detection, tracking, classification

basic information
• motion, depth

low level
• edges, corners, texture, color, …

ego motion, road geometry, path of
surrounding vehicles, emergency
situations, …

external knowledge
•object models
•camera perspective
•vehicle speed
•…

internal knowledge:
•lane geometry
•objects
•visible conditions
•…

low-level
(image processing)

medium-level
(image processing,

application specific)

high-level
(interpretation,

application specific)

camera control

Figure 1: General processing chain for automatic video surveillance
systems.

The VIP-II integrates all processing modules required for
camera-based ADAS (see figure 2.). Cameras can be
connected via the video interface. The video interface
provides parallel and serial (LVDS) data links for input and
output. The interface supports a transfer to and from the on-
chip memory at a data rate of up to 22MSamples/s without
any control of the SIMD cores. A sample corresponds to a 8
or 16 bit data values. Higher data rates are possible, but
requires control of the SIMD cores. The VIP-II prototype
offers 512kByte on-chip memory. Additional external
memory is accessible via a 16bit wide external bus unit. To
support the complete processing chain the VIP-II provides a
multi processor approach to support SIMD as well as MIMD
operations. The principle architecture of the VIP-II is
illustrated in figure 3.

VIP-II

Camera
package
with lens

image
analysis
& inter-
pretation

image
pre

processing

external
memory

(optional)

CMOS
image
sensor ve

hi
cl

e
ne

tw
or

k

input:
• ego motion,
• control from HMI

output:
• encoded video
• generated traffic
information

• warning signals

image pre processing
• frame grabbing
• image enhancement
• format conversions
• exposure control
• low level filters

image analysis & interpretation
• video encode (for display
applications)

• feature extraction
• image motion, depth estimation
• object detection, tracking,
classification

• scene interpretation

camera processor link
• 92 Mbit/s (640x480x10bit @ 30 fps)
• digital parallel or digital serial (LVDS)
• for separate head unit and ECU
additional LVDS devices required

commu-
nication

controller

monitor
(optional)

Figure 2: Components of a camera system for ADAS. The VIP-II is
designed to integrate all processing modules form image capturing to
vehicle communication.

The multi-processor approach based on a cluster of multi-
tasked SIMD cores is suited for the data-intensive low-level
operations as well as for medium- and high-level operations.
This scaleable approach supports different performance
requirements of different applications as well as a further
evolution of applications.

SIMD
Core 4

40 K
Mem

SIMD
Core 3

40 K
Mem

SIMD
Core 2

40 K
Mem

Shared Memory

128 K 128 K 128 K

SIMD
Core 1

40 K
Mem

SIMD Core Cluster
ARM/SC
L1 Ctrl
MAC
I & D

Cache

Video
interface

Bus
Bridge

128 K

Multi-Layer System Bus

Peripherals:
USB, I²C, USART,
IRC, PLL, GPIO,

Multi-tasked SIMD Core

GP
Core

(Controller) PE
0

PE
1

PE
2

PE
3

24 K Loc. MemI & D Cache
8 K + 8 K

PE Array

Ext.
Mem.

Flash,DRAM

Figure 3: Principal architecture of the VIP-II

An additional general purpose processor core, the ARM9,

is linked via a bus bridge to the SIMD-cluster. The ARM9
was integrated with a rich subset of its standard peripherals.
For ADAS applications the ARM9 can be used for
communication tasks and the main control-flow.

A multi-layer bus system provides simultaneous memory
accesses of the SIMD cores. The first prototype consists of a
cluster of four SIMD cores.

 The SIMD core is based upon previous work [3]. Each
SIMD core contains four processing elements and operates
with a clock frequency of 300 MHz. It supports special
instructions like saturating operations and finite-field
arithmetic, and long-instruction word (LIW) features for
performing arithmetic operations and memory accesses in
parallel. The execution pipeline is four stages long, which is
used to relax the timing requirements for the memories and
to reduce the memories’ supply voltage and thereby the
power consumption. However, a long pipeline reduces the
performance in case of data dependencies between
instructions from the same task. That is why here each of the
pipeline stages contains an instruction from one of four
separate tasks. Therefore, each SIMD core can be seen as a
multi-tasked SIMD core. To execute four independent tasks
on one core without any penalty due to context switching,
the instruction caches, the local memories and the registers
are replicated to store four different contexts at the same
time. Every clock cycle a new context is selected in a round-
robin schedule. A general purpose core inside every SIMD
core controls the processing of the four processing elements.
Corresponding to the multi-tasked SIMD core a multi-tasked
general purpose processor is required, which can also be
used for multi-tasked sequential processing.

FrE1.9

1212

Form the programmer’s perspective the VIP-II can be
seen as a cluster of 16 independent task-cores (four multi-
tasked SIMD cores, where each core can handle four tasks in
parallel). As the system runs with 300MHz the remaining
performance of a single task-core is 75MHz. Each task-core
consists of a general purpose core and an array for four
processing elements. The current prototype provides a
computational performance of 14.400 MIPS (including the
PE-array), 3000 MIPS (without the PE-array) and 9.600
MMACs (16b input and 32b output). It is designed in 90nm
CMOS technology and available in a BGA package (12mm
x 12mm) with 310 pins. The power consumption is expected
to be lower than 500mW (the first VIP-II prototype is
currently under test.).

III. SOFTWARE ENVIRONMENT

The general purpose controller of the SIMD cores and the
additional ARM9 support “C” programming. The complete
“C” based tool chain, a library for image processing and an
operating system are available. Figure 4 illustrates the
compilation process. Because “C” does not support data
parallel programming a SIMD-compiler based DPCE
language was developed (data parallel C extension). The
SIMD-compiler supports the declaration of multi-
dimensional objects and their operations in a “C” oriented
way. Assembling on GP cores, the PE array and the ARM9
is also supported.

*.asm

*.asm

•OS
•libraries

*.c *.dpc

SIMD
compiler

C compiler

linker /
assembler

multi-threaded
program

Figure 4: Illustration of the compilation process

Application development requires a real-time operating
system (RTOS) running on the general purpose core and on
each SIMD core. The RTOS contains all the necessary
functions for thread creation and synchronization, interrupt
handling, access to peripherals, and input/output. The
operating system is available as a “C” library. Each core of
the VIP-II is able to execute the main thread and to create
and control further threads. Currently no dynamic
scheduling is supported. Therefore, the thread schedule must
be defined before execution time. Scheduling can be
developed and simulated on a standard PC running with an

operating system with a multi-threading functionality. If the
required functions of the VIP-II’s operating system are
renamed to the functions of the PC’s operating system, the
same “C”-sources of the multi-threaded application can be
used in both environments.

The API provides access to a library of optimized image
processing functions, peripherals, and operating system
functions. The image processing library follows Intel’s
“Integrated Performance Primitives” library (IPP), by
keeping a close relation to the IPP API. The image
processing library provides a broad set of often used low-
level operators for image processing, which can easily be
integrated into “C”-programs. The image processing library
of our vision processors can be easily mapped on Intel’s IPP.
This allows a comfortable and efficient application
development in a PC-environment.

application level

high-level (multi-threaded, “C”+assembler)
feature extraction, motion estimation

VIP-II
SIMD-cores + ARM9

low-level:
image processing library, camera control

operating system:
multithreading, synchronization, peripherals

Figure 5: VIP-II’s software architecture

On higher application levels reference examples explain

the way of multi-threaded programming and provide a
framework for general application tasks like frame
capturing, external memory access, thread synchronization
and data output.

IV. APPLICATION DEVELOPMENT
To illustrate the application development process on the

VIP-II’s multi-processor architecture a reference application
example is discussed. The application covers the low-level
processing step of the image processing chain and performs
an extraction of different image features (edges, corners,
lane markers) and a motion estimation on corners (see figure
6). Further high level application parts could be integrated
into the proposed processing framework based on the
extracted feature set.

Images are processed on the fly (without storing a
complete image), only the extracted features with their
assigned information like motion trajectories are stored.
Therefore, the implementation offers low memory
consumption and requires only the on-chip memory. This
could be a benefit for a future embedded solution

To develop this reference application the following

FrE1.9

1213

approach was used:
1. A first implementation was programmed in “C” on a

standard PC.
2. Multi-threading and data parallel operations were

introduced in the PC-based implementation:
a. The multi-threading support functions of VIP-II’s

operating system were mapped on Window’s multi-
threading library. Only these functions were used to
generate a multi-threading program on the PC.

b. The functions of VIP-II’s image processing library
were mapped on Intel’s IPP. Only these functions
were used to introduce data parallel processing on the
PC. As a side effect the performance of the PC-based
implementation was increased.

3. The PC-based implementation generated in step 2 was
compiled with the VIP-II tool chain and executed on the
VIP-II’s virtual prototype. With the limitation of a file
based input and output, no additional modification on the
source code is required. The VIP-II’s virtual prototype
produces cycle-accurate performance values.

4. Depending on the performance results of step 3
optimization steps of the multi-threading program
became necessary. This was first implemented and
verified on the PC and afterwards on the virtual
prototype.

5. The application is than loaded and performed on the real
hardware.

Figure 6: Illustration of extracted features and motion trajectories: edges
(blue); corners and lane markers (green); trajectories (red)

The reference application extracts three different features:
• Edges correspond to a significant change of the local

image contrast. Typically, they are detected as local
maxima of the image gradient (see figure 7). The result
of this edge detection approach is the information at
every pixel, if it is an edge or not. Additionally, the
magnitude and the direction of the image gradient for
each edge point are provided. The gradient magnitude
can be used as a confidence value. Figure 6 displays the
result of edge detection. [4] provides further details of
the implemented approach.

• Corners correspond to pixels where the change of the
contrast describes a geometrical corner. The
implemented corner detection uses an approach of Harris
and Stephens [1]. The implemented approaches of edge

and corner detection uses the same preprocessing (image
smoothing and the computation of the image gradient;
see figure 7). Similar to edges a value is computed,
which can be used as a confidence value for corners.
Figure 6 shows the result of the corner detection
approach.

• Lane Markers: Particularly for camera based driver
assistance systems the detection of lane markers and the
road geometry is a basic processing task. Typically, lane
markers are identified as dark-bright-dark contrast
changes. The implemented approach detects these
contrast changes only in row direction and only at pixels
with significant image intensity. The implementation
uses the output of the image gradient computation, which
is also required for edges and corner detection. Figure 6
shows the result of the implemented approach.

gauss filter

image gradient

edge detection

corner detection

lane markers

loop over frames

motion estimation

gauss filter: i(x,y) = gauss_filter_3x3(I(x,y))

x-gradient: ix(x,y) = i(x+1,y) – i(x-1,y)
y-gradient: iy(x,y) = i(x,y+1) – i(x,y-1)

ixx(x,y) = ix(x,y) x ix(x,y)
iyy(x,y) = iy(x,y) x iy(x,y)
mag(x,y) = ixx(x,y) + iyy(x,y)

edge detection: local maximum
with gradient interpolation on sub-
pixel level

a b
Figure 7: Illustration of the main processing steps of the reference
application (a) and the required operations for edge detection (b)

In addition to the extracted features, corners are tracked

over time to provide motion information to higher
application software levels. As the implemented corner
detection approach produces stable corners over time, a
simple and fast tracking algorithm is used. For every frame
the detected corners are saved as a list of points including a
description of the image neighborhood around this corner
pixel. To find a corresponding corner in the previous frame,
the list for previous corners is scanned. The corner, which
posses the highest similarity of the local image descriptor
and which fulfills a distance constraint, is defined as a
predecessor of a new corner. The motion trajectory is
updated and linked to this new feature point. The result of
motion estimation is also displayed in figure 6.

Figure 7 displays the main processing step of the
presented feature extraction approach. Data parallel
operations are easily identified in the image based
processing steps of the Gaussian filtering, the image gradient
computation and the following edge detection step.
Corresponding library functions are provided in Intel’s IPP
library as well as in the VIP-II’s image processing library.

FrE1.9

1214

The final local maximum detection to define single pixels as
edges is implemented in standard “C” on the PC as well as
on the VIP-II.

row block 2

row block 1

row block 0

row block xy

a)

b)

overlap

overlap

image

Figure 8: The camera image is divided and processed in single row-blocks
(a); every row-block is divided in several sub-blocks, which are processed
in parallel (b).

In contrast to use of data parallel processing power by

including optimized library functions it is much more
challenging to use the multi-thread capabilities. To reduce
the required memory of the final application the camera
image is divided and processed in single row-blocks (see
figure 8). At least the memory for two row-blocks is hold in
the on-chip memory, where one row-block is required for
reading pixels from the camera interface and the other row-
block is required for processing. This allows reading and
processing in parallel. Because feature extraction requires
local neighborhood operations an overlap of the row-blocks
must be considered (see figure 8).

For further multi-threaded processing each row block is
split into several sub-blocks. Each sub-block is processed on
a single task-core of the VIP-II. Therefore the maximum
number of sub-blocks per row-block should be 16 according
to the number of available task-cores on the VIP-II. Due to
the real-time constraints of a specific application lower
numbers of sub-blocks are reasonable. According to the
problem of local neighborhood operations as mentioned
above an overlap of the sub-blocks must also be considered
(see figure 8).

Figure 9 shows a general block diagram of the multi-
threading program. The main thread, which is executed on
one of the SIMD-task-cores, runs some initialization steps
including the creation of the processor threads and the
corresponding synchronization objects. The main thread
reads the incoming pixels from the camera interface and
distributes them into a memory structure, which is prepared
for the following parallel processing. After all pixels of one
row-block are captured, the sub-blocks are ready for
processing and the corresponding synchronization object is
updated accordingly. Triggered by this synchronization
signal the worker-threads start the processing of their sub-
blocks. Parallel to the worker-threads the main-thread
continues to read and distribute the incoming pixels to a

second memory field. This second memory field is necessary
to dissolve accesses from worker-threads and the main-
thread. After all row-blocks are processed the main-thread
waits until the worker threads have stored the extracted
features to a common data structure. Then the schedule is
repeated for the next frame.

do some work:
•feature extraction
•motion estimation

collect features

synchronize

synchronize

read row-block via
camera interface &
distribute row-block
to sub-blocks

loop over row-blocks

loop over frames

start

initialization

main control flow running
on one task-core

data processing running on
X task-core in parallel

synchronize

loop over row-blocks

while active

synchronize

synchronize

Figure 9: Scheduling and synchronization of tasks for parallel feature
extraction in sub-blocks.

Figure 10 displays performance results of the proposed
multi-threading feature extraction approach. The figures are
based on VGA resolution and the processed data is 8 or
16bit wide. For the VIP-II implementation, the image was
divided in 10 row-blocks and 16 sub-blocks. The
performance measurement includes all synchronization
overhead. On the Pentium the image was processed as one
single block to minimized effects of thread synchronization.
Furthermore Intel’s IPP functions were used to exploit the
full computational power of the Intel architecture. The
figures demonstrate that the processing power of the VIP-II
exceeds the Pentium IV by a factor in the range of 2 to 6. It
should be noted that the VIP-II operates at 300MHz. The
four SIMD-cores provide computational performance of
1.2GHz, which is less then the 1.8GHz of the Pentium.

VIP-II [ms] PIV, 1.8GHz [ms]
basis image operations
copy (16bit) 0,35 1,92
add (a+b=c, 16bit) 0,57 3,02
sub (a-b=c, 16bit) 0,57 3,04
mul (a*b=c, 16bit) 0,58 3,02
edge detection
3x3 image filter (8 bit) 0,80 2,00
image gradient (x and y, 16bit) 1,20 4,23
gradient magnitude (16bit) 1,56 6,94

Computational performance on
VGA resoluton (640x480)

Figure 10: Performance figures of VIP-II versus Pentium IV. The
performance values of the PC are based on Intel’s IPP implementation
running on a 1.8GHz Pentium IV processor.

FrE1.9

1215

V. SUMMARY AND OUTLOOK

First camera-based ADAS have been introduced into the
automotive market in commercial cars as well as an option
in the luxury passenger vehicle segment. To expand the
benefit of these new safety features as a standard option over
all vehicle segments, the system costs must be reduced.
Here, new processor architectures, which offer the required
computational performance and decrease the systems costs,
will be a significant factor. The VIP-II, a new multi-
processor architecture developed by Infineon, provides the
required performance for advanced ADAS. The integration
of data-processing, control and communication, the
optimized set of peripherals and the low power consumption
will reduce the overall systems costs. Because the processor
is scalable in hardware as well in software, a wide range of
varying applications could be supported by a future
processor family strategy. The application developer will
profit form the software scalability in terms of a reduced
time to market.

On the other side the multi-processor approach requires
multi-threaded programming as well as the introduction of
data-parallel operations. The software tool-chain of the VIP-
II supports a PC-based application development process.
The PC can be used for the first functional reference design
as well as for all further development steps (introduction of
data-parallel and task parallel processing). Another useful
aspect of development on PC is benchmarking of algorithms.
In particular the available operation system and image
processing library supports an application development on
“C” level. The available virtual prototype of the VIP-II can
be used to verify the application directly in a PC
environment.

To explain the application development process the paper
presents a multi-thread feature extraction framework. The
achieved performance shows that VIP-II allows to integrated
further processing steps without real-time conflicts.
Furthermore the framework fits into the on-chip memory
and allows smart system integration.

Future work will cover hardware and software aspects. On
the hardware side the peripheral set will be further improved
and optimized according to the requirements of camera-
based ADAS. Application analysis to identify parallelism
and a parallel programming support will improve the current
software tool chain.

VI. ACKNOWLEDGEMENT
The work on the application demonstrations for the VIP-II

is funded by the BMBF research projects KASS and
AUTOSAFE.

VII. SREFERENCES

[1] Ch. Harris, M. Stephens, A Combined Corner and Edge

Detector, 4th Alvey Vision Conference, pp 147-151, 1988
[2] W. Raab, N. Brüls, U. Hachmann, J. Harnisch, U. Ramacher,

C. Sauer, A. Techmer, A 100-GOPS Programmable Processor
for Vehicle Vision Systems, IEEE Design & Test of
Computers, vol. 20, no. 1, Jan. 2003.

[3] W. Raab, H.-M. Blüthgen, U. Ramacher, A Low-Power
Memory Hierarchy for a Fully Programmable Baseband
Processor, 3rd Workshop on Memory Perfromance Issues
WMPI-2004, June 20, 2004, Munich, Germany.

[4] A. Techmer, Hans-Martin Bluethgen, Cyprian Grassmann,
Ulrich Hachmann, Wolfgang Raab, Ulrich Ramacher,
Embedded Vision Platform for Video Surveillance Systems,
17th Symposium on Electronic Imaging, San Jose, January 16-
20, 2005

[5] NEC Electronics, The IMAPCAR® parallel processor for
image recognition and its contribution to the realization of pre-
crash safety solutions for automobiles, NEC Electronics Web
Magazine, Volume 63 (Dec 27, 2006),
http://www.necel.com/en/channel/vol_0063/vol_0063.pdf

[6] Elchanan Rushinek, MobilEye, EyeQ™ Data Sheet, datasheet,
Revision: 3.14, 2006 Rev.: 3.14 ,
http://www.mobileye.com/EyeQ_DataSheet.pdf

FrE1.9

1216

