
 
 

 

  
Abstract— New algorithms for the integration of data, 

which is obtained by wireless communication, in an onboard 
sensor based vehicle environment model are introduced. The 
system receives the dynamic state and additional information 
of objects via wireless communication with latency. The 
dynamic state is filtered and predicted to the current time. 
Afterwards, a track-to-track fusion of received objects and 
objects, which are measured by onboard sensors, is 
performed. This association is based on the object’s position, 
orientation, velocity as well as the object’s history. In 
addition, the probability of an unmeasured object is 
considered. The complete system is evaluated with ground 
truth data. 

I. INTRODUCTION 
EVERAL advanced driver assistance systems are already 
available in modern cars. Additional systems are in the 

focus of research and development for future cars. Today, 
driver assistant systems usually are directly connected to 
one or several exclusively used sensors. The increasing 
number of driver assistant systems will cause the need of 
sharing sensors in the future. The application of a common 
sensor data processing unit seems to be useful and efficient.  

This work is based on algorithms for laser scanner 
sensor data preprocessing, tracking, and classification. 
These algorithms create a common vehicle environment 
model, which can serve multiple applications 
simultaneously. The environment model contains multiple 
objects, accompanied by information about object size, 
orientation, velocity, and class. In addition, map 
information can be integrated. The pose of the host vehicle 
in the map is estimated with landmarks detected by the 
laser scanner [1]. Unfortunately, some information can not 
or hardly be measured by onboard sensors. 

Recent research also focuses on the usage of wireless 
communication for advanced driver assistant systems  
[2]-[4]. Such systems usually use GPS or differential GPS 
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positions for the localization of both, the host vehicle and 
other road users. Sometimes, very precise and expensive 
real time kinematic GPS (RTK GPS) sensors are applied. 
Pure communication based systems are feasible for a wide 
range of functions. However, there are some disadvantages, 
which were already partly mentioned in [4]. Firstly, the 
GPS position is quite inaccurate, if not measured by 
expensive RTK GPS sensors. Secondly, due to incomplete 
equipment rate, unequipped road users can not be detected. 
It will take a lot of time, until a sufficient penetration rate is 
achieved for cars, but it is questionable if pedestrians will 
ever be equipped with communication technology. Finally, 
latencies caused by  GPS sensors and communication time 
have to be considered. 

For this reason a fusion of onboard sensor information 
and wireless communicated information seems to be 
advisable. The resulting extended environment description 
can benefit from both, precise position and velocity 
estimates of all objects, which are close to the host vehicle, 
and additional information received by wireless 
communication. The additional information can improve 
the sensor’s view in two ways: It can extend the systems 
field of view, since communication is less affected by 
occlusions than sensors. It is also possible to add 
information, which can not be measured by onboard 
sensors, to the measured objects.  

There are two sources of received object information. 
Equipped vehicles can directly send the information. But it 
is also possible to send information about objects, which 
are measured by sensor equipped stationary road side 
platforms or other vehicles. 

Two object types have to be distinguished. Objects, 
whose data is received by wireless communication, are 
called “received objects”. Objects, which are measured by 
onboard sensors, are called “measured objects”. This work 
concentrates on the main fusion task: the association of 
measured objects and received objects. For this purpose 
both object types are tracked. Afterwards, corresponding 
objects are associated. Methods to provide a consistent 
output in terms of an extended vehicle environment model 
are discussed. 
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II. DIFFERENTIAL GPS POSITION ERROR 
If object information is sent by wireless communication, 

the corresponding position usually has to be estimated by 
GPS. Two types of differential GPS receivers were 
analyzed to estimate the available position accuracy. Two 
equipped vehicles were used. The GPS position of one 
vehicle was transformed into the sensor coordinate system 
of the other vehicle. The difference between the quite 
precise measured position and the transformed received 
position describes the relative position error, which is 
relevant for advanced driver assistant systems. The 
experiments have shown a quite low accuracy. Relative 
errors of up to 5 m were typical for suburban and rural 
roads. Urban scenarios even showed relative errors of up to 
10 m due to multipath problems and less available 
satellites.  

Figure 1 illustrates this problem by an example. The 
standard situation of oncoming traffic can look very 
dangerous, if the inaccurate GPS position indicates an 
oncoming vehicle on the lane of the host vehicle. Several 
safety applications will fail, if this GPS position is used. 
This problem can be solved by information fusion with 
onboard sensors, if the received objects are associated to 
precise onboard sensor position and velocity data. 

 

 

III. WIRELESS DATA 
The introduced methods require information about the 

following properties of received objects: A unique object 
ID is used to distinguish different received objects. The 
UTC (Coordinated Universal Time), which is obtained 
from GPS, is used for synchronization. The properties 
position in WGS84 coordinates (global coordinates using 
the World Geodetic System 1984) with uncertainties, 
orientation to north, velocity, and yaw rate are used to filter 

and predict the objects’ dynamic states. This information is 
also used for association purposes. 

The following properties are used to improve or extend 
the onboard sensor based vehicle environment model: The 
precise object size and class can directly improve the 
estimates, which are obtained from the onboard sensors. 
Additional information like mass, activated turn lights, gas 
or brake pedal positions can extend the information about 
measured objects. It seems also useful to communicate the 
expected route, if an object uses a navigation system. 

IV. SYSTEM OVERVIEW 
 

 
The system layout is illustrated by Figure 2. The onboard 

sensors measure objects in the vehicle’s environment. The 
sensor data is preprocessed, the objects are tracked and 
classified. Details about tracking and classification can be 
found in [5]. The result of these parts is a sensor based 
environment model, which contains objects accompanied 
by information about the size, position, velocity, and class.  

This environment model is enhanced by data obtained 
from wireless communication. Object data is received with 
corresponding differential GPS and motion data. An object 
state filter is used to estimate and predict the dynamic state 
of the received objects as well as the host vehicle.  A data 
association is performed to fuse measured objects with 
received objects. The result is the extended vehicle 
environment model. 

V. OBJECT STATE FILTER 
Several latencies complicate the task of data association. 

Firstly, GPS has a low update rate. Usually, a position is 
measured once a second. Secondly, some time is necessary 
for measuring of the position and for the wireless 
communication. For this reason, the received object 
information will correspond to past measurements of the 
onboard sensors. Unfortunately, the objects move 
significant distances between the measuring time of the 
GPS position and time of the current onboard sensor 

 
 
Fig. 1.  GPS position error: A blue box (1) describes the position of the 
test vehicle. The yellow box (2) and ellipse show the received position of
the second vehicle and its uncertainty (3σ). The correct object position is
indicated by the red box (3). The usage of the GPS position seems to be
insufficient for a wide range of driver assistant systems. All laser scanner
measurements are indicated by black dots. A pure distance based
association of the received object information to sensor measurements
will fail due to the high GPS position error. 
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Fig. 2.  System overview: The system performs tracking and classification 
of objects, which are observed by onboard sensors. Object information 
obtained from wireless communication is filtered to predict the object 
state to the time of the current sensor measurements. In addition, the host 
vehicle’s position has to be predicted. The data association algorithms 
fuse information of all sources and provide the extended vehicle 
environment model. 
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measurements. The corresponding position differences are 
illustrated by Figure 3. 

 

 
For this reason, the motion after the last known GPS 

position has to be estimated. It is necessary to combine the 
velocity and the yaw rate of objects with the GPS positions. 
This estimation must be performed for both, the host 
vehicle and the measured object.  

The motion estimation is performed with an Extended 
Kalman Filter [6] using a turn model in the global WGS84 
coordinate system [7] [8]. This leads to the state vector: 

 
( )Tvx ωψλϕ=  

 
with latitude ϕ, longitude λ, velocity v, orientation ψ,  and 
yaw rate ω. The altitude h is not filtered, because it is 
assumed to be constant between successive GPS 
measurements. The corresponding process model is given 
by: 
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The values of the radius of curvature in the meridian rϕ 

and the radius of curvature in the prime vertical rλ can be 
calculated by: 
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with the WGS84 geoid’s semi major axis a and semi minor 
axis b. 

The motion estimation also has to consider the GPS 
measurement latency. The output of the GPS receiver 
usually corresponds to a measurement time several hundred 
milliseconds before. Due to this latency, some of the last 
velocity and yaw rate measurements are newer than the 
measured GPS position (Figure 4). Unfortunately, the 
Extended Kalman Filter expects the measurements in a 
chronological order. 

A simple idea to consider this fact is to keep the motion 
measurements until the GPS data is measured. This idea 
will ignore several motion measurements, which are 
already available. This will result in a quite uncertain state 
estimation.  

 

 
A more accurate approach considers all available 

measurements. A backup of the dynamic state and the 
covariance matrix is stored after each GPS measurement. 
Afterwards all available motion measurements are 
incorporated into the Kalman Filter. In addition, all motion 
measurements after the last GPS measurement are stored in 
a buffer. If a new GPS measurement is available, the 
backup will be used and all measurements are incorporated 
in chronological order. Again, the backup of the dynamic 
state and the covariance matrix is performed after the 
incorporation of the GPS measurement. 

Finally, the dynamic object state of received objects and 
the host vehicle is predicted to the time of the current 
sensor measurements for association purposes.   

VI. DATA ASSOCIATION 
The received objects are assigned to object tracks of 

measured objects if possible. This procedure is divided into 
several steps. First, the dynamic state of a received object 
has to be transformed from WGS84 to the vehicle 
coordinate system. Afterwards, the number of assignable 
measured objects is reduced by a gating of the position. 
Based on the transformed uncertainty of the received 
object’s dynamic state, association probabilities for each 
assignable measured object are calculated conditioned on 
the assumption, that the object was measured. Afterwards, 
the probability of an unmeasured object is incorporated by 
numerical integration of occluded areas. A temporal filter 
stabilizes the association probabilities. These probabilities 
are stored in the environment model for later output. 
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Fig. 4.  GPS latency: The output of the GPS receiver (blue arrows) 
corresponds with a measurement time several hundred milliseconds ago. 
Therefore, the GPS measurements are older than the last velocity and yaw 
rate measurements (red arrows). 
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Fig. 3.  Position error, caused by measurement and transmission delay: 
Usually the received positions and the last GPS position of the host 
vehicle correspond to past sensor measurements. If the received position 
is used directly, the object will be expected very far away from its correct 
position. Therefore, the received information and the host vehicles 
position have to be predicted to the current time. 
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A. Dynamic state transformation 
The dynamic state of the received objects has to be 

transformed to the host vehicle’s coordinate system, when 
an association is performed. The calculation of the 
transformed dynamic state xR of the received object is 
performed by the function: 
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The transformation is also applied to the corresponding 

uncertainties. For this purpose, the covariance matrix 
( )xcov  is obtained from the object state filters of the host 

vehicle and the received object. The Jacobian Jf of f is 
needed for the transformation of this covariance matrix: 
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B. Gating 
A validation region of the positions of measured objects 

is defined based on the transformed covariance matrix. The 
matrix elements with respect to the position constitute a 
two dimensional covariance matrix. This matrix can define 
an elliptical validation region (3σ ellipse) [9]: 
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All measured objects with the position (xM,yM)T will be 

assignable to a received object with the position (xR,yR)T, if 
equation (1) is true for a given threshold γ. 

C. Association Probabilities 
The association probabilities are calculated for each 

received object independently. The probability of each 
assignable measured object is calculated based on the 
transformed covariance matrix and the Euclidean distance 
between the dynamic state vectors of the measured object 
and the received object. 

The first step is the calculation of the conditional 
association probability of the measured object k given the 
event M that the received object was measured by onboard 
sensors. This probability is conditioned on the number of 

measured objects n in the validation region and their 
position [9]: 
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where each ei is calculated from the assumed Gaussian 
probability density function of the dynamic state of the 
received objects: 
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The second step is the calculation of the (unconditioned) 

association probability. This can be performed with Bayes’ 
theorem: 
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This calculation needs an estimation of the current 

probability P(M), that the received object is measured at the 
moment. This estimation is described in the next 
subsection. 

D. Occlusion Detection 
The probability of occlusion is calculated for discrete 

areas in the vehicle environment based on the 
measurements of the laser scanner. The radial measuring 
principle of the laser scanner leads to a discretization in 
polar coordinates with the tangential step size ∆α  and 
radial step size ∆r. The corresponding probability of 
occlusion is P(r,α).  

 

 
The four horizontal scan layers of the sensor allow the 

distinction of five discrete probabilities of occlusion: not 
occluded, occluded in 1, 2, 3 or 4 layers. The calculation is 

 
Fig. 5.  Occlusion detection: The algorithm estimates occlusion 
probabilities of discrete areas in polar coordinates based on the four 
horizontal layers of the laser scanner. The probabilities are indicated by 
gray values between black (not occluded) and white (occluded). The 
circles are sensor measurements. The corresponding layer is indicated by 
color. The occlusion probability of an area rises with the number of layers 
with corresponding measurements between the area and the sensor 
(center). 
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applied to each of the discrete angles αi separately and 
starts at the sensor. The occlusion probability is 0 in the 
area between the sensor and the first laser scanner 
measurements. The probability is 0.25 in the area between 
these measurements the laser scanner measurements of a 
second layer and so on. The principle is illustrated in 
Figure 5. 

The occlusion probability of a received object is 
estimated by numerical integration of the occluded area 
under the Gaussian pdf in the elliptical gate (Figure 6). 

 

 
The occlusion probability of the received object is 

calculated by: 
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with the discrete area size: 
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Here the distance between the center of the Gaussian and 

the center of the area is evaluated: 
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E. Temporal Filter 
Unfortunately, these association probabilities are 

insufficient for a robust association of measured objects 
and received objects. There are ambiguities caused by 

similar dynamic states of measured objects. The association 
can be significantly improved by an additional evaluation 
of the object’s history. For this purpose the association 
probabilities are stabilized by a temporal mean filter.  

This modification will only achieve high association 
rating of a measured object, if it performs a similar motion 
like the received object. 

VII. EXTENDING THE ENVIRONMENT MODEL 
The received objects are stored together with the 

estimated object state and additional information directly in 
the internal database of the system. The filtered association 
probabilities are stored in this database, as well. Thereby, 
the output of the framework, which is the extended vehicle 
environment model, can be adapted to the requirements of 
different applications. 

Usually, a consistent environment model with a single 
association to each received object is required by the 
applications. Therefore, the association to the object with 
the maximum association probability will be given to the 
application. This is only reasonable, if a minimum 
association probability threshold s is exceeded.  

 

 
If an association seems to be unreasonable, it will be 

assumed that the received object is not measured by the 
onboard sensors. Thus, the received object is passed to the 
application in addition to the measured objects (Figure 7). 
This additional object will be combined with very high 
uncertainties due to the uncertain GPS position and the 
communication latency. 

If an association uncertainty is required, the filtered 
association probabilities will also be handed over to the 
application. 

 
 

Fig. 7.  Extended vehicle environment model: The test vehicle (1) 
measures several objects in the environment with the laser scanner (black 
points). The sensor based tracking and classification algorithms estimate 
objects for these measurements (red boxes). This environment description 
is extended in two ways by wireless communication: If information is 
received about an object, which already is measured by the laser scanner, 
the information will be added to the measured object (2). If the received 
object is not in the field of view of the sensors, the object will be added as 
an additional object to the environment description (3).  
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Fig. 6.  Occlusion probability: The occlusion detection calculates
occlusion probabilities of discrete areas. These probabilities are displayed
as in Figure 4 (white: certainly occluded, black certainly not occluded).
The occlusion probability of a received object is calculated by integration
of the occlusion probabilities under the assumed Gaussian pdf in the
elliptical gate. 
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As a second output option, it is also possible to provide 
an application with all assignable objects, the 
corresponding association probabilities and the received 
objects. Thus, the application can decide how to use all the 
information. This second option is not analyzed by the 
following system performance evaluation section. 

VIII. RESULTS 
The complete system performance is evaluated with test 

data. Several sequences with equipped test vehicles in 
urban and suburban scenarios as well as on highways were 
evaluated. The correct association was labeled manually 
and compared to the algorithm’s results. 

Offline tests simulated different delays for the 
communication of the measured real world data. This 
experiment shows the influence of the communication 
delay to the association performance. 

Two corresponding measures were calculated for each 
simulated communication delay: the rate of correct 
associations indicates the ratio of correct associations to 
possible associations. The mean number of wrong 
associations per frame gives an indication about false 
alarms. Different combinations of the two measures can be 
obtained by selecting different thresholds for the minimum 
association probability, which restricts the output of an 
association. The results are illustrated by Figure 8.  

  
The experiments showed only minor differences between 

the optimum of no communication delay and the realistic 
value of 200 ms. Communication delays higher than 1 s 
cause a significant loss of association performance. 

A good association performance could be achieved with 
the realistic value of 200 ms. If the application can not 
accept false associations, between 60 and 70 percent of all 
possible associations were achieved. If false alarms can be 
tolerated, the performance will rise up to 97 percent. 

IX. CONCLUSION 
A real time system for the extension of an onboard 

sensor based vehicle environment model with data of 
wireless communication was introduced. The extension is 
based on received data of objects. The system filters the 
dynamic state of these objects. An association of received 
objects and objects, which are measured by onboard 
sensors, is performed. If an association is reasonable, 
additional information of the received object can be added 
directly to the measured object. Otherwise, the received 
object will be passed to the applications in addition to the 
measured objects. The performance of the system was 
evaluated with ground truth data. 

Although a laser scanner was equipped as onboard 
sensor, the proposed algorithms may also work with other 
sensors like RADAR or sensor fusion approaches. 

The presented framework is developed to handle 
received objects, which are localized by differential GPS. 
However, it is also possible to handle object data with 
better localization. The position uncertainties are directly 
considered. A better localization can be achieved by using 
digital maps, for example [1]. This will increase system 
performance and robustness, because the gating will reject 
more measured object than in the case of high position 
uncertainties. In addition, the association probabilities are 
more suitable. 
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Fig. 8.  Results: Several simulated communication delays were compared.
The plots show the rate of correct associations over the mean number of
wrong associations per frame. Different combinations of the measures are
obtained by changes of the threshold for the minimum accepted
association probability. 
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