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Abstract— This paper is concerned with the problem of
estimating the motion of a single camera from a sequence
of images, with an application scenario of vehicle egomotion
estimation. Egomotion estimation has been an active area of
research for many years and various solutions to the problem
have been proposed. Many methods rely on optical flow
or local image features to establish the spatial relationship
between two images. A new method of egomotion estimation is
presented which makes use of the Fourier-Mellin Transform for
registering images in a video sequence, from which the rotation
and translation of the camera motion can be estimated. The
Fourier-Mellin Transform provides an accurate and efficient
way of computing the camera motion parameters. It is a global
method that takes the contributions from all pixels into account.
The performance of the proposed approach is compared to two
variants of optical flow methods and results are presented for
a real-world video sequence taken from a moving vehicle.

I. INTRODUCTION
The problem of estimating the egomotion of a camera has

been an active area of research for many years. It has appli-
cations in many computer vision and robotics areas such as
scene reconstruction by structure-from-motion, autonomous
navigation, and obstacle detection and avoidance. In the work
presented here, we are interested in estimating the egomotion
of a monocular camera system installed in a vehicle and
thus in estimating the egomotion of the vehicle, which is a
key requirement for vision-based driver assistance, collision
avoidance and autonomous driving. It is one of the first, yet
very important steps in detecting and tracking independently
moving objects (e.g. other vehicles, pedestrians, cyclists)
when the observer is also moving.

Various sensors have been proposed to use in such a
motion estimation scenario, for example, monocular and
stereo camera systems, GPS-based systems, laser or radar
systems. The latter two are generally considered to be more
reliable in ‘bad’ (in terms of illumination) conditions because
they do not rely on the presence of light. However, these
systems are also significantly more expensive than a camera
system and with the widespread availability of good quality
cameras at low prices, computer vision-based systems are
particularly appealing. While it is possible to use GPS-based
systems for egomotion estimation, there are reliability issues
with such systems when there is no direct line of sight to one
of the satellites, for example, in a built-up urban environment
(‘canyon effect’) or in tunnels. Vision-based systems do

not suffer from these drawbacks, but their performance can
decrease in bad weather and low light conditions. However,
with the availability of camera technology beyond the visible
spectrum, e.g. far infrared cameras that measure emitted heat,
many of the obstacles can be overcome.

In the work presented here, we also follow a vision-
based approach. Many vision-based approaches have been
proposed in the literature, e.g. [1], [2], [3], [4], [5], [6], [7].
Section II provides an overview of some of these approaches.
These include both monocular and stereo camera systems.
The latter, if calibrated, allow the recovery of 3D world
coordinates for objects in the scene, in particular depth,
so that it is easily possible to derive the camera’s motion
parameters and hence the velocity, orientation and direction
of the vehicle. On the other hand, monocular camera system,
even when calibrated, cannot recover depth directly. Nev-
ertheless, it is possible to derive the incremental motion of
the camera by mapping camera coordinates to corresponding
points on the ground plane and determining the displacement
of tracked features [8]. At the core of these approaches is
the image registration problem, i.e. how are pairs of images
in a sequence spatially related to each other?

There are many image registration methods in the liter-
ature [9]. Common methods include optical flow methods,
e.g. [10], [11], and methods that find a sufficient number of
point correspondences by finding stable local image features,
e.g. SIFT [12], Harris corners [13], and maximally stable
extremal regions [14]. In this paper, we propose to solve
the image registration problem by using the Fourier-Mellin
Transform (FMT) which can recover the rotation, transla-
tion and scale parameters of the transformation required
to register one image to another one [15], [16]. The FMT
is a global method that takes the contributions from all
pixels into account. It is an efficient and accurate method for
pairs of images where the distortions due to the perspective
projection in the camera are not too large, such as in pairs of
consecutive video frames, so that the assumption of a rigid
transformation between the two images holds.

The remainder of this paper is organised as follows. In
Section II, an overview of related work is given. Section
III presents the theory of the FMT which is at the centre
of the proposed egomotion estimation method. Section IV
then discusses approaches taken to estimate a vehicle’s
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Fig. 1. An example of two consecutive images in the sequence, exhibiting a left turn by the vehicle, and their respective frequency log-polar and windowed
frequency log-polar plots, as used in the FMT approach.

egomotion, including the method proposed in this paper. The
results of the experimental evaluation of the proposed method
are shown in Section V and compared to existing methods.
Finally, Section VI concludes the paper with a summary and
an outlook to future work.

II. RELATED WORK

A. Egomotion Estimation

Various methods to compute the egomotion of a mobile
camera system have been proposed. A brief overview is given
in the following.

A stereo camera system was used in [2]. 3D points are
calculated from the calibrated stereo camera system and then
optical flow is used to establish correspondences between
points. The 6D motion parameters (rotation and translation)
are then computed using a least-squares closed form solution
rotation quaternions. A smoothness motion constraint is
applied to reject inconsistent motions.

Egomotion estimation using a monocular system was
presented in [3]. Rather than treating the problem as a pure
computer vision problem, the authors incorporate knowledge
about the motion behaviour of objects, as set out by the laws
of Physics. In addition, a 3D road model with both horizontal
and vertical curvature as well as a dynamic model of the
egomotion are used. A Kalman filter is then employed to
estimate the models parameters.

Egomotion estimation based on optical flow is described
in [7]. Optical flow is computed using the Lucas-Kanade

method [11]. As computing the optical flow over an entire
image is computationally expensive, the authors concentrate
on ways to constrain the number of flow computations
to a fixed number. Optical flow is only computed at a
limited number of sample points which are chosen by Monte
Carlo sampling and a vector of random variables which are
distributed according to an initialisation distribution function.
Point correspondences are then determined using an iterative
linearised method which performs better than the 8-point
algorithm and the Levenberg-Marquardt algorithm (see [17]
for details on these).

Another approach using optical flow is presented in [6].
Here, the authors apply the fact that optical flow vectors
generated by a planar surface, e.g. the road surface, conform
to a specific equation whose parameters are determined by
the relative motion and orientation between camera and
surface. In doing so, it is possible to calculate the motion
parameters in 3D world coordinates. An Extended Kalman
Filter is employed to compute the nonlinear relationship
between the optical flow vectors and the motion parameters.

Finally, [4], [5] propose a direct method where each pixel
contributes to the measurements, as a way of overcoming the
problem of unreliable feature points in cluttered scenes with
independently moving objects. The direct approach has the
advantage that it avoids the computation of optical flow and
feature tracks. Instead, a global probability function is used
to combine the measurements, so that the motion parameters
can be determined.
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In the work presented here, we follow an approach similar
to [8]. However, instead of using optical flow, we make
use of the FMT to register the images. Therefore, we will
first describe the FMT in Section III, before describing the
method in detail in Section IV.

B. Image Registration

Image registration describes the process of aligning or
matching two or more images in such a way that the
objects and features shown in the images overlap in such
a fashion that the borders of the images are not visible. A
common assumption is that one deals with the case of rigid
transformation, i.e. only rotation (θ), translation (tx, ty) and
scale (sx, sy) occur. The transformation between two images
I1(x, y) and I2(u, v) can then be described by:

x = sx u cos(θ)− sx v sin(θ) + tx (1)
y = sy u sin(θ) + sy v cos(θ) + ty . (2)

However, this assumption does not hold for a moving
camera and perspective projections where the distortions can
no longer be described by a rigid transformation, but instead
require an affine transformation. Nevertheless, in practice, the
assumption of a rigid transformation approximately holds for
images taken at short intervals which is the case here. The
effects due to perspective projections can then be neglected.

Image registration methods can be categorised based on
the algorithms used: correlation methods, point mapping,
Fourier methods, and elastic model-based matching. For a
review, see, for example, [9]. Correlation methods often
find their application in optical flow computation, where
small parts of the image are individually tracked from
image to image in a sequence, thus creating a mapping
between the images. Point mapping methods attempt to find
correspondences in salient image features. In a first step,
local image features such as SIFT [12], Harris corners [13]
or MSERs [14] are computed, before an optimisation step
finds the best transformation parameters that correspond to
the matched local image features. However, feature points
can be unreliable in cluttered scenes. Fourier methods take
advantage of the properties of Fourier space [15], [16]. This
is also the approach taken in our work and we will present
the theoretical background of the Fourier methods in Section
III. In recent years, non-rigid image matching methods have
become popular in some areas of computer vision, e.g. for
face tracking [18], [19], but these are not considered here
because vehicles, urban environments and landscapes can be
seen as largely rigid objects.

III. THE FOURIER-MELLIN TRANSFORM

Fourier space image registration methods provide a way
to recover all rigid transformation parameters, i.e. rotation,
translation and scale. They differ from other registration
methods in that they search for the optimal match in the
frequency domain. These methods make use of the Fourier
Shift Theorem and the Fourier Rotation Theorem to provide

invariance to rotation, translation and scale. Image registra-
tion is then performed by phase correlation of the cross-
power spectra [15], [16], [20]. It is possible to compute the
Fourier Transform of an image efficiently by using the Fast
Fourier Transform (FFT).

Let F1(ξ, η) and F2(ξ, η) be the Fourier transforms cor-
responding to images I1(u, v) and I2(u, v). If I1 and I2 are
related by a rotation θ and translation (u0, v0), both in the
image plane, their Fourier transforms are related by

F2(ξ, η) = e−j2π(ξu0+ηv0) × (3)
F1(ξcos(θ) + ηsin(θ),−ξsin(θ) + ηcos(θ))

Let M1 and M2 be the magnitudes of F1 and F2, respec-
tively, which are related by

M2(ξ, η) = M1(ξcos(θ) + ηsin(θ),−ξsin(θ) + ηcos(θ)) .
(4)

To recover both rotation and scale simultaneously, the Fourier
magnitude spectra are transformed to a log-polar representa-
tion (ρ, γ). M1 and M2 are then related by

M2(ρ, γ) = M1(ρ/s, γ − θ) (5)

where s is the scaling factor, ξ = log(ρ) and η = log(s).
The cross-power spectrum is then defined as

F1(ξ, η)F
′∗
2 (ξ, η)

|F1(ξ, η)F ′
2(ξ, η)|

= e−j2π(ξu0+ηv0) (6)

where F ∗ is the complex conjugate of F . The Fourier
Shift Theorem guarantees that the phase of the cross-power
spectrum is equivalent to the phase difference between the
images. Then, by taking the inverse Fourier transform, a
function can be obtained that is approximately zero every-
where except at the optimal registration point. This phase
correlation technique is first applied to recover the scale s
and the rotation angle θ, before the translation is found with
another phase correlation on the scaled and rotated image.
Once the images have been registered, the camera motion
parameters can be easily recovered using the egomotion
estimation method described in the next section, without
having to explicitly compute optical flow vectors.

Figure 1 shows an example of two consecutive images
in the sequence, together with their frequency log-polar
and windowed frequency log-polar plots, respectively. The
vehicle is performing a slight left turn at that point in time.

IV. EGOMOTION ESTIMATION

In this section, the egomotion estimation algorithm is
described in detail. The approach is akin to Campbell et
al. [8], but avoids explicit computation of optical flow
vectors. Instead, the FMT is used to provide a global image
registration result for image pairs. In the following, first, an
overview of how a mapping between the camera coordinates
and points on the ground plane is computed is given (Sec.
IV-A), before methods dealing with outliers in the computed
translation parameters are presented (Sec. IV-B).

Over a short period of time, e.g. the time difference ∆t
between two consecutive images It−1, It in the sequence, the
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vehicle’s motion on the ground plane can be decomposed into
a rotation and a translation component, which are estimated
separately from different parts of the images in [8]. Distant
points will exhibit only small amounts of translation induced
by the parallax, while any amount of rotation will dominate
the apparent movement of such points. In contrast, the
rotation will cause both nearby and distant points to move
by the same angle. In [8], each optical flow vector above the
horizon (= distant points) is back-projected onto a vertical
cylindrical coordinate system centred on the focal point of
the camera and the rotation angle estimate is taken as the
median of the observed angular displacements. In doing so,
effects caused by a change in rotation angle can be removed
from the optical flow field and any remaining effects are
due to translation. The pure translation parameters in the
ground plane that best fit with the observed optical flow are
then found. In [8], the optical flow vectors are back-projected
onto the ground plane. For a calibrated camera, the length of
each back-projected optical flow vector then corresponds to
the actual displacement on the ground plane. To overcome
tracking errors caused by perturbations, a robust estimate of
the translation component is derived from the median of the
y-displacements.

In the FMT approach, the point correspondences for all
image pixels are known because of the global nature of image
registration by FMT. Thus, we avoid having to compute large
numbers of optical flow vectors and to deal with noisy or
erroneous optical flow estimates. In contrast, the camera’s
rotation and translation parameters can be directly computed
from the image registration parameters s, θ, and (u0, v0)
using the mapping described below.

Once rotation and translation parameters are known, the
vehicle’s global position can be estimated by chaining the
frame-by-frame estimates. A disadvantage of this method is
that errors in the parameter estimation accumulate, so that the
global position estimate may not be reliable. However, we
are interested in the relative short-term motion (≤1s) and the
algorithm described above gives good results for this task.

A. Mapping Camera Coordinates to Ground Plane

Figure 2 provides a schematic of the physical setup and
geometry in the process of mapping coordinates from the
calibrated camera to points on the ground plane. Let us de-
note the camera coordinates by (u, v) and the corresponding
points on the ground plane by (x, y).

From the camera calibration, the focal length, principal
point and lens distortion parameters are assumed to be
known. We also assume that the height H of the camera
above the ground plane and the distance D from the normal
of the ground plane, that is going through the camera centre
to the point where the principal ray intersects the ground
plane, are known.

The tilt of the camera with respect to the ground plane α
can then be recovered from

tan(α) =
H

D
. (7)

Let v denote the number of pixels in the image’s vertical
direction to β, measured from the top of the image. The
angle β can then be recovered from

tan(β) =
1
V

(2v − V ) tan

(
V FOV

2

)
(8)

where V is the vertical dimension of the image in pixels and
V FOV is the vertical field of view of the camera system,
which is also assumed to be known. From these, we can
compute the depth z from the camera to the observed point
(x, y) and the distance y on the ground plane from the
camera to the observed point (x, y), respectively,

y =
H

tan(α + β)
z =

Hcos(β)
sin(α + β)

. (9)

From these equations, the apparent motion of a particular
image point, e.g. a tracked feature point, can be recovered.
The apparent motion generated by such a point on the ground
plane causes its observed magnitude in the image plane
to change due to its depth z relative to the image plane
and its orientation β to the camera axis. From the above
equations, we can invert this transform and recover the actual
displacement on the ground plane.
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Fig. 2. Mapping camera coordinates to the ground plane.

B. Smoothness Constraint
When using optical flow, such as in [8] and also in

our experiments when comparing the FMT approach with
previous approaches, visually estimating the displacement on
the ground plane from one image to another can be very
difficult due to a lack of visually distinctive features on the
road surface. Similarly, some points may correspond to a
self-moving object, such as other vehicles or pedestrians.
If such points are incorporated in the motion parameter
estimation, incorrect motion parameters result. If the frame
rate is sufficiently high, the estimated parameters should give
rise to a smooth motion and the motion observed in the
current image should be similar to that in the previous image.

Based on the previous velocity vt−1 and the maximum
possible acceleration / deceleration amax of the vehicle, it is
possible to derive the maximum change in velocity ∆vmax(t)
at the current time t

∆vmax(t) = abs(vt−1 − amax ∗∆t) . (10)
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Fig. 3. Resulting paths of vehicle motion on the ground plane for the optical flow method (left), the SIFT + optical flow method (centre), and the proposed
FMT method. Units correspond to distances in meters.

Outliers can then be detected if they exhibit a change in
velocity from one image to another that is larger than
∆vmax(t). Various methods of treating such outliers are
possible. One method is to ignore the motion parameters
estimated at time t and to retain the parameters from time
t − 1. This method will be referred to as Method 1 in
Section V. Another method limits the change in velocity to
∆vmax(t). This method will be referred to as Method 2 in
Section V. Other methods such as smoothing the parameter
curve by fitting a bicubic spline function to it are possible.
It should be noted that such smoothness constraints are not
needed in the FMT approach because it does not rely on
individual point correspondences.

V. EXPERIMENTS
For experimental evaluation, we used images from a se-

quence of 1400 video frames taken by a single camera system
in a moving car in an urban environment during daylight (see
Figure 1 for an example). The video frames have a spatial
resolution of 640×480 pixels and the video frame rate is
60Hz. The sequence contains images of a motion that has
a slight left-hand turn at the beginning, followed by a 90◦

right-hand turn about half way through the sequence, before
the vehicle is travelling on a straight stretch of road.

Images are first rectified to remove radial lens distortion
effects. A window function is applied to remove aliasing
effects introduced by the log-polar representation of the
FMT. In our work, we tested various window functions
and found that a Kaiser window worked best. We used an
implementation of the FMT in Matlab on a Pentium IV
PC with a 3.4GHz CPU and 2GB RAM. The FMT could
be computed in less than 1s per image pair. In rare cases,
it was necessary to search the phase correlations for more
than one peak which resulted in an increased computational
cost. Nevertheless, it is reasonable to assume that a real-
time implementation could be achieved, even more so as
taking pairs of consecutive video frames is an overly cautious
approach. Once the images had been registered, the motion
parameters were estimated. For the methods with smoothness
constraint, these were applied afterwards.

We compare our FMT approach with a traditional
(correlation-based) optical flow method and a method where
we first compute SIFT keypoints which are then used as

initialisation for an optical flow method. The resulting path
of the vehicle on the ground plane is plotted in Figure 3.
Note that the paths are very similar initially but diverge after
the 90◦ right-hand turn. Differences exist in the amount of
rotation recovered by the three methods. The optical flow
and FMT methods seem to overestimate the right-hand turn,
while the SIFT + optical flow method underestimates it. In
the case of the FMT method, this is due to the method
currently not computing the image registration parameters
with subpixel accuracy. We currently work on an extension
of the FMT method that corrects this problem.

Figure 4 shows the resulting egomotion parameters. The
translation is not shown because it is directly related to the
velocity. The rotation estimates are following the same trend
for all three methods, with the FMT showing slightly larger
rotation values than the other two methods. For better read-
ability, results for only the first 600 images are shown for the
velocity estimates. Of all the methods without smoothness
constraint, the FMT had the most coherent velocity estimates.
The smoothness constraint Method 1 successfully ignored
outliers. In Method 2, a value of amax = 10m/s was used.
This method also limited the amount of incoherent velocities
but was not as successful as Method 1.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a novel method for estimating the egomotion

of a vehicle from a single camera video sequence has been
proposed. It uses the FMT to solve the image registration
problem, providing an efficient and accurate way to compute
the rotation, translation and scale parameters that describe
the relationship between two images in the video sequence.
From these parameters and the known camera calibration
parameters, the rotation and translation components of the
camera motion are derived and, thus, the distance, velocity
and path travelled by the vehicle can be estimated.

Unlike other methods, the FMT provides a global method
for the image registration problem. This is advantageous both
in terms of accuracy as well as computational cost, which is
only dependant on the image size and thus can be computed
prior to the deployment of the method, allowing for a trade-
off between computational cost and accuracy. The proposed
method and two variants of optical flow methods have been
experimentally tested in this work.
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Fig. 4. Resulting egomotion parameters: Rotation angle (in deg) and velocity (in km/h).

In future work, we will compare the results with measure-
ments from a GPS system. We are currently in the process of
acquiring such data. Furthermore, we will compare the per-
formance of the proposed method with a recently proposed
image registration method that uses log-polar mappings and
the Levenberg-Marquardt nonlinear least-squares optimisa-
tion algorithm [21]. This latter method has the advantage that
it can handle large-scale changes and arbitrary rotation angles
for perspective transformations. This in turn would allow us
to take larger time intervals between the two images to be
registered and thus to lower the computational cost further.
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