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Abstract— In order to develop a robust man-machine in-
terface based on speech for cars, the speaker variability and
the acoustic environment effects have to be compensated. In
this work, an on-line feature and acoustic model compensation
(MATE-MEMLIN) is proposed to compensate the speaker
variability and the acoustic car environment. MATE-MEMLIN
consists on the combination of the techniques augMented
stAte space acousTic modEl (MATE) and Multi-Environment
Model based LInear Normalization (MEMLIN). MATE defines
expanded acoustic models to compensate the speaker frequency
variability using data driven estimated linear transformations.
On the other hand, MEMLIN, an empirical feature vector
normalization technique, was also presented and it was proved
to be effective to compensate environment mismatch. Some
experiments with Spanish SpeechDat Car database were car-
ried out in order to study the performance of the proposed
technique in a real car environment, reaching an important
mean improvement in Word Error Rate, WER.

I. INTRODUCTION

Since cars are more and more considered as business

offices, drivers need a safe way to communicate and interact

with either other human or machines. For safety reason,

traditional visual and tactile man-machine interfaces, such as

displays, buttons and knobs are not satisfactory but speech,

as the most convenient and natural way of communicate,

is an appropriate and complementary solution which can

reduce distractions. Hence, Automatic Speech Recognition

(ASR) provides safety and convenience, and it is possible to

follow the philosophy “Eyes on the road and hands on the

steering wheel”, which should drive every in-vehicle system

design. The problem of robust ASR in car environments has

attracted much attention in the recent years and a new market

demands for systems which allow the driver to control non

critical devices or tasks like phone dialing, RDs-tuner, air

conditioner, satellite navigation systems, remote information

Web browsing... For this purpose, hands-free interaction in

challenging acoustic environments still needs to be improved

with respect to several kinds of variabilities.

ASR system performance can be degraded by two im-

portant factors: the speaker variability and the acoustic

environment. It can be assumed that the speaker variability

produces, mainly, a rotation of the feature vectors, while

the acoustic environment generates mainly a translation of

the feature vectors. In this work we propose a combination
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of two techniques: augMented stAte space acousTic modEl

(MATE), which compensates, by adapting the acoustic mod-

els, the rotation effect, and Multi-Environment Model based

LInear Normalization (MEMLIN), which is a feature vector

normalization technique that obtains important improvements

compensating the translations.

The speaker variability problem has been addressed by

many authors, specially in the sense of compensation of

vocal tract shape by means of the well known Vocal Length

Tract Normalization (VLTN) [1] and Maximum Likelihood

Linear Regression (MLLR) methods [2]. Those methods still

have limitations in order to adapt the acoustic models to the

speaker. Usually a great amount of speaker data and exact

transcriptions or previous utterances and ASR transcriptions

are needed. In this research line, MATE [3] consists of an

expansion of the VTLN methods that provides the spectral

warping to be locally optimized and simultaneously to the

decoding of the state sequence. MATE obtains expanded

acoustic models from reference ones using linear transfor-

mations and it was proved to be effective in noise free or

moderately noisy speech conditions [3], [4]. However the

accuracy of a speech recognition system based on MATE

with noisy signal rapidly degrades. To compensate this

limitation, robustness techniques can be used.

MEMLIN [5] is an effective empirical feature vector

normalization technique which compensates the effects of

dynamic and adverse acoustic environments. MEMLIN is

based on Minimum Mean Square Error (MMSE) estimator,

and models clean and noisy spaces assuming Gaussian

Mixture Models (GMMs). A bias vector transformation for

each pair of Gaussians from the clean and the noisy spaces

is defined to compensate the mismatch between clean and

noisy feature vectors.

This paper is organized as follows: In Section II, a novel

point of view of MATE analysis is explained. In Section III

an overview of MEMLIN is detailed. The MATE-MEMLIN

algorithm is presented in Section IV. The normalized space

acoustic models are explained in Section V. The results with

Spanish SpeechDat Car database [6] are included in Section

VI, and finally, the conclusions are presented in Section VII.

II. MATE

The main motivation in MATE is to find an acoustic

model able to capture speaker variability. MATE provides a

mechanism based on the VTLN spectral warping procedure

to frame by frame optimized. The acoustic model captures

local frequency deformations of the spectrum envelope,

which are known to have their origin in the vocal tract
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and articulatory instant shapes. A more complex and flex-

ible speech production scheme can be assumed, in which

local elastic deformations of the speech can be captured or

generated by the model by means of linear transformations,

i.e. rotations. Inertia and memory constraints are imposed on

the dynamics of the local transformations, then the plausible

transformation sequence is assumed to follow an HMM

process.

In [7], it was shown that the spectral warping performed

by VTLN methods is equivalent to a linear projection of the

cepstral feature space. So, for a discrete set of N possible

warping factors, αn, the equivalent MATE transformation

matrices {An}N
n=1

can be obtained as

Vαn = AnW, (1)

where n ∈ [1, N ] is the index of the warping factor, W is a

matrix which is composed by the source space data, and the

Vαn matrix includes the target space data, which is obtained

from the source space data normalized with VTLN using the

corresponding αn warping factor [1].

MATE [3] expands each state of the source space acoustic

models (HMM). So, an original state q (q ∈ [1, Q]) will

be expanded N times into states (q, n). Thus MATE pro-

vides observation generation probability density functions

(pdfs) in the states that depend on the discrete set of

transformation matrices, An, embedding the warping in

the acoustic model as a general transformation. Assuming

that a component in the pdf mixture of the original state

q follows a normal distribution: N (xt; µq,Σq), the corre-

sponding expanded state component is assumed to follow

the distribution N (xt;Anµq,AnΣqA
t
n). So, the pdf for the

expanded state (q, n), f(xt|n, q), is a GMM of the defined

expanded components where the a priori component weights

remain unaltered.

The expanded acoustic model, from the perspective of

a feature vector generator, can be seen as a more flexible

speech production process because it can generate sequences

of warped cepstrum vectors. To complete the parameter

set of the expanded model, the expanded state transition

probabilities Π, are

Π = {πq′,n′,q,n}
Q,N,Q,N
q′=1,n′=1,q=1,n=1

, (2)

being πq′,n′,q,n the transition probability from state (q′, n′)
to (q, n), which is obtained as [10].

The search algorithm for decoding unlabeled sequences

under this framework can be performed by computing recur-

sively the score state variable, φq,n(t), for the state (q, n),
the index of the warping factor n and the frame time index

t.

φq,n (t) = max
n′,q′

{φq′,n′ (t − 1) · πq′,n′,q,n}·f (xt|n, q) . (3)

This recursive expression is very similar to the one con-

sidered in [3], being the main difference how the warping is

applied, since now is the expanded acoustic model which

Fig. 1. Scheme of MEMLIN approximations for one basic environment,
where sx and sy are the index of clean and noisy space Gaussians and
rsx,sy

is the bias vector transformation associated to the pair of Gaussians
sx and sy .

tries to generate or evaluate the warped data instead of

normalizing the data to fit the source space acoustic model

as in [10]. Besides, in the new framework the covariance is

normalized in the expanded model description, including the

Jacobian normalization in the model [7].

A. MSE Transformation matrix estimation

The rotation MATE matrices An, as a general linear

transformation for the feature vectors, provide a great degree

of freedom for the MATE expanded models, including the

rotation transformations in the mean vectors and covariance

matrices.

In order to estimate the rotation matrices An, a linear

transformation as (1) is defined and the multidimensional

regression Minimum Square Error (MSE) criterion is used in

a previous process with training data. So, a residual error is

defined as the squared sum of differences between the target

data, Vαn (D×L) (D is the dimension of the feature vectors

and L is the number of feature vectors) and the projected

ones, AnW, where W matrix includes the source data (D×
L). Taking derivatives with respect to An and equating them

to zero, we obtain the following expression for the estimation

of An

An = (WWt)−1W(Vαn)
t
. (4)

III. MEMLIN OVERVIEW

MEMLIN is an empirical feature vector normalization

technique based on MMSE estimator. It assumes three

approximations: the clean feature space is modelled as a

mixture of Gaussians (GMM), the noisy one is split into

several basic acoustic environments and each one of them is

modelled as a GMM. The third assumption consists on defin-

ing a bias vector transformation associated with each pair of

Gaussians from the clean and the noisy basic environment

spaces. These assumptions can be shown, in a schematic

way, in Fig. 1 for one basic environment, where clean and

noisy spaces are modelled by GMMs and the corresponding

bias vector transformation between a clean space GMM
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component (sx) and a noisy space GMM component (sy)

is depicted as rsx,sy
.

A. MEMLIN approximations

• Clean feature vectors, xt, are modelled using a GMM

f(xt) =
∑

sx

f(xt|sx)p(sx), (5)

f(xt|sx) = N (xt; µsx
,Σsx

), (6)

where µsx
, Σsx

and p(sx) are the mean vector, the diagonal

covariance matrix, and the a priori probability associated

with the clean model Gaussian sx.

• Noisy space is split into several basic environments, e,

and the noisy feature vectors, yt, are modeled as a GMM

for each basic environment

fe(yt) =
∑

se

y

f(yt|s
e
y)p(se

y), (7)

f(yt|s
e
y) = N (yt; µse

y
,Σse

y
), (8)

where se
y denotes the corresponding Gaussian of the noisy

model for the e basic environment, µse
y
, Σse

y
and p(se

y) are

the mean vector, the diagonal covariance matrix, and the a

priori probability associated with se
y .

• Clean feature vectors can be approximated as a linear

function of the noisy feature vectors, which depends on the

basic environment and the clean and noisy model Gaussians:

x ≈ Ψ(yt, sx, se
y) = yt−rsx,se

y
, where rsx,se

y
is a bias vector

transformation between noisy and clean feature vectors for

each pair of Gaussians, sx and se
y .

B. MEMLIN enhancement

With those approximations, MEMLIN transforms the

MMSE estimation expression, x̂t = E[x|yt], into

x̂t = yt−
∑

e

∑

se

y

∑

sx

rsx,se

y
p(e|yt)p(se

y|yt, e)p(sx|yt, e, s
e
y),

(9)

where p(e|yt) is the a posteriori probability of the basic

environment e; p(se
y|yt, e) is the a posteriori probability

of the noisy model Gaussian se
y , given the noisy feature

vector yt and the basic environment e. Those two terms

are computed on-line for each frame applying (7) and (8),

as described in [5]. Finally, the cross-probability model,

p(sx|yt, e, s
e
y), is the probability of the clean model Gaussian

sx, given the noisy feature vector yt, the basic environment e,

and the noisy model Gaussian se
y . That term, along with the

bias vector transformation rsx,se
y
, is estimated in a previous

training phase using stereo data [5]. If stereo data is not

available, a “blind” version of the training phase can be

applied [9].

Fig. 2. Scheme of MATE-MEMLIN performance.

IV. MATE-MEMLIN

In order to provide robustness to MATE in adverse

acoustic conditions, MATE-MEMLIN combines MATE with

MEMLIN. So, the MEMLIN normalize feature vectors are

decoded using MATE-MEMLIN expanded acoustic models.

Since the rotation matrices can be estimated in a data driven

way and MEMLIN maps the different basic environment

data towards only one space, the corresponding matrices

for MATE-MEMLIN can be adapted to the specific problem

without considering any environment dependence (see Fig.

2). In the left part of the Fig. 2, the MEMLIN normalization

is depicted and the speaker noisy data are mapped to a clean

speaker dependent space. The MATE effect is presented on

the right part of the figure, where the clean independent

speaker acoustic models are adapted to the optimal (An)

speaker dependent space. This acoustic model election (An)

is obtained frame by frame in the search algorithm by

maximum likelihood (3).

As it has been described in Section II, the MATE rotation

matrices obtained with the MSE linear regression criterion

need matched source and target data. In this work it is

assumed available stereo training data for each basic envi-

ronment e, (Xe,Ye) = {(xe
1
,ye

1
), ...(xe

t ,y
e
t )..., (x

e
T ,ye

T )},

where Xe represents the clean feature vectors for the basic

environment e, and Ye the corresponding noisy ones (these

stereo data are also needed to obtain the bias vector trans-

formations and the cross-probability models for MEMLIN

[5]).

In the MATE-MEMLIN rotation matrix estimation, the

source space data are X, which is the concatenation of the

clean training data for all the basic environments. On the

other hand, the target space data are obtained with noisy

data Y for all the basic environments, including rotation and

translation compensations as following

• Noisy warped cepstrum feature vectors (Ye,αn) are

obtained applying the VTLN rotation [1] to the noisy

training data for all the basic environments e, Ye.

• MEMLIN compensation algorithm is applied over
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TABLE I

WER BASELINE RESULTS, IN %, FROM THE DIFFERENT BASIC ENVIRONMENTS (E1,..., E7), WHERE MWER IS THE MEAN WER.

Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 0.95 2.32 0.70 0.25 0.57 0.32 0.00 0.91

CLK HF 3.05 13.29 15.52 27.32 31.36 35.56 53.06 21.48

HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63

Fig. 3. Scheme of MATE-MEMLIN phases.

Ye,αn , obtaining the normalized data X̂e,αn (9). The

target space data X̂αn are composed by the concatena-

tion of the normalized data for all basic environments.

Thus, finally, the rotation matrix estimations, which are

defined as the following linear projection X̂αn = AnX, are

(see Section II)

An = (XXt)−1X(X̂αn)
t
. (10)

In decoding, the noisy feature vectors are normalized with

MEMLIN algorithm and the normalized data are recognized

using the MATE-MEMLIN expanded acoustic models with

the transformation matrices, An (10). A graphical repre-

sentation for the rotation matrix estimation method and the

recognition process for MATE-MEMLIN can be observed in

Fig. 3.

Note that the resulting expanded MATE-MEMLIN acous-

tic models are able to locally rotate the frequency axis in

the standard VTLN way, including at the same time the

information of how the MEMLIN normalized feature vectors

are distributed in the feature space.

V. NORMALIZED SPACE ACOUSTIC MODELS

Feature vector normalization techniques try to map the

noisy feature vectors to the clean space. However this map-

ping is not perfect and a new normalized space is created,

which is different to the clean one. So, a further improvement

can be obtained adapting the clean acoustic models towards

the normalized space. For this purpose, the noisy training

data are normalized in the same way as testing data and

the original clean acoustic models are adapted with those

data towards the new normalized space. If there are enough

data, Maximum Likelihood (ML) algorithm can be used,

but a model adaptation method should be applied otherwise

(Maximum A Posteriori, MAP [11], MLLR [2]...). In this

work, once the MEMLIN normalized space acoustic models

are obtained, the normalized testing data can be recognized

directly with them, or with new expanded MATE-MEMLIN

acoustic models. In this case the normalized acoustic models

are expanded with the corresponding MATE transformation

matrices. In this work, the two options are compared.

VI. RESULTS

To compare the performance of the MATE-MEMLIN tech-

nique in a real, dynamic, and complex car environment, a set

of experiments were carried out using the Spanish SpeechDat

Car database [6]. Seven basic environments were defined: car

stopped, motor running (E1), town traffic, windows close

and climatizer off (silent conditions) (E2), town traffic and

noisy conditions: windows open and/or climatizer on (E3),

low speed, rough road, and silent conditions (E4), low speed,

rough road, and noisy conditions (E5), high speed, good road,

and silent conditions (E6), and high speed, good road, and

noisy conditions (E7).

Two channels of the database, which were recorded si-

multaneously (stereo data), were used: a clean signal from

a CLose talK channel (CLK), which was recorded with

a Shure SM-10A microphone, and a noisy signal from a

Hands-Free channel (HF), which was recorded using a Peiker

ME15/V520-1 microphone located on the ceiling in front of

the driver. HF signals were used in recognition tasks.

The SNRs (mean ± standard deviation) of the HF channel

range from 14.05±3.89 dB in the E1 basic environment to

5.65±4.35 dB in the high speed and good road conditions

(E6 and E7 basic environments combined).

The recognition task is isolated and continuous digits

recognition (a typical hands-free phone task). As feature set,

the standard ETSI front-end features plus the energy and the

corresponding delta and delta delta coefficients were used

in all the experiments [12]. Cepstral mean normalization

is applied to testing and training data in all cases. On

the other hand, in this work, the VTLN, MEMLIN and

SPLICE with environmental model selection [8] (SPLICE

MS) algorithms were applied to the 12 MFCCs and energy,

whereas the derivatives were computed over the normalized

static coefficients. The acoustic models were composed of 16

state HMM for each digit, a 3 state begin-end silence HMM
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and an 1 state inter-word silence HMM. In all cases, each

pdf state is composed by a mixture of three Gaussians.

A. Baseline results

The Word Error Rate (WER) baseline results for each

basic environment are presented in Table I, where MWER

is the Mean WER, which is computed proportionally to the

number of words on each basic environment. “Train” column

refers to the signals used to obtain the corresponding acoustic

models: if they are trained with all clean training utterances,

the column is marked CLK, and if the column is marked

HF, the acoustic models are trained with all noisy training

utterances. “Test” column indicates the signals which are

used for recognition: clean, CLK, or noisy, HF.

Table I shows the effect of real car noise, which pro-

duces a significant increase in WER in all of the basic

environments, (Train CLK, Test HF), concerning the rates

for clean conditions, (Train CLK, Test CLK). With matched

conditions: when acoustic models are retrained using all

basic environments, (Train HF, Test HF) MWER decreases

significantly.

B. MATE, MEMLIN and MATE-MEMLIN results

Table II shows the MWER when only MATE is applied.

The expanded MATE models are obtained over the ones

trained with “Train” column signals. To compute the trans-

formation matrices, the source space is the clean one, and

the target space is obtained with the clean data normalized

with VTLN using 5 warping factors (0.8, 0.9, 1.0, 1.1 and

1.2 [1]).

TABLE II

MEAN WER (MWER) IN % FROM MATE TECHNIQUE.

Train Test MWER (%)

MATE CLK CLK 0.76

MATE CLK HF 29.28

MATE HF HF 7.30

It can be verified in Table II the improvement that ex-

panded MATE models obtain when they are applied over

the clean signals (0.76% of MWER) concerning the result

obtained when clean feature vectors are recognized with

clean acoustic models (0.91% of MWER). This result is

better than if VTLN [1] is applied over clean signal (0.81%
of MWER). Furthermore, the basic VTLN technique is not

on-line as MATE. However, MATE is not very effective in

noisy conditions due to the high noise sensibility of the

method. This the reason of using MEMLIN combined with

MATE, because they are complementary and the bad per-

formance of MATE in noisy conditions can be compensated

with MEMLIN.

To compensate the effects of the noise in recognition,

MEMLIN and MATE-MEMLIN are proposed. Fig. 4 shows

the mean improvement in WER (MIMP) in % for MEM-

LIN and MATE-MEMLIN. Also the results obtained with

SPLICE MS are included to compare. Given a Mean WER,
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Fig. 4. Mean improvement in WER (MIMP) in % for MATE-MEMLIN,
MEMLIN and SPLICE with environmental model selection (SPLICE MS)
when different number of Gaussians per basic environment are considered.

the corresponding mean improvement in WER is computed

as

MIMP =
100(MWER− MWERCLK−HF )

MWERCLK−CLK − MWERCLK−HF

,

(11)

where MWERCLK−CLK is the mean WER obtained with

clean conditions (0.91 in this case), and MWERCLK−HF

is the baseline (21.48). So, A 100% MIMP would be

achieved when MWER equals the one obtained under clean

conditions. In order to compare all the methods, the MIMP

has been depicted with respect to the number of Gaussians

per basic environment because it gives an idea of the com-

puting cost. It can be observed the improvement of MATE-

MEMLIN with respect to MEMLIN: from 62.57% to 75.44%
(from 8.61% to 5.96% of MWER) with only 4 Gaussians

per basic environment and from 75.53% to 83.45% (from

5.95% to 4.32% of MWER) with 128 Gaussians, showing

the importance of the use of the expanded MATE-MEMLIN

acoustic models with after MEMLIN normalization. On the

other hand, note the important improvement of MATE-

MEMLIN with respect to SPLICE MS. It is also important

to observe that the dependence of the results concerning

the number of Gaussians per basic environment has been

reduced when MATE-MEMLIN is applied; so competitive

results can be obtained with a few number of Gaussians per

basic environment. The best results of MWER for SPLICE

MS, MEMLIN and MATE-MEMLIN (all of them obtained

with 64 Gaussians per basic environment) are included in

Table III

C. Results with normalized space acoustic models

Table IV shows the corresponing matching condition re-

sults (MWER and MIMP) when normalized acoustic models

are used. Clean and noisy condition results (Train CLK, Test

CLK and Train HF, Test HF, respectively) are included again
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TABLE III

BEST MEAN WER (MWER) IN % FROM SPLICE WITH

ENVIRONMENTAL MODEL SELECTION (SPLICE MS), MEMLIN

AND MATE-MEMLIN TECHNIQUES (ALL OF THEM OBTAINED

WITH 64 GAUSSIANS PER BASIC ENVIRONMENT).

Train Test MWER (%)

CLK HF SPLICE MS 6.25

CLK HF MEMLIN 5.95

CLK HF MATE-MEMLIN 4.19

to compare. In “HF MEM” the normalized with MEMLIN

noisy training data are used to retrain the new acoustic mod-

els with the ML algorithm. The results for “HF MAT-MEM”

are obtained with the expanded MATE-MEMLIN acoustic

models estimated from the ones retrained with the MEMLIN

normalized noisy training data and the ML algorithm. In

both cases MEMLIN is applied with 128 Gaussians per

basic environment. The recognition rates using less number

of Gaussians for MEMLIN are similar, for instance, if 4

Gaussians per basic environment are used in MEMLIN, the

MIMP with the new retrained acoustic models is 94.63%,

and if the corresponding expanded acoustic models are

estimated by MATE-MEMLIN, the MIMP reaches 95.06%.

Clearly there are significant improvements when normalized

space acoustic models are used, even when noisy acoustic

models are applied. Furthermore, in this case the number of

Gaussians used for MEMLIN does not affect significatively

to the performance.

TABLE IV

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER

(MIMP) IN % FROM MEMLIN (MEM) AND MATE-MEMLIN

(MAT-MEM) WITH 128 GAUSSIANS PER BASIC ENVIRONMENT

AND ML-ADAPTED ACOUSTIC MODELS TO THE NORMALIZED

SPACE.

Train Test MWER (%) MIMP (%)

CLK CLK 0.91 –

HF HF 4.63 81.93

HF MEM HF MEM 1.72 96.08

HF MAT-MEM HF MAT-MEM 1.68 96.25

VII. CONCLUSIONS

In this paper we have presented the MATE-MEMLIN,

which is a combination between a novel point of view of

MATE (acoustic model adaptation technique) and MEM-

LIN (feature vector normalization algorithm), in order to

compensate the speaker variability and the car environment

effects. MATE proposes new expanded acoustic models

from original models to normalize the vocal track length.

Some results with Spanish SpeechDat Car database show

the effective behaviour of the technique with clean signals,

0.76% of MWER, (better than VTLN, which reaches 0.81%
of MWER), but, with noisy data the system rapidly degrades.

To compensate this mismatch, the feature vector normaliza-

tion technique MEMLIN is selected to normalize the noisy

data, defining MATE-MEMLIN. So, in MATE-MEMLIN,

the MEMLIN normalize feature vectors are decoded us-

ing MATE-MEMLIN expanded acoustic models. MATE-

MEMLIN obtains an improvement in WER of 83.45% with

128 Gaussians per basic environment, whereas MEMLIN

in the same conditions reaches 75.53%. If expanded nor-

malized space acoustic models are used in recognition, the

mean improvement is 96.25% with 128 Gaussians per basic

environment.
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