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Abstract— This paper presents a monocular night vision sys-
tem specifically developed for detecting very distant pedestrians.
The focus of the system is the recognition of pedestrians that
are between 40 and 100 m away from the camera. The system
is intended to integrate with an existing system, which is
capable of detecting pedestrians at distances less than 40 m.
At very large distances, pedestrians appear at low resolution,
and this requires a specific detection algorithm, rather than an
adaptation of an existing one. The presented system performs
best in rural environments, where it can locate pedestrians at
such great distances, that the pedestrians are hardly visible
even to a human driver.

I. INTRODUCTION

Pedestrian detection remains a key topic in the artificial

vision field, because of its many applications. In particular,

it can be exploited in the automotive field to protect the

thousands of pedestrians being injured every year in road

accidents. Many systems have been developed, based on

different approaches, as described in [1]. The majority of

pedestrian recognition vision systems uses far-infrared (FIR)

imagery, because the heat emitted by the human body causes

pedestrians to appear as bright objects at these frequencies.

This facilitates the image segmentation process, and, above

all, makes it possible to detect pedestrians in the absence of

any natural or artificial lighting, and at great distances, even

at night. However, FIR images are less useful during summer,

because high ambient temperatures cause many objects in the

environment to appear as bright as human bodies.

A. Related work

Some examples of night vision systems can be found in [2]

and [3] (based on a stereo camera pair) and in [4], which is

based on monocular vision. All these systems aim to detect

all pedestrians in the image, therefore they deal with objects

whose size can vary over a wide range. To cope with this,

in [4] each bounding box found in the image is resized to

a fixed size for the final validation. Moreover, in [5] it was

observed that a multi-resolution approach can be useful for

restricting the variability of pedestrians size in the image.

This suggests that the best performance can be obtained if

all possible pedestrians sizes are in a small range.

B. System goal

This paper presents a new algorithm capable of extending

the detection range of the system described in [5] from

TABLE I

VALUES OF PEDESTRIAN HEIGHTS IN THE IMAGE ACQUIRED BY THE

SYSTEM. THE PEDESTRIAN IS 1.80 M TALL.

Distance from Pedestrian height
the camera (m) (pixels)

20 66
40 30
60 18
80 15
100 13

7-43.5 m to distances up to 100 m. Hence the focus is on

pedestrians further than 40 m from the camera. The system

works on low-resolution (320×240) 8-bit greyscale images,

as it often happens in the FIR domain; therefore a pedestrian

that is further than 40 m from the camera is sensibly smaller

than those usually detected by other night vision systems,

thus requiring a specific processing. Table I reports the values

of a pedestrian’s height in pixels at various distances for

a 1.80 m tall person. In [6] the detection of very small

pedestrians is considered. However, that system misses some

pedestrians at long distances, since it is required to find also

pedestrians near the camera.

As previously mentioned, the algorithm does not consider

pedestrians up to 40 m from the camera. Moreover, the task

of the algorithm is really challenging, since it should detect

even those pedestrians appearing as a small group of pixels.

For this reason, it is intended to work in rural environments,

where the number of warm objects is smaller than downtown.

This is acceptable, because in a urban environment cars

drive at relatively slow speeds, so that it suffices to detect

pedestrians at 40 m to avoid collisions. On the other hand, in

rural environments, cars travel much faster, and the absence

of public lighting makes a pedestrian almost invisible until

it is in the range of car lights. A system capable of detecting

pedestrians at distances up to 100 m can therefore increase

the probability of spotting a distant pedestrian in conditions

of poor visibility (be it at night or in fog), and therefore also

increase road safety.

The paper is organized as follows: the system structure,

based on a two-step algorithm, is described in section II,

while some recognition examples are reported in section III,

and section IV discusses the overall system performance,
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Fig. 1. Input image to the system. A distant pedestrian highlighted by the
cyan oval appears in the scene.

together with some open issues that are still present.

II. SYSTEM STRUCTURE

A typical scene containing a distant pedestrian that should

be detected is shown in Fig. 1. The environment is suburban,

and the pedestrian appears as a small hot spot, that is, a

small group of bright pixels (80 in the example shown).

Unfortunately, other small bright objects are also present in

the scene, so a classification method capable of working on

very small objects is needed.

The distant pedestrians detection algorithm can be divided

into two main steps: the former locates regions of interest

(ROI) in the image, while the latter validates them to select

only those containing a pedestrian.

A. ROI Selection

For this application, a region of interest is an area contain-

ing an object that is warmer than the background. The whole

image is first scanned to analyze contrast and brightness.

Then, exploiting this data, a hot spot detector looks for the

regions covered by the brightest pixels, or those with a lower

grey-level, but that are connected to a bright region. This is

done in order to expand each bright region to include all

pixels that seem to belong to the same object. Such low-

level segmentation is much more helpful than thresholding,

since pedestrians do not present the same grey-level for the

whole body, and some body portions would be discarded by

a simple threshold.

For each selected region, a column-wise histogram is then

computed to select only hot spots that have a significant verti-

cal component, as it happens when they contain a pedestrian.

This method is similar to that in [7], with some modifications

to adapt it to detect even small objects. Because of the small

size of the bounding boxes found so far, it is impossible to

perform a check on symmetry properties.

At this level, a communication with the near pedestrian

detector system is present. Since it runs prior to the distant

pedestrian detector, it is possible to exclude all the regions in

which a near pedestrian has already been found. This helps

to avoid some false positives that appear on some parts of the

human body, like closed hands, that in some cases present a

shape similar to a head.

B. ROI Validation

A further analysis is needed to select, among all hot

spots found so far, only those that contain a pedestrian;

actually, this is the most challenging part. The ROI selection

algorithm generates a great number of hot spots in each

frame. Therefore validation should be efficient in discarding

many of them in a quick manner, and then applying more

complicated filterings only on the few remaining hot spots.
1) Position classification: The first quick check is about

hot spots position. Recall that the goal of the system is to

detect pedestrians in the range between 40 m and 100 m.

Thanks to a precise camera calibration, needed also by

the close pedestrians detection system that this algorithm

integrates, and assuming the ground to be flat, it is possible

to roughly know where distant pedestrians will appear, if

present in the scene. Therefore, some regions are selected in

the image, as it can be seen in Fig. 2: a pedestrian should be

inside regions labeled as A and B, and its baseline should lay

inside region B. Of course, when dealing with a camera fixed

on a running vehicle, some oscillations and pitch variations

have to be considered, therefore both regions A and B are

a little larger than they should be, in order to gain some

tolerance to calibration errors and camera movements1.

All hot spots outside these areas are automatically dis-

carded, as well as those that are inside A and B, but also

overlap with regions C. This last observation is particularly

useful because it helps filtering a lot of trees, poles, and

tall symmetrical objects, that are one of the major issues for

pedestrian detection systems. The need to verify if a hot spot

expands also outside region A justifies the fact that the ROI

selection is done in regions A, B, and C, and not only where

hot spots may be found (that is, A and B only).
2) Size classification: Hot spots that are in a valid position

are further investigated. Their size is considered, according

to values in Table I, with some tolerance, but it is impossible

to verify if the size is compatible with the pedestrian distance

to the camera, because this last value is unavailable. In fact,

monocular systems evaluate the distance of objects by only

looking at where their baselines are placed, thanks to the

knowledge of the geometry of the ground (that is almost

always considered to be a plane). But in the low-resolution

images obtained by a FIR camera placed on the lower part

of the vehicle (on the bumper at 65 cm above the ground),

the difference between the baseline of a pedestrian at 40 m

and another one at 100 m is of few pixels only, so it is

impossible to obtain a reliable measurement – and, if ever,

the quantization would be unacceptable. This means that no

strong checks can be made on the hot spots size.

After size check, the aspect ratio is analyzed: this can

cause a group of pedestrians to be discarded, but it is unlikely

1The actual values used as size of areas A, B, C, and all other parameters,
are kept confidential.
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Fig. 2. Detection regions. A bounding box containig a distant pedestrian
should be inside areas A and B. Bounding boxes overlapping also on C are
discarded.

to happen that a large group of pedestrians walk on an rural

road. This simple check can discard a large amount of hot

spots that do not contain pedestrians.

3) Template matching: The last filtering is the most

effective, but also the most computationally expensive one,

therefore it is the last one to be applied. It is based on a

probabilistic template model of a pedestrian, an approach

that appears to be promising especially with very small

pedestrians, like it is discussed in [8] for a FIR images-

based system, and in [9] when dealing with visible imagery.

During system development, both a match with a whole body

template and a template of the head only (shown in Fig. 3)

were considered: finally, the latter was chosen because it gave

better results.

The match is performed using a simple correlation match-

ing function. The correlation coefficient is obtained as:

Match =

∑
i,j (dmodel(i, j) · dimage(i, j))√

σ2
model · σ2

image

, (1)

where dimage(i, j) represents the difference between the

image pixel at position (i, j) and the mean value of all pixels

(a) (b)

Fig. 3. Probabilistic model templates: (a) whole body, (b) head only.

of the image involved in the correlation process (this last

value being μimage); dmodel(i, j) is the same computation

applied to the probabilistic model. The values of σ are:

σ2
image =

∑
i,j

(image(i, j) − μimage)
2

, (2)

σ2
model =

∑
i,j

(model(i, j) − μmodel)
2

. (3)

From (1) it comes that the matching value may also become

negative: this is the case, for example, of an image that is

matched with its negative.

The probabilistic model of the head is first rescaled to

match the hot spot width, and the match with its upper part

is evaluated. Then, the model is rescaled and matched again

to investigate if there is another size that provides a better

matching, depending on the position of the pedestrian inside

the bounding box. After the best match has been found, it

is saved, and then compared to the other matching values

obtained shifting the probabilistic head both horizontally and

vertically. It was observed that if the hot spot is generated

by a pedestrian, the matching value reaches a maximum in

the initial position (or nearby), and then sensibly decreases

when moving the model upwards, while it does not decrease

too much if the model is moved downwards. This happens

because, in the last case, the head is matched with the body,

which turns out to be quite bright, even if not as much as

the head. Since the same behavior is not observed for other

obstacles, this technique based on multiple matches can be

used to distinguish between pedestrians and other objects.

Match values computed when the head model is horizon-

tally shifted are also considered. Indeed, such values should

decrease, otherwise the analyzed area is too uniform, and

is unlikely to contain a pedestrian. After all matchings are

performed, a “pattern of matching values” is avaliable to the

final validator, that chooses if the hot spot is a pedestrian or

not. The decision is based on the absolute value of the best

and worst matching regions, and on the pattern of correlation

values.

To perform this processing, the correlation has to be

computed several times, but the compared areas are so small,

that the computational time does not sensibly increase.

C. ROI Merging

It can happen, especially during cold seasons, that a

human body appears in a FIR image as a set of disjoint

hot spots. Head, legs and feet are usually bright, while

the trunk can appear quite dark. In this case, the low-level

image segmentation in the ROI selection phase does not join

together all the blobs of a pedestrian, because a relatively

large and dark region is present in the middle. For this

reason, after the ROI validation phase, discarded hot spots

are considered again, and a merging process takes place.

When a pedestrian is split into different hot spots, it is

assumed that at least the head and the legs appear, so the

hot spots are vertically aligned, and close to each other. For

these reasons, bright blobs are merged if they are nearby and

if they are almost vertically aligned. After the merging, ROI
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validation is again performed on the new hot spots to verify

if they contain pedestrians.

It was observed that the merging algorithm increases the

correct detection rate in winter scenes, while not sensibly

affecting the false detection rate.

III. RESULTS

The described algorithm was tested in real traffic scenes

both in urban and rural environments, even if it is intended

to be applied only to the latter one. Tests were performed

using a vehicle equipped with a FIR camera mounted over

the bumper, see Fig. 4.

Some examples of the algorithm output are presented. In

Fig. 6 (a) a scene with two distant pedestrians is shown: even

if they are small (the height is 18 pixels), and a number of

hot objects is present, they are both recognized (b). Hot spots

containing a pedestrian are shown with a yellow rectangle

with a red circle around, to ease visualization. In Fig. 7 (a)

the system is working in a suburban environment, in (b) in

a rural one: the capability of recognizing distant pedestrians

is good, even if they appear really small in the image (20

pixels only). In Fig. 8 (a), a pedestrian appears with a dark

trunk, and is therefore recognized as two separate hot spots,

that are both discarded in the filtering phase. When the

merging process is applied, however, the two hotspots are

merged together (b), and the resulting box is not filtered

away. In Fig. 9 (a), both a pedestrian and a cyclist are

recognized; in (b) two spots can be seen: the one on the left

is a pedestrian, while the other one is a vehicle headlight and

tyre. This is actually the biggest issue of the system, because

the shape of a light resembles a head, and other warm parts

of the vehicle can get confused with the body.

Precise quantitative performance evaluation turns out to

be difficult to obtain: in fact, in common systems it is done

by comparing the system output with ground truth; however,

also for a human operator it is extremely difficult to locate

pedestrians that are really small, therefore the collection of

ground truth itself was difficult. In general, a good behavior

is observed in suburban and rural roads. Statistics are based

on 2938 frames, taken in different conditions: the correct

detection rate is computed as CD/(CD+FP), where CD is

Fig. 4. Vehicle equipped with a FIR camera used for testing the algorithm.

the number of pedestrians that are correctly detected, and

FP is the number of objects that have been classified as

pedestrians, even if they are not; these values have been

computed frame by frame. The correct detection rate is

69.2 %, while only 0.036 false positives per frame are found;

moreover, false positives are not persistent; however, they

sensibly increase in images taken in complicated scenarios

inside a city. Interesting results were also obtained with the

hot spot merging, that allows to reliably detect also bicyclists.

The major issue of the system is the misrecognition of

vehicles headlights, that are often merged with warm tyres

and the surrounding area, causing most of the false positives.

This is due to the fact that the headlights shape, at a

great distance, is circular, so that the matching with the

probabilistic template produces a correlation pattern similar

to that obtained when a human body is matched. Other false

positives appear on buildings, but are rather rare, thanks to

the correlation pattern method.

The computational load of the algorithm is important,

since, as already said, this system should be integrated in

a more complex one without decrementing too much the

processing rate. Average execution times are about 3 ms on

a Pentium 4 machine working at 3 GHz.

IV. CONCLUSIONS AND OPEN ISSUES

The most critical problem affecting this system is due to

the dependency on calibration. For example, when driving

on a speed bumper, the camera orientation is subject to a

temporary but heavy change, as can be seen in Fig. 5. In these

conditions the system performance is limited, even when

some tolerance is considered in defining all system param-

eters. Such tolerance lets anyway the system work properly

when the camera is subject to the common oscillations of a

running car. The calibration problem could be substantially

solved employing a stabilization algorithm, so that the areas

of interest of the algorithm are always in a correct position.

Fig. 5. Image acquired when driving on a speed bumper. The heavy
calibration error causes the pedestrian to appear inside region C, so that
it cannot be recognized.
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(a) (b)

Fig. 6. An example of algorithm output: in the original image (a) two distant pedestrians are present; they are both recognized by the algorithm (b).

(a) (b)

Fig. 7. Recognition in suburban (a) and rural (b) environments.

(a) (b)

Fig. 8. In (a), a pedestrian is recognized as two separate hot spots, due to the cold trunk; the merging phase can solve this problem by creating a single,
larger hot spot (b) that can be recognized as a pedestrian in the following validation step.
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(a) (b)

Fig. 9. In (a) a cyclist is recognized as a pedestrian, together with a standing person. In (b) an example of misdetection: the hot spot on the right is a
vehicle light.

Even if the results obtained so far are very promising,

some system improvements can be considered. For example,

by adopting a stereo camera pair and adding a stereo match

processing, the distance of detected pedestrians could be

precisely measured. These new data could also help in

developing new filtering techniques capable of eliminating

false positives, especially downtown.

Fusion with other sensors turns out to be quite difficult,

since wide-angle radars commonly installed on cars can

hardly find a pedestrian (that is a weak reflector) beyond

40-50 m. A laserscanner may offer a better performance, but

at such distances its resolution is limited; furthermore, the

commonly used single-plane laserscanners, when used for

long distance applications, suffer from the same problem

of inaccuracy produced by vehicle pitch. For this task,

vision – although not 100 % reliable – seems to be the best

technology, and probably stereovision would provide the best

results.
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