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Abstract— This paper presents a novel approach of real-time 
vehicle’s localization (position and orientation) estimation. 
Fusion of GPS, gyroscope, speedometer and visual data is 
employed here to provide real time and accurate localization 
information. Global Probability Density Function(PDF) is 
adopted to be the blending factor instead of general Kalman gain, 
which allows our approach to be robust and accurate for most of 
practical systematic problems, since the basic measurements 
from GPS may cause data drift or large infrequent data jumps 
during the fusion processing. Combining with visual data for lane 
shape recognition and tracking, our approach can provide as 
accurate as 3 to 5 meters RMS location accuracy at about 30Hz, 
with less then 35ms delay. This approach has been adapted to the 
direct visual navigation system in VICNAS.  

I. INTRODUCTION

ANY advanced safety and navigation applications 
require the precise localization information of vehicle. 

Global Positioning System (GPS) and inertial sensors are 
generally applied to provide localization information in these 
systems.  

Previous research on self-positioning can be divided into 
three basic categories [3], [7]: stand-alone (e.g. odometer, 
inertial navigation), satellite-based (e.g. global positioning 
system), and terrestrial radio-based system (e.g. cellular 
networks). Other landmark-based or map-based approaches 
have also been proposed which use ultrasonic, sonar, or laser 
range sensors [2]. Recently, most of applications combine 
GPS data with inertial sensors [6], or vision sensors [4]. 

GPS-based vehicle localization algorithms are well studied 
and widely applied in in-vehicle navigation market since 
Pioneer® introduced the first commercial in-vehicle 

navigation system in 1990s. An on-road navigation system is 
generally defined as the integrated system that is mainly used 
to provide location and navigation information on the screen to 
help driving. Figure 1 shows an example of in-vehicle 
navigation system.  
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Localization algorithm in these state-of-the-art navigation 
systems generally takes advantages of the complementary 
characteristics of GPS, deduced reckoning (DR) and map 
matching technology with road network database. GPS data 
provides the absolute position, and DR sensors like inertial 
sensor, yaw rate sensor and odometer will provide 
supplemental position data when GPS signal is blocked or lost. 
Map Matching (MM) algorithm is usually applied for 
correcting vehicle’s physical location to the nearest road 
position by assuming a vehicle is traveling on the road. 
Extended Kalman filter [9], particle filter [10] and other fusion 
algorithms are the most popular algorithms in navigation 
system to estimate vehicle’s localization. 

Major difficulties with respect to GPS and inertial sensor- 
based localization systems are the uncertainty of measurement 
error and data delay. Position accuracy will vary with GPS 
receiver’s configuration (receiver and antenna), location 
(geographic latitude, as it influences HDOP, and surrounding 
objects possibly blocking reception or causing multi-path 
reception), satellite constellation status, and ionosphere 
conditions. Due to the cost issue, the accuracy of current low 
cost commercial GPS system is about 20 meters in 
Longitude/Latitude and 10 degrees in orientation. The output 
frequency is about 1 Hz. The delay problem of GPS 
measurement, namely, the delay between localization request 
time and response time is not constant, is the key issue that 
affects real-time applications. An average of 1 to 2 seconds 
delay from receiving GPS signal to location output is normal 
and even worse delay can be observed in urban area when map 
matching calculation is heavy. This delay will cause a very 
unstable estimation result of vehicle’s location. 

However, most of advanced safety and visual navigation [1] 
applications are required to control vehicle’s movement 
real-timely or provide real-time indications for driving 
assistance. Real-time, high accurate and stable measurement 
of vehicle’s position and orientation are vital to these 
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applications, which are essentially unavailable from previous 
localization approaches. 

 In this paper, a real-time fusion approach for vehicle 
localization is presented. Data fusion is achieved by Kalman 
filter with global probability density function to deal with 
GPS’s non-Gaussian distributed measure errors. It allows our 
approach to be robust and accurate for most of the practical 
problems in vehicle localization systems like slow data drift 
and large infrequent data jumps. At the same time, visual 
sensor based lane shape recognition and tracking compensates 
the offset displacement to road centreline. 

The paper is outlined as follows: In Section II, global PDF 
based real-time vehicle localization algorithm is explained in 
detail. Implementation details in the application of visual 
navigation system (VICNAS) are introduced in Section III. 
Real outdoor test results are also presented. Finally, we give 
the conclusion and discuss the future perspective of our work. 

Figure 1. Example of in-vehicle navigation system 

II. GLOBAL PDF BASED REAL-TIME VEHICLE
LOCALIZATION APPROACH

As described in Section I, real-time, high accurate and stable 
measurement of vehicle’s position and orientation is vital to 
the applications like advanced safety and visual navigation 
systems, since it is required to control vehicle’s movement or 
provide real-time indications for driving assistance.  

The local measurement (inertial sensor) is integrated with 
global measurement (GPS data) to compensate and interpolate 
vehicle state vector (position and orientation) with Kalman 
Filter. Global probability density function (PDF) is adopted 
here to be the blending factor instead of general Kalman gain, 
which allows our approach to deal with data difference 
between reference measurement from GPS and information 
calculated by motion model. 

A. Vehicle State Vector 
Vehicle state including position and orientation 

is the main parameter considered of on-road applications. Here, 

Toriyx ),,(

x and  are local plane coordinates transformed from global 
Longitude /Latitude data [12], and ori  is the orientation 
angle. 

y

The position accuracy provided by low cost GPS/DGPS unit 
in vehicle navigation system is closely related with satellites 
location and surrounding objects. In a wide-open area, it can 
generally provide 10 to 20 meters accuracy at about 1 Hz. 
After map matching process, an average of 4 to 5 meters 
accuracy can be achieved. 

Since map matching outputs the closest road center line 
position and orientation, it can not present the exactly vehicle 
state on the road which always introduces a lateral offset and 
deviation angle referring to road center line. In this paper, the 
vehicle state vector is expressed as follows: 
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where  is the state estimation based on GPS/INS 
and odometer, is the supplement vector by 
visual sensor to detect the lateral offset and deviation angle to 
road centred line.
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Vehicle’s motion on road can be generally treated as a rigid 
body motion (Figure 2). A general predication equation of 
vehicle state vector  is shown in 
equation (2). Vehicle state vector at time k can be estimated by 
the observation state at time k-1 and the fusion result of 
GPS/INS and odometer when sampling time is small enough.  
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Figure 2. Motion model in world coordinate system 
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where  is the orientation variation, which can be derived 
directly from gyroscope’s Yaw angle output.  is the 
displacement between sampling positions, which can be 
calculated by vehicle velocity from speedometer output as (3).  

d

k
 is the sampling time of gyroscope, which is normally less 

than 20ms.  

d speed t                  (3) 
t

B. Vehicle State Compensation with Global PDF 
Vehicle state prediction based on equation (2) suffers with 

slow data drift as gyroscope and speedometer only provide 
differential data. This drift has to be recursively corrected 
upon each new GPS measurement comes. 

Similar with other tracking problems, a Kalman fiter works 
well for prediction and correction problem in the linear 
Gaussian situations, if the highly restrictive Kalman gain 
assumptions hold. The compensation state vector is expressed 
in equation (4) at GPS sampling time i:

ˆ(i i i iC K X HX )

C P X HX

                                        (4)
where  is the compensation state 
vector,  is the Kalman gain matrix,  is the predicted 
state vector provided by (2) and  is the GPS measurement. 

T),,( iiii CoriCyCxC
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   Unfortunately, it is very hard to calculate the Kalman gain in 
the practical application without related update functions. 
Even if these functions could be acquired, it will increase the 
complexity and computational expense. Moreover, GPS 
measurement is an obvious non-gaussian distributed data with 
uncertain data drift and large infrequent data jumps. If the 
general linear Kalman gain vector is used to calculate the 
compensation state vector, the overall state vector will be 
unstable because of the GPS bias, which can be always 
observed in urban area. 

X

In this paper, we propose a global Probability Density 
Function (PDF) based approach to calculate compensation 
state vector. PDF from Bayesian perspective is required as a 
recursive factor between prediction and update instead of 
traditional Kalman gain in order to stabilize the state vector 
from sudden or/and large measurement variation. The 
compensation state vector is expressed as follows: 

ˆ(1 )( )i i i i
where  is the probability vector and it can be derived as a 
gaussian density probability. 

                      (5) 
iP

             }.
2

)(
exp{

2
1

2

2

ii

ii
iP         (6) 

where  is the prediction error i
ˆ .i iX HX  is the 

mean value of prediction error and 2   gives the standard 
deviation.  and 2  are statistical constant by variable .

With the introduction of PDF concept, the compensation 
vector i  is normally distributed with mean C  and variance 

2  (standard deviation ). The new GPS measurement data 

would be taken into consideration through weighted 
probability from PDF function. It will largely eliminate the 
random bias from GPS.  

Furthermore, by local PDF calculation like equation (6), a 
long time drive on straight road will cause PDF’s over- 
centralization since map matching’s performance is good in 
this case and the standard deviation of predication error will be 
extremely small. PDF’s over-centralization to a certain value 
will weaken its effectiveness since it will neglect the normal 
variations on orientation and position like lane change or slow 
turn. In this paper, we take a global probability limitation into 
consideration. The probability calculated in eq.(6) will be 
saturated to a certain limitation depending on the performance 
of GPS and related digital map. 

Finally, the vehicle state is estimated by the result of 
predicted state and compensation. The vehicle state function is 
expressed as: 
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where  is the compensation state vector based 
on last GPS measurement. 

T
oriyx CCC ),,(

Figure 3 shows the result of vehicle state’s error and 
compensation respectively, where “---” line is the error 
between prediction and measurement and the “----” line is the 
compensation during update. Comparing with a simple low 
pass filter or general Kalman filter, the global PDF based 
approach provides an effective compensation by stabling the 
state vector recursively in low vibration while keeping a close 
track to the prediction error.

C. Visual Compensation 
The offset calculated by visual analysis is necessary to 

correct vehicle position from road center line to its exact lane 
position.

2

2
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where W is road width in one direction, which is provided by 
the digital road map. (k)  is the offset to the leftmost roadside, 

(k)  is the deviation angle to road center line.  and 
can be calculated from lane tracking result.  

d
(k)d (k)

An efficient algorithm [11] of road model for lane 
recognition and tracking by EKF was applied to retrieve road 
shape parameters as well as vehicle state parameters including 
pitch angle, lateral offset, deviation angle and camera’s height. 
Figure 4 shows the result of lane detection and virtual green 
lanes based on road parameters are shown on the image. 
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Figure 3. Vehicle state compensation result based on global PDF 

Figure 4. Examples of lane detection 

III. IMPLEMENTATION ON VISUAL NAVIGATION
With the development of voice guidance and dynamical 

traffic information exchange techniques, recent vehicle 
navigation systems will guide you with voice instructions well 
in advance of your next move along a pre-planned route. 
However with a traditional navigation system, drivers still 
have to compare by himself the road scene ahead with his 
digital map to determine which lane to take or, at which 
intersection to turn. It is not only inconvenient, but also even 
dangerous in some cases, especially during the high-speed 
driving in dense traffic roads. A new concept of direct visual 
navigation and its prototype system – Vision-based Car 
Navigation System (VICNAS)[1] was proposed by the authors 
to overcome this problem. As shown in Figure 5, VICNAS 
employs Augmented Reality technique to superimpose virtual 
direction indicators and traffic information bulletins upon the 
real driver’s view. 

Since all the virtual indicators and overlay graphics have to 
be aligned properly with the real road scene from driver’s view, 
the accuracy of navigation that VICNAS can provide 
absolutely depends on the accuracy of the estimated vehicle 
state vector, which means localization accuracy directly 
determines the visually-perceived performance of this AR 
system. 

Figure 5. Vision-based Road Navigation System: VICNAS 

A. System Setup 
All components in our system are off-the-shelf products on 

the market: a Teli CCD COLOR CAMERA was mounted on 
the front roof of test vehicle, image sequences were captured 
in NTSC format at the frame rate of 30fps, GPS data 
(Pioneer® AVIC-DR2030ZZ) and inertial data (Gyroscope: 
Datatec®GU-3024 & CAN: Kvaser® USBcan II HS/LS) were 
sent to PC’s serial port and recorded at the frequency of 1Hz 
and 60Hz separately; Zenrin® Z-Map Town II (1/25,000) was 
used as the 2D road map. 

Outdoor test environment includes the most general road 
types (express toll-way, city highway, downtown street and 
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countryside road), different lane structures (one-way or 
two-way, 1~6 lanes, with or without central separators) and 
shapes (straight, curve, S-curve).  Tests were also carried out 
in no GPS signal area like tunnels and road under overpass. 
The following navigation information is extracted from the 
digital map: 1) road nodes location and segment attributes 
(name, level, lane info, etc.); 2) intersection location, names 
and crossing angles of the roads intersected; 3) landmarks, 
buildings and other value-added objects information 
(hospitals, gas stations, shopping centers, restaurants, etc.). 

All information is dynamically extracted according to the 
current location (within certain range) and driver’s preference. 
Icons are generated depending on its category: road 
information such as speed limits, direction indicators are 
modeled as virtual road paintings and are located on the road 
surface, road names and intersection information are modeled 
as virtual traffic bulletins mounted on a certain height above 
the road. All these Points Of Interests (POIs) are visible along 
the driving route and no occlusion is considered in the 
perceived performance tests. 

B. Vehicle State Estimation Results 
To evaluate the performance of our approach, the 

state-of-art in-vehicle navigation system (Pioneer® AVIC 
-DR2030ZZ) is used to compare with our approach. The 
estimation results of vehicle state are shown in Figure 6, in 
which the measurement data from navigation system is marked 
as “ ” points, and “ ” points are data fusion result by our 
approach.

As described above, high building, signal random reflection 
in urban area and weak signal plus imprecise digital map in 
mountain area will significantly affect accuracy of GPS. Even 
for commercial hybrid (GPS+DR+ MM) navigation system, 
many segmented GPS tracks still can be observed from Figure 
6(a).

Comparing with navigation system’s output, estimation 
results of our approach correctly compensate the vehicle state 
and follow the trajectory based on “ ” points in real time. 
Moreover, it successfully solved GPS’s measurement delay 
problem which can be observed in the enlarged part in Figure 
6(a) and Figure 6(b). The estimation points “ ” present the 
right state much more precisely and timely comparing with 
navigation system output. The estimation results verified that 
our approach is more precise, efficient and adaptive to the 
visual navigation application.

C. Visual Perceived Performance Test 
Once vehicle’s position and orientation are estimated, we 

converted the position and POIs’ latitude/longitude data 
(which were based on Tokyo Datum) to the Euclidean planar 
coordinate system. With the calculated camera’s extrinsic 

parameters, POIs’ WCS coordinates were transformed to the 
camera based CCS coordinates and then projected to the image 
plane. An icon will be rendered on each POI’s projection 
position. Icon’s size and orientation is determined by POI’s 
CCS coordinates. The movie files of evaluation results can be 
downloaded from the following web site: 
http://navi.cs.kumamoto-u.ac.jp/~hu/ITS/image/.

Figure 7 shows some superimposing results by projecting 
the virtual objects on the real image overlay. Although the 
store is occluded and driver could see straight, the icon of store 
could still be see-through to the scene for guidance (Fig.7 (a)) 
when vehicle is in heavy traffic. The distance to the 
intersection is shown in Fig.7 (b) and the direction of crossing 
could also be shown by ICON along the preplanned route. 
Even no GPS signal in tunnel, the exit of tunnel could still be 
shown precisely (Fig.7 (c)) based on our global PDF based 
state estimation approach. 

Figure 8 shows an image sequence when test vehicle was 
turning left and the virtual POI indicator (railway station) kept 
perfectly pace with scene movement. It shows that our vehicle 
state estimation is very precise without delay.

(a) Position 

(b) Orientation 
Figure 6. Comparison result of vehicle’s state between GPS and estimation 
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(a)

(b) 

(c)
Figure 7. Superimposing results of virtual indicators onto real images 

Figure 8. Image sequence of POI indicator (railway) 

IV. CONCLUSION

This paper presents a real-time data fusion approach for 
vehicle localization to adaptive stabilization of uncertain GPS 
localization system. Our approach is based on the fusion of 
GPS, gyroscope and speedometer to compensate and 

interpolate vehicle state vector (localization and orientation) 
with Extended Kalman Filter. The global probability density 
function (PDF) is adopted to be the blending factor instead of 
general Kalman gain function, which allows our approach to 
be robust and accurate for most of practical problems like slow 
data drift, large infrequent data jumps. The algorithms 
proposed in this paper are implemented in our visual 
navigation application and validated with the experimental 
results of real road tests under different conditions and types of 
road.

In the future we would like to extend the algorithm for 
higher accuracy localization with the method of visual pattern 
matching between navigation information and visual cues on 
the road. 
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