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Abstract— We present a method for tracking an unknown
and changing number of far away pedestrians in a video stream.
Multiple particle filter instances are utilized which track single
pedestrians independently from each other. The tracking is
guided by a cascade classifier which is integrated into the
particle filter framework. In order to be able to detect hardly
visible pedestrians and to filter out isolated false positives of the
classifier, we developed a detection criterion for particle filters
which follows the track-before-detect paradigm. The system
nearly works in real time.

I. INTRODUCTION

Pedestrians are the weakest traffic participants because

they are hardly protected against the consequences of an

accident. For that reason it is required to implement active

safety systems which are capable of detecting pedestrians in

order to warn the driver in case of an accident risk. It is

of eminent importance that pedestrians are timely detected

at night, as the number of fatal accidents is considerably

higher at night time than at day time whereas the traffic

density is substantially lower. As non-warning night vision

systems are already available, the development of intelligent

systems which detect and track pedestrians in video streams

is currently investigated.

A. Related work

The integration of a cascade classifier (CC) into a particle

filter (PF) based framework for tracking multiple persons has

been also carried out in [6]. There the classifier is utilized for

implementing a proposal density [1] which takes the current

video frame into account.

In [10] and [13] support vector machines are employed

for detecting pedestrians in far infrared (FIR) night vision

images. Subsequent tracking using one Kalman filter for each

detection is performed in [13].

In addition to pixel-based approaches for detecting pede-

strians there also exist systems which rely on shape-based

features. In [3] a system which is capable of tracking the

shape and the coordinate of several pedestrians is introduced.

The presented work is a result of a diploma thesis at department GR/EAP,
DaimlerChrysler AG Research & Technology, Germany, 89069 Ulm.

A similar approach which utilizes B-Spline curves for the ap-

proximation of pedestrian shapes is presented in [8]. As our

system should be capable of tracking far away pedestrians,

we do not utilize shape based features which are different to

obtain for far away, i.e. small, objects.

B. Structure of the paper

We briefly introduce our tracking system in Sec. II before

we provide a detailed description of it in Sec. III, IV and V.

The evaluation results are presented in Sec. VI. Finally, we

draw a conclusion and outline future work in Sec. VII.

II. SYSTEM DESIGN

A rough overview of our multi-target tracking system is

given in Fig. 1. The system is capable of tracking several

pedestrians through the recursive probabilistic filtering of a

monocular stream of near infrared (NIR) images. Under the

assumption that individual pedestrians move independent-

ly from each other, we employ nPF parallel working PF

Fig. 1. One time step of the multi-target tracking system.
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instances which track one object respectively. In Sec. IV we

therefore firstly describe how a single pedestrian is tracked

using one PF. The procedure is guided by a CC (see Sec. III)

which is trained to separate image regions into pedestrians

and background. It is integrated into the PF through the

definition of a function for weighting particles (see Sec. IV-

A). The goal of our efforts is the enhancement of the

detection performance of the CC through recursive filtering

of its classification results. We will see in Sec. IV-B and IV-

C that the classifier can be also used for the definition of a

system state prior which takes the current observation into

account and a detection criterion which follows the track-

before-detect (TBD) paradigm [11]. The extensions which

are needed for the parallel execution of multiple PF instances

are detailed in Sec. V.

III. CASCADE CLASSIFIER

Viola and Jones have shown in [12] that the detection of

complex objects can be carried out in real time using a cas-

caded classifier which is capable of separating image regions

into two classes1 utilizing a chain of classifier stages. With

increasing stage, the complexity of these classifiers increases.

The simple classifiers in the lower stages discard the majority

of image regions which do not show the learned class while

the remaining are separated out by the sophisticated higher

stages of the CC. An image region is represented through a

rectangular search window w ∈ IN4
0 which is defined by its

upper left and lower right points and features a fixed width

to height ratio rSW. Each of the nc classifier stages applies

a set of Haar Wavelet features [7] in order to decide whether

a search window w belongs to the learned class or not. In

the former case, the window is passed to the next classifier

stage.

We denote the cascaded classification of a search window

w by the application of the function c : IN4
0 7→ [0, nc] ⊂ IN0

which returns the number ν of the classifier stage which has

been passed by the search window before it was discarded:

ν = c (w) . (1)

The window is classified as an object if it passes the detection

stage νD, i.e. if c (w) ≥ νD.

IV. PARTICLE FILTER

Object detection and tracking is carried out using particle

filters [1]. Through recursive probabilistic filtering of the

incoming monocular NIR image stream, the state vector

qt = (α, x, ẋ, y, ẏ)T ∈ IR5 (2)

of a pedestrian is estimated for each time step t. Due

to the application of the ground plane assumption, only

the longitudinal (x) and the lateral (y) coordinate of a

pedestrian with respect to the car coordinate system need

to be estimated. The corresponding velocity vector (ẋ, ẏ)
is estimated relatively to the pedestrians coordinate as we

1We will refer to the two classes as 1) object or pedestrian and 2)
background.

include the ego-motion of the vehicle in the pedestrians first

order system model. Furthermore, the tilt angle α of the

car is included into the state vector in order to be able to

track also far away pedestrians which are moved far below

or above the ground plane through the pitch movements of

the vehicle.

The Gaussian process noise of the system model is descri-

bed by the five standard deviations σα, σẋ, σẏ , σx (x;σIM)
and σy (x;σIM). The first three are assumed to be fixed and

affect the tilt angle α and the velocity vector (ẋ, ẏ) respec-

tively. The latter two depend on the standard deviation σIM

which defines a Gaussian process noise in the image plane.

Depending on the current x coordinate and the geometry

of the camera, σx (x;σIM) and σy (x;σIM) are computed in

a way that the standard deviation of the projected position

vector (x, y) is approximately σIM pixel in the horizontal

and vertical direction of the image plane.2

Utilizing the PF framework, the distribution p (qt|〈o〉t)
of the state vector qt is estimated through a set

St = {ξ1, ξ2, . . . , ξnP
} of nP particles. Each particle

ξi = (si, w̃t (si)) consists of a hypothesis si ∈ IR5 of

the true state vector qt and a corresponding weight

w̃t (si) ∈ [0, 1] ⊂ IR. As St approximates a distribution, the

sum of the weights is normalized. The distribution p (qt|〈o〉t)
is estimated recursively based on the incoming observations

o0, . . . ,ot = 〈o〉t, i.e. the frames of the NIR camera. An

estimation q̂t+1 of the current state vector can be carried

out by updating the last approximation of p (qt|〈o〉t), i.e.

St, with respect to the current observation ot+1. One PF

cycle3 consists of sampling a new particle set from St,

moving each particle in state space by applying the system

model as well as the corresponding process noise and finally

validating each particle against ot+1 by applying a function

g (qt+1) which assigns a new weight to the particle (see also

Fig.1). The resulting particle set St+1 is an approximation

of p (qt+1|〈o〉t,ot+1) and can be utilized for deriving the

desired state estimate q̂t+1.

A. Particle Weighting

In order to compare a state hypothesis with the true

state of a pedestrian which is captured by the current NIR

image ot+1, it is required to project hypotheses from the

car coordinate system into the image coordinate system. The

function χ : IR5 7→ IN4
0

w = χ (qt+1) (3)

maps a hypothesis qt+1 to a rectangular search window w

which defines a sub-image of ot+1. A pinhole camera model

is utilized for the projection of (x, y) into the image plane

following the current tilt α of the particle. The spatial extend

of w is determined by using a fixed pedestrian height of 1.8

m and the CC’s aspect ration rSW for calculating its width.

In order to combine the CC with a PF, we developed a

function gCAS : IR5 7→ [0, 1] ⊂ IR which assigns a weight to

2An exact conversion of Gaussian noise from state into image space is
impossible due to the perspective projection of the camera.

3The cycle is described for a CONDENSATION PF [5].
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a particle that depends on the classification of the correspon-

ding search window w. As the classification result of the

classifier is a stochastic process, the weight function gCAS

has to take this into account by including an appropriate

observation noise. The determination of it required an evalua-

tion of the CC w.r.t. the correlation between the conformance

of a search window w with a pedestrian and its classification

result, i.e. the reached classifier stage c (w).

1) Evaluation of the Cascade Classifier: The evaluation

has been carried out using 14,283 NIR images of a ground

truth image data base. Pedestrians are labeled with bounding

boxes on these images. The conformance between ground

truth labels and search windows was measured by their

coverage. The function cov : IN4
0 × IN4

0 7→ [0, 1] ⊂ IR

cov (a, b) =
a ∩ b

a ∪ b
(4)

was applied to determine the coverage of two rectangular

search windows a and b.

A search window generator was used to create a very

dense set of 3,179,134 evenly distributed windows. The CC

has been applied to each of them for every data base image.

According to its coverage with a ground truth label and its

reached classifier stage, each search window with at least 1%

ground truth coverage has been counted in a 2D-histogram.

Three slices of it are shown in Fig. 2. It is evident, that

windows which reach high classifier stages show higher

coverage with pedestrians.
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Fig. 2. Correlation between pedestrian coverage and classification result of
a search window. Depicted are the histograms for windows w with c (w) =
{0, 11, 29}. The classifier consists of 29 stages. The different scales of the
histograms demonstrate the functionality of the CC. Most of the search
windows are discarded in the lower stages. The dense set of search windows
that has been evaluated per image explains the high absolute frequency of
windows that feature a large coverage with pedestrian labels.

2) Weighting through Conclusion of Coverage: The hi-

stograms which are shown in Fig. 2 already cover the

uncertainty of the CC. Therefore we decided to convert

them into distributions and use them for designing a weight

function gCAS which assigns a coverage γ ∈ [0, 1] ⊂ IR with

a pedestrian to a particle. In the following we will refer to the

coverage distribution of the ν-th stage by pcov
ν (γ). Following

this notation, the upper left histogram of Fig. 2 corresponds

to pcov
0 (γ) while the lower right corresponds to pcov

29 (γ).

Calculating the (unnormalized) weight of a state hypothe-

sis qt+1 first requires its classification in image space using

the CC. The classifier stage ν of the search window χ (qt+1)
is subsequently used to calculate the particle weight by

sampling a coverage γ from the corresponding distribution

pcov
ν (γ):4

gCAS (qt+1) ∼ pcov
ν (γ) | ν = c (χ (qt+1)) . (5)

Due to the usage of a stochastic weight function we

employ a minimum mean square error (MMSE) estimate to

predict the state vector of a pedestrian:

q̂MMSE
t+1 ≈

nP
∑

i=1

siw̃t+1 (si) . (6)

B. Importance A Priori Sampling

The application of a PF for the recursive estimation

of the state vector qt+1 requires the existence of a prior

p (q0) which generates hypotheses of the initial state of the

observed system [1]. As this distribution is usually unknown,

many tracking applications employ a random initialization of

the particle set (e.g. [5] or [4]). However, this approach is

unfeasible for the tracking of far away pedestrians. Therefo-

re, we developed an importance a priori distribution pI (q0)
which takes the current image into account and allows a

targeted initialization of a particle set in image space.

We perform a deterministic search in image space in order

to determine good starting points sI
j in state space for the

subsequent tracking. We generate these start points which

we will call importance samples in the following from the

nI best rated search windows wI
j of the current frame. The

CC is employed to select them from an evenly but coarse

distributed search window set W I which is generated utili-

zing the ground plane assumption and the geometry of the

camera. By slightly relaxing the ground plane assumption, it

is possible to deduce a coordinate
(

xI
j , yI

j

)

as well as a tilt

αI
j from each search windows wI

j .

The initialization of a PF instance at time step 0 is carried

out using the importance sample sI
j which corresponds to

the highest rated search window wI
j that has not already

been used for the initialization of another instance. The state

hypothesis si of each particle ξi is drawn from pI (q0) by

adding a random velocity and a sample of the process noise

to sI
j .

Evaluations of the CC have shown that pedestrians usually

cause multiple detections in a fine grained grid of search

windows. Thus, a coarse search is sufficient for determining

the importance samples sI
j .

C. Robust Detection and Tracking

We developed a detection criterion that follows the TBD

paradigm in order to enable the tracking of weakly distinct

pedestrians. Furthermore, the tracking of isolated false posi-

tives of the CC is pruned by the application of this paradigm

as the ability to predict the movement of a pedestrian is ex-

plicitly considered in the criterion. The usage of multiple PF

instances favors the implementation of the TBD paradigm.

Since not all instances are required for tracking pedestrians,

it is affordable to let some instances track weak targets which

might become detections in the next few time steps.

4The transformation method [9] is used for the sampling.
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We follow the approach of [2] for integrating the TBD

paradigm into the PF framework. They define a detection

criterion which is based on the likelihood ratio

λ (ot+1) =
p (ot+1|H1)

p (ot+1|H0)
∈ IR . (7)

It is computed by determining the probabilities p (ot+1|H1)
and p (ot+1|H0). The former expresses the likeliness of an

observation ot+1 with the hypothesis H1, which stands for

the assumption that ot+1 is caused by a target. The latter

expresses analogously the likeliness of H0 which states that

ot+1 contains background or noise. The likelihood ratio

implements a signal to noise ratio. A detection is reported

by the tracking system if λ (ot+1) exceeds the threshold

θλ ∈ ]1,∞] ⊂ IR.

In [2] it is shown that p (ot+1|H1) can be approximated

by a set of particles by calculating the mean of all unnor-

malized particle weights. As we use the function gCAS for

determining these weights, p (ot+1|H1) is approximated by

p (ot+1|H1) ≈
1

nP

nP
∑

i=1

gCAS (si) . (8)

The calculation of p (ot+1|H0) is not detailed in [2] as

they apply the likelihood ratio based detection criterion to

track targets on a radar screen which has a well known

background noise. In order to apply the likelihood ratio

criterion to vision based tracking, we developed a method

which utilizes the weight function gCAS for the approxi-

mation of p (ot+1|H0). The idea behind our approach is

as follows: As the estimation of p (ot+1|H1) is carried out

using the mean weight of hypotheses which are assumed to

contain a pedestrian, we apply an analogous approach for the

estimation of p (ot+1|H0) by calculating the mean weight of

hypotheses which are assumed to show background. A set

of search windows which are evenly distributed across the

image is a set of background hypotheses as in the majority

of cases these windows will contain background. Therefore,

we re-use the search window set W I (see Sec. IV-B) to

approximate the background noise by

p (ot+1|H0) ≈
1

|W I|

∑

w∈W I

g′CAS (w) . (9)

The function g′CAS : IN4
0 7→ [0, 1] ⊂ IR denotes the weighting

of a search window w analogously to (5):

g′CAS (w) ∼ pcov
ν (γ) | ν = c (w) . (10)

Determining an appropriate value for the threshold θλ is a

hard task. On the one hand it has to be low enough to allow

the detection and tracking of weak targets while on the other

hand, it has to be high enough in order to prevent the system

from tracking false positives of the CC. In order to solve this

problem, we employ the low-pass filtered likelihood ratio

λ̃ (ot+1) = (1 − δλ) λ (ot+1) + δλλ̃ (ot) (11)

to decide whether a PF tracks a pedestrian or a background

object. The ratio λ̃ (ot+1) depends on the low-pass factor

δλ ∈ [0, 1] ⊂ IR. A detection is reported if

λ̃ (ot+1) > θλ (12)

holds. The tracking lasts until λ̃ (ot+1) drops below θλ or

the pedestrian leaves the boundaries of the relevant partition

of the state space. In the latter case the PF instance is

reinitialized using the prior pI (q0).
Using the low-pass filtered likelihood ratio implies that

pedestrians are not detected immediately. The system rather

concludes their presence by a series of high unfiltered

likelihood ratios. Thus, the threshold θλ can be set to a

considerably lower value without allowing the system to

track isolated false positives. Furthermore, a lower detection

threshold allows the compensation of minor errors during the

tracking of a pedestrian.

It is crucial for a successful application of this detection

criterion that a proper initialization value for λ̃ (o−1) is cho-

sen before the first observation o0 is utilized for weighting

the new particles which have been drawn from pI (q0). Due

to the fact that pI (q0) generates samples nearby potential

pedestrians, i.e. regions which are highly rated by the CC,

it is impossible to initialize λ̃ (o−1) with the first measured

likelihood ratio λ (o0). For that reason, we use a fixed value

for initializing the low-pass filtered likelihood in between the

two hypotheses H0 and H1:

λ̃ (o−1) = 1 +
θλ − 1

2
. (13)

V. MULTI-INSTANCE PARTICLE FILTER

We use several PF instances to track multiple pedestrians

simultaneously, following the multi-instance particle filter

(MIPF) approach which is presented in [4]. In order to enable

a stable tracking of several targets using parallel working

PF instances, it is necessary to ensure that one object is

only tracked by at most one instance. The authors introduce

prohibited areas in state space and a fixed ranking of the

instances in order to prevent multiple instances from tracking

the same object. Prohibited areas are declared by instances

which are tracking a detection. If a particle enters the

prohibited area of another instance which has a higher rank,

it is weighted with 0. In Sec. V-A we introduce a criterion

for dynamically ranking PF instances which is mainly based

on prohibited areas that are defined in image space.

As the detection and the tracking of objects is carried

out simultaneously by using multiple PF instances, it is

required to ensure that the entire state space is continuously

searched for objects. Following [4], we reinitialize a fixed

number of nRI instances after each time step in order to

keep the system searching for new objects. These instances

are chosen according to a reinitialization criterion which we

will introduce in Sec. V-B.

A. Ranking of Instances

The PF instances are processed in a fixed order each time

step. In contrast to [4], we do not rank the instances ac-

cording to this order. Instead, we always prioritize instances

which track a detection. These instances define prohibited

WeA1.3
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areas in order to prevent other instances from tracking the

same pedestrian.

Measuring the distance between the MMSE state estimate

of a detected pedestrian and a state hypothesis is required

in order to decide whether the particles of a subordinate

instance are inside a prohibited area. As the coordinate

(x, y) of a pedestrian cannot be estimated precisely enough

using a monocular night vision device we employ the func-

tion covmax : IN4
0 × IN4

0 7→ [0, 1] ⊂ IR which measures the

distance between two rectangular search windows a and b

in image space by their maximum coverage:

covmax (a, b) =
a ∩ b

min (a, b)
. (14)

The term min (a, b) denotes the smaller of the two search

window areas. Using covmax, a prohibited area is determined

by defining a threshold θV ∈ [0, 1] ⊂ IR which stands for the

maximum allowable coverage between the MMSE state esti-

mate q̂MMSE
t+1 of a detected pedestrian and a state hypothesis

si of a subordinate instance. Such a sample is weighted with

0, if

covmax

(

χ
(

q̂MMSE
t+1

)

, χ (si)
)

≥ θV . (15)

In the case of a collision between two detections in image

space, the longitudinal positions of the MMSE state estimates

are used for determining the rank of the involved instances.

The furthermost instance receives the lower rank in this

situation.

B. Reinitialization Criterion

The effectual integration of the TBD paradigm into the

MIPF framework requires the definition of an appropriate

criterion for selecting the nRI weakest PF instances at the

end of each time step. The criterion has to be defined in a

way that instances which have been tracking a weak object

for a couple of time are preferred to instances that are

tracking incoherent parts of the background. Furthermore,

it is required that instances which are initialized nearby a

promising object are allowed for superseding instances that

are already tracking an undetected object.

Taking these requirements into account, the nRI PF in-

stances k which show the lowest reinitialization criterion

ρk = max
(

λ̃k (ot+1) , λk (ot+1)
)

∈ IR (16)

and are not tracking a detected pedestrian are scheduled for

reinitialization in the next time step. The number k denotes

the processing order of the instance.

VI. RESULTS

We used an INTEL P-IV 3.2 GHz machine for carrying

out experiments on country roads. The images were captured

using a NIR camera with a resolution of 640 × 480 pixels

and 12 bit depth. A frame rate of approximately 15 fps

was achieved using the parameter setup which is listed in

Table I. With this configuration, the simultaneous tracking

of nPF − nRI = 8 pedestrians is possible. Due to the fact

that search windows which are discarded in high stages of

the CC cause much more computational overhead than those

which are discarded in low stages, the frame rate of the

system considerably differs from the average rate if an image

contains many pedestrians and / or false positives. Fig. 3

gives an impression of the system. The nPF parallel running

PF instance are separated by different colors. The detection

of an instance, i.e. the MMSE state estimate, is depicted

as a transparent box while its particles are represented by

rectangular frames.

Fig. 3. Snapshots of the ground truth sequences. In frame one, a pedestrian
(distance: > 100 m) is detected. A reflexion post and one pedestrian
are detected in frame three. The fifth frame shows the detections of two
pedestrians (green and yellow), one cyclist (purple) and one reflexion post.

The evaluation of the system has been carried out using six

ground truth NIR sequences which have not been used for the

training of the CC. For the evaluation, we only considered

pedestrians which occur in between distances of 30 – 100 m,

as a warning system for night view automotive applications

should mainly detect obstacles which are beyond the cone

of the low beam light. The remaining ones were ignored, i.e.

they were neither counted as detections nor as false positives.

We performed the evaluation with two goals in mind. On

the one hand, we wanted to analyze if our combination of

a CC and a MIPF outperforms a system which only relies

on the classifier. On the other hand, we wanted to determine

appropriate assignments for the two main parameters of the

tracking system, i.e. the detection threshold θλ (12) and

the low-pass factor δλ (11). The remaining parameters of

the PF system have been determined empirically during the

experiments. They are listed in Table I.

TABLE I

ASSIGNMENTS OF PARAMETERS

nc 29 nP 100 σα [◦] 0.04

nPF 12 W I 7738 σẋ / σẏ [m / s] 0.03
nRI 4 θV 0.6 σIM [Pixel] 1.5

We compared the MIPF to a system which searches for

pedestrians in a brute force (BF) way by classifying a very

dense grid of 8,250,957 search windows per frame. We

ran several variedly parametrized MIPF and BF systems

simultaneously for the evaluation.

As the execution of the BF search is very time consuming,

we decided to firstly determine an optimal value for δλ

without taking the BF system into account. Therefore, several

runs of our tracking system with different values for θλ and

WeA1.3
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δλ were performed. It turned out that independently from

θλ the best performance is achieved if δλ takes values in

between [0.7, 0.8]. This is a confirmation of the applicability

of the TBD paradigm as the tracking of an object before

its detection can be only enforced if δλ is assigned to a

high value. The second evaluation has been carried out, using

δλ = 0.8.

In order to compare the performance of the BF sy-

stem with our MIPF, we computed recall (R), precision

(PR) and false alarm per image (FI) rates for differently

parametrized BR and MIPF systems. The values of the

former were generated by decreasing the detection thres-

hold νD of the CC stepwise from 29 to 24 (see Sec. III)

while the values of the latter were generated by run-

ning six MIPF systems which featured detection thresholds

θλ ∈ {1.1, 1.3, 1.5, 1.7, 1.9, 2.1}. A ground truth pedestrian

was considered as being detected if its bounding box was

covered by a detection of the BF system or the MIPF

respectively by at least 20%. The coverage was determined

using the function cov (4).

The results of the evaluation which are shown in Table II

prove that the MIPF shows a considerably better performance

than the BF system. Although, the number of false positives

TABLE II

EVALUATION RESULTS

BF

νD 24 25 26 27 28 29
R 0.358 0.350 0.331 0.321 0.293 0.290
PR 0.013 0.019 0.027 0.037 0.040 0.040
FI 11.833 7.361 5.028 3.528 3.000 2.917

MIPF

θλ 1.1 1.3 1.5 1.7 1.9 2.1
R 0.576 0.583 0.466 0.373 0.277 0.197
PR 0.032 0.102 0.236 0.411 0.589 0.768
FI 7.359 2.162 0.637 0.225 0.081 0.025

is clearly reduced, this advancement has to be considered

carefully. As the BF system utilizes a very dense grid of

search windows for detecting pedestrians, one erroneously

classified object may cause many false positives. On the

other hand, the MIPF will only report one false positive

per frame for every erroneously detected object. However,

a detailed analysis of the evaluation revealed that the MIPF

indeed shows a higher precision than the BF search because

isolated false positives of the CC are successfully filtered out

by our system.

The analysis also revealed that due to our detection

criterion the system is capable of tracking pedestrians over

quite a long time. The ability of our system to compensate

momentary weak responses from the CC resulted in uninter-

rupted tracks with a duration of more than 100 frames.

VII. CONCLUSION AND FUTURE WORK

We presented a system which is capable of detecting and

tracking an unknown and changing number of pedestrians in

a NIR image stream using a MIPF. Due to the integration

of a detection criterion, which follows the TBD paradigm, a

seamless transition between tracking and detection is achie-

ved. This leads to a system which draws a conclusion about

the existence of a pedestrian from tracking it. The system

relies on a CC for validating state hypotheses in image space

and for drawing samples from the system state prior. As

the classification results of the classifier are imprecise, we

developed a stochastic weighting function which explicitly

takes the uncertainty of the results into account.

The evaluation results prove that our method shows a

considerably better detection performance than a system

which only relies on a CC. Nevertheless, the testing of the

system revealed, that the pitch movements of the car nearly

render impossible the tracking of pedestrians which occur at

distances of 80 m and more. Therefore, a robust estimation

of the pitch movement should be integrated into the system

model.
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