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Abstract— Bad weather, particularly fog and haze, commonly
obstruct drivers from observing road conditions. This could
frequently lead to a considerable number of road accidents.
To avoid the problem, automatic methods have been proposed
to enhance visibility in bad weather. Methods that work on
visible wavelengths, based on the type of their input, can be
categorized into two approaches: those using polarizing filters,
and those using images taken from different fog densities.
Both of the approaches require that the images are multiple
and taken from exactly the same point of view. While they
can produce reasonably good results, their requirement makes
them impractical, particularly in real time applications, such
as vehicle systems. Considering their drawbacks, our goal is to
develop a method that requires solely a single image taken from
ordinary digital cameras, without any additional hardware.
The method principally uses color and intensity information. It
enhances the visibility after estimating the color of skylight and
the values of airlight. The experimental results on real images
show the effectiveness of the approach.

I. INTRODUCTION

A considerable number of vehicle accidents are caused

by poor visibility in bad weather. This is mainly due to the

presence of the considerable number of atmospheric particles

with significant size and distributions in the participating

media. Because of these particles, light from the environ-

ment and light reflected from an object are absorbed and

scattered, making the visibility not as clear as if they are

not present. Some techniques have been introduced to tackle

the problem [2]. Briefly, based on their techniques, they can

be categorized into several classes: physics-based, heuristics

and nonphysics-based solutions. While based on the sensors

they use, they are grouped into: visible spectrum sensors,

infrared sensors, milimeter-wave (MMW) sensors, and laser

radar (LADAR) sensors.

If we investigate on the methods that work on the visi-

ble spectrum and particularly deal with foggy/hazy images

solved by using physics-based solutions, there are several

approaches that have been developed: first, methods that use

polarizing filters [9], [5], [10]; and second, methods that

use multiple images taken from foggy scenes with different

densities [8], [7], [6]. Both of the approaches require that the

images are multiple and taken from exactly the same point

of view. While those methods can produce reasonably good

results, their requirement of the specific inputs makes them

impractical, particularly in real time applications, such as

automatic vehicle systems. Considering their drawbacks, our

goal is, therefore, to develop a method that requires solely a
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single image taken from an ordinary digital camera. This goal

is considerably challenging, since to our best knowledge, no

current method published in the literature has been proposed

to tackle the goal.

Like the existing methods, our proposed method is based

on the Lambert-Beer reflection model. The model is a linear

combination of the direct transmission and the airlight.

The direct transmission is the product of the environmental

light, object reflectance, and fog/haze attenuation factor. The

airlight is the product of the environmental light and the

reflection of the fog/haze particles. Therefore, to enhance

the visibility of foggy images, we have to estimate two

crucial components, namely, the airlight and the attenuation

factors. However, using only a single image as an input,

mathematically, the problem is completely ill-posed. Since,

from one equation we have to estimate three unknown

parameters

A brief overview of our proposed method is as follows.

Given an input image, we first estimate the environmental

light color based on a color constancy method called inverse

intensity chromaticity space (we learned that the Lambert-

Beer reflection model is similar to the dichromatic reflection

model). Having known the environmental light color we

normalize the image so that the image looks as if lit by white

illumination. Then, we obtain the airlight values based on the

YIQ color space. Having estimated the intensity and airlight,

the visibility enhancement can be done directly based on the

physical model. The main idea of our method is to reduce

the saturation, retain the hue, and increase the intensity. We

consider that the method we propose is principally a physics-

based solution. Note that, in this paper our goal is not to

totally remove the effects of bad weather. Since, to do that

is ill-posed as we shall show in the later section. Instead,

our goal is to improve or enhance the visibility of images

affected by fog/haze.

The rest of the paper is organized as follows: in Section

II, we will discuss the basic reflection model of outdoor

scenes affected by fog/haze. This model is important, since

all analyses will be based on it. In Section III, we discuss a

method to estimate the light color from a single image. This

light color will be useful to normalize the input image, so

that we can reduce the number of unknown parameters and

simplify the model. Section IV will focus on the method of

the visibility enhancement. We start with color analysis of the

problem, and show the illposedness of it. We end the section

with the explanation on the proposed solution. Section V

discusses the enhancement in the max-chromaticity intensity

space. To show the effectiveness of the proposed method,

in Section VI we include the experimental results on real
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Fig. 1. Pictorial description of the reflection of foggy or hazy scenes which

is composed of the direct transmission and the airlight.

outdoor images. Finally, we conclude the paper in Section

VII.

II. REFLECTION MODEL

The exact nature of scattering is highly complex and

depends on many factors including the types, orientations,

sizes and distributions of particles, as well as wavelengths,

polarization states and directions of the incident light [8]. To

simplify the scattering of atmospheric conditions, following

Narasimhan et al. [8], we model them, particularly for fog

or haze, as the linear combination of direct attenuation and

airlight. The direct transmission according to [8] models

the way light gets attenuated as it traverses from a scene

point to the observer. The airlight models how a column of

atmosphere acts as a light source by reflecting environmental

illumination towards an observer. Figure 1 illustrates the

direct transmission and the airlight.

Mathematically, we can model the scattering of light that

arrives at a digital camera and then is transformed into an

image, as (for the detailed derivation refer to [8]):

E(x) = I∞ρ(x)e−βd(x) + I∞(1 − e−βd(x)). (1)

The first term in the equation represents the direct trans-

mission, while the second term represents the airlight. E is

the image intensity. x is the spatial location. I∞ is the atmo-

spheric/environmental light, which is assumed to be globally

constant. ρ is the normalized radiance of a scene point, which

is the function of the scene point reflectance, normalized

sky illumination spectrum, and the spectral response of the

camera. β is the atmospheric attenuation coefficient. d is

the distance between the object and the observer. Since we

assume that the model focuses on fog and haze, β in the

equation is constant for different wavelengths. This assump-

tion is common in many methods dealing with particles

whose sizes are larger compared with the wavelength of light

[4], such as, fog, haze, aerosol, etc. Note that, while the other

parameters in the equation are scalar, E, I∞, ρ are color

vectors (which have RGB values). Eq. (1) is in principle

based on the Lambert-Beer law for transparent objects [3],

which states that light traveling through a material will be

absorbed or attenuated exponentially.

To understand the method we introduce later, Eq. (1) needs

to be transformed into a chromaticity-based model. We define

image chromaticity as:

σc =
Ec

Er + Eg + Eb

(2)

where σ is the image chromaticity, and index c represents

the color channel (which can be either r or g or b).

If we assume that the direct transmission is not present (the

object is infinitely distant), then the chromaticity will depend

only on the airlight. Mathematically, e−βd
→ 0, in Eq.(1),

since d → ∞. In this case the chromaticity will depend only

on the color of the environmental light. We call this light

chromaticity and define it as:

Γc =
I
c
∞

Ir
∞

+ I
g
∞ + Ib

∞

(3)

where Γ is the light chromaticity.

Accordingly we can define another chromaticity, namely

the chromaticity when the airlight is absent, e−βd = 1:

Λc =
I
c
∞

ρc

Ir
∞

ρr + I
g
∞ρg + Ib

∞
ρb

(4)

where Λ is the object chromaticity.

Therefore, by using the chromaticity definitions, we can

rewrite Eq. (1) in term of chromaticity:

E(x) = B(x)Λ(x) + F (x)Γ (5)

where:

B = (Ir
∞

ρr(x) + I
g
∞

ρg(x) + I
b
∞

ρb(x))e−βd(x) (6)

F = (Ir
∞

+ I
g
∞

+ I
b
∞

)(1 − e−βd(x)) (7)

with B and F are both scalar values, while Λ and Γ are

color vectors. Note that, from their chromaticity definitions,

[
∑

σi = σr + σg + σb = 1], [
∑

Λi = Λr + Λg + Λb = 1],
and [

∑

Γi = Γr + Γg + Γb = 1].

III. LIGHT COLOR ESTIMATION

In bad weather, especially in daylight, the environmental

light can be assumed globally constant, since we can ignore

the sunlight that directly illuminates objects appearing in

the observation. This environmental light is produced by

the scattering effects of the particles in the medium, which

yield certain chromatic color (that is identical to the light

chromaticity in Eq. (3)). In our method, to be able to enhance

the visibility, we first have to estimate and then remove the

light chromaticity.

The simplest way to estimate the value of the light

chromaticity is by finding a patch in the input image that

only has the airlight (i.e., when the distance of an object is

infinite), and computing the chromaticity (by using Eq.(2)).

However, to find the airlight-only patches is not trivial, and

in some cases they are simply not present.
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Fig. 2. Left: input image, as can be observed the environmental light is

bluish. Right: The plot of all pixels of the image into the inverse intensity

chromaticity space. In this figure, we only show the chromaticity of the red

channel. The other channels can be estimated independently.

Fig. 3. Left: the plotting after choosing 20% of the highest intensities.

Right: the result of normalizing the environmental light of Figure 2.

In this paper, we propose the estimation by using the

inverse intensity chromaticity space ([11]). We found that

the scattering model in Eq. (5) is similar to the dichromatic

reflection model, in which Tan et al. [11] attempted to tackle

in order to find the illumination chromaticity of dielectric

objects that exhibit highlights.

Briefly, the explanation of the inverse-intensity chromatic-

ity space is as follows (the detailed derivation refers to [11]).

The main idea of the method is in the linear correlation

between the light chromaticity and image chromaticity:

σc = pc

1
∑

Ei

+ Γc (8)

where
∑

Ei = Er +Eg +Eb. pc = B(Λc −Γc). The values

of σc and
∑

Ei in the equation are known, since they are

computable directly from the observation.

From Eq. (8), we can create a two-dimensional space

where the x-axis represents the inverse intensity (1/
∑

Ei)

and the y-axis represents the image chromaticity (σc). By

considering the equation and the space, it becomes obvious

that the distribution of the points in the space will form

several lines that have different gradients (pc) but the same

intercept (Γc). Computationally, we can use the Hough trans-

form and a histogram-like algorithm to estimate the value of

Γc as proposed in [11]. Figure 2.b shows the distribution of

a foggy scene in the inverse-intensity chromaticity space.

In practice, since there is a possibility that the fog or haze

does not cover the whole scenes in the image, we choose

approximately 20% of the highest intensities in the image.

The number is obtained through experimental observations

(Figure 3.a). Also, in using this method, we assume that the

scene is varying in the distance of the objects (as is common

in outdoor scenes, particularly for road scenes).

IV. VISIBILITY ENHANCEMENT

By knowing the light chromaticity, we can remove it from

the image by simply dividing the image intensity in Eq. (5)

with Γc, which is formally described as:

E
′

c(x) = Ec(x)/Γc (9)

= B(x)
Λ(x)

Γ(x)
+ F (x) (10)

= B(x)Λ′(x) + F (x) (11)

where Λ′ is the normalized object chromaticity. E′

c is the

normalized input image, whose environmental-light color is

white. Figure 3.b shows the result of the normalization for

Figure 2.a.

The principle idea of our method to enhance the visibility

is to estimate the airlight, i.e., F (x) in Eq. (11). Since, if we

know the airlight as well as the normalized environmental

light (Ir
∞

+ I
g
∞

+ I
b
∞

) in Eq. (7), we can estimate the values

of [(Ir
∞

ρr + I
g
∞

ρg + I
b
∞

ρb)Λ] in Eq. (5), which represents

the scene appearance unaffected by fog/haze. However, we

found that to estimate the airlight (F ) from a single image

is considerably intractable. Thus, before proceeding to the

estimation technique, we intend to show the characteristics

of foggy or hazy scenes in color analysis, particularly the

hue-saturation and chromaticity analysis. The analysis has

two purposes: first, we intend to show that the problem is

ill-posed; second, we want to show the problem in terms of

color analysis.

A. Hue and Saturation Analysis

We compute the hue and saturation values by using the

following equation [1]:

H = cos−1

[ 1
2

[

(E′

r − E
′

g) + (E′

r − E
′

b)
]

[

(E′

r − E′

g)
2 + (E′

r − E
′

b)(E
′

g − E
′

b)
]

1

2

]

(12)

S = 1 −

[ 3

E′

r + E′

g + E
′

b

min(E′

r,E
′

g,E
′

b)
]

(13)

Based on the hue and saturation definition, if we have two

input images of an identical scene with different fog/haze

density, their hue values will be exactly the same; since,

the airlight in Eq. (12) will be canceled out. However,

their saturation values will be different, since the airlight

in Eq. (13) cannot be excluded . If we analyze the saturation

values further, they will be larger if the airlight is larger, and

will be smaller if the airlight is smaller. This fact leads to a

conclusion that a scene with fog/haze differ to that without

fog/haze only in their saturation values.
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Fig. 4. The plot of a pixel affected by fog (x2), and a pixel free from fog

(x1) into the max-chromaticity intensity space

Therefore, if we intend to enhance the visibility, partic-

ularly if we want to remove the airlight, we have to keep

the hue values and to make the saturation values smaller.

The problem then, is how small we should make them. This

problem is not trivial and, in fact for a single input image,

it is ill-posed. We will prove this mathematically below.

B. Proof of the Illposedness

For the sake of proving the illposedness, we use a two

dimensional max-chromaticity intensity space. In this space,

x-axis represents max-chromaticity, which is defined as:

σ̃ =
max(E′

r,E
′

g,E
′

b)

E′

r + E′

g + E
′

b

(14)

where max is the maximum operator that chooses the largest

values among E
′

r,E
′

g,E
′

b, so that σ̃ is, unlike σ, a scalar

value. The y-axis represents Ẽ′ (=max(E′

r,E
′

g,E
′

b)), the

normalized image intensity of the color channel that is

identical to that of the maximum chromaticity. Ẽ′ is also

a scalar value.

Assuming that we have two normalized pixels, namely,

E
′(x1) and E

′(x2), where E
′(x1) is a pixel that is not

affected by fog/haze (the airlight equals to zero), and E
′(x2)

is a pixel affected by fog/haze (the airlight is larger than

zero), plotting those pixels into the max-chromaticity inten-

sity space, we will find that the max-chromaticity value of the

first pixel is larger than that of the second pixel (see appendix

A for the proof). Figure 4 shows the plot of those pixels

in the max-chromaticity intensity space. The correlation of

those two pixels in the space (the curved line) can in general

be formulated as (see appendix B for the detailed derivation):

Ẽ′ = B(x)(Λ̃(x) − 1/3)
( σ̃

σ̃ − 1/3
(x)

)

(15)

where Λ̃ is the object max-chromaticity. If we do further

algebraic derivation and solely consider those two points,

we have:

B(x2) =
Ẽ′(x2)[3σ̃(x2) − 1]

σ̃(x2)[3Λ̃′(x2) − 1]
(16)

Fig. 5. Left: input image. Right: the visibility enhancement of result.

From the image chromaticity (Eq. (2)) and object chro-

maticity definition (Eq. (4)), we know that Λ̃′(x1) = σ̃′(x1),
since the airlight equals to zero, which then is computable

from the observation. We also know from the fact that

pixel 1 and pixel 2 represent the same object, which means

Λ̃′(x2) = Λ̃′(x1). Therefore, from the two pixels we can

compute B in Eq. (16), and thus F in Eq. (11).

In the above case, we can solve the problem in a closed-

form solution since we assume that there are two pixels with

known object max-chromaticity (Λ̃′(x)). If we have only a

single pixel or a single image with unknown object max-

chromaticity, then we have two unknowns (B and Λ̃′) in

one equation (Eq. (16)). Therefore, we can conclude that the

problem of F estimation in a single image is ill-posed.

C. Intensity-based Enhancement

While we have shown that the problem of estimating F is

ill-posed, fortunately in this paper our goal is not to obtain

the absolute correct value of B. Our goal is to enhance the

visibility, regardless of the correctness of B compared with

the corresponding real world. This goal relaxes the problem,

since we do not need to estimate the absolute value of F . In

other words, we can approximately estimate F , as long as

the visibility is enhanced.

To accomplish the goal, we compute F based on the

intensity value of the YIQ color model, which is defined

as:

Y = 0.257E′

r + 0.504E′

g + 0.098E′

b (17)

We assume the values of Y to be the values of F . However,

the values of Y are approximated values, thus to create

a better approximation, we diffuse these values by using

Gaussian blur.

To have the values of I
r
∞

+ I
g
∞

+ I
b
∞

, namely, the

environmental light, we assume that the largest intensity in

the image is the environmental light. Having these two values

(F and I
r
∞

+ I
g
∞

+ I
b
∞

), we can estimate the approximated

values of (1 − e−βd(x)) by using Eq. (7).

Therefore, upon knowing the approximated values of e−βd

and F , we can have the following equation, which is derived

from Eq. (1), to enhance the visibility of the input image:

I∞(x)ρ(x) =
[

E(x) − F (x)Γ
]

eβd(x) (18)
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Fig. 6. The comparison between the enhanced visibility image (green dots)

and the input image (red dots) shown in Figure 5.

where I∞(x)ρ(x) is the output whose visibility is enhanced.

Figure 5 shows the enhanced visibility of Figure 2. As can be

observed, the visibility is much improved in the final result.

V. DISCUSSION

As we mentioned in Sect. III.A and B, a scene will be

less foggy/hazy if the saturation values are smaller. Or, in

terms of the max-chromaticity (Eq. (14)), the scene should

have larger values of max-chromaticity. To show that the

enhanced image in Figure 5 follows our theorem, Figure 6

show the plot of Figure 2.a and 5 in the max-chromaticity

intensity space. Note that, some points still have small values

of σ̃, since they are points that represent achromatic pixels

(white, gray, black) of the image.

VI. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our method, we used

real images of outdoor scenes in our experiments. Most of

these images shown in this section were taken from the

internet, and the quality is considerably low.

Figure 7.a shows a typical road scene partially covered

with haze and Figure 7.b shows the enhancement result. As

can be observed, the contrast (and thus visibility) in Figure

7.b is more significant than Figure 7.a. Figure 8.a and Figure

9.a show examples of image with very dense fog. Figure

8.b and Figure 9.b show the enhancement. The results show

considerable significant improvements of the visibility of the

objects. Figure 10.a shows a typical outdoor scene whose

visibility is affected by haze. The enhancement in Figure

10.b shows more contrast and clearer visualization.

VII. CONCLUSIONS

As a conclusion, we have proposed a method that is

solely based on single images and can be used in real time

operations, without any user interferences. To our knowledge,

no current method has those useful features. Hence, we

believe that many applications, such as driver assistance

system, remote sensing, panoramic images, a feature of

Fig. 7. Top: the input image. The scene is partially covered by haze.

Bottom: the visibility enhancement result.

Fig. 8. Top: the input image. A building is covered by dense fog. Bottom:

the visibility enhancement result.
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Fig. 9. Top: the input image with dense fog. Bottom: the visibility

enhancement result.

commercial digital cameras, etc, can be improved by utilizing

our proposed method.

APPENDIX A

The proof that the max-chromaticity of a pixel with

fog/haze is smaller than that without fog; supposing that the

pixels represent an identical object.

σ̃fog < σ̃nofog (19)

BΛ̃′ + F

B
∑

Λ′

i + 3F
<

Λ̃′

∑

Λ′

i

(20)

1

3
< Λ̃′ (21)

where
∑

Λ′

i = 1. The last equation shows that [σ̃fog <
σ̃nofog] is correct, since the value of any chromaticity is

always bigger that 1/3.

APPENDIX B

Derivation of the correlation between the max-

chromaticity of pixels with fog and without fog in

Eq. (15):

σ̃ =
BΛ̃′ + F

B
∑

Λ′

i + 3F
(22)

F = B
Λ̃′

− σ̃

σ̃ − 1/3
(23)

Ẽ′ = B(Λ̃′
− 1/3)(

σ̃(x)

σ̃ − 1/3
) (24)

Fig. 10. Top: the input image. An outdoor scenery, which is partially

covered by haze. Bottom: the visibility enhancement result.
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