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Abstract— A fast and robust stereo algorithm for on-board
obstacle detection systems is proposed. The proposed method
finds the optimum road-obstacle boundary which provides the
most consistent interpretation of the input stereo image pair.
Global optimization combined with a robust matching measure
enables stable detection of obstacles under various circum-
stances, such as heavy rain and severe lighting conditions. The
processing time for VGA size image pair is about 15msec on
a 3.6GHz pentium IV processor, which is fast enough for real-
time applications.

I. INTRODUCTION

Obstacle detection is one of the key elements of driver

assistance systems for traffic safety and many vision-based

methods have been proposed[10]. Because of availability

of low cost cameras and ever increasing computational

power of processors, stereo-based approaches are becoming

promising.

General stereo algorithms have been extensively studied

for decades among computer vision researchers[9]. Since

on-board stereo systems have to process input images in

real-time, it is desirable that computational cost of stereo

algorithms is low. Besides, systems have to work stably

under various conditions, such as heavy rain and severe

lighting conditions. These two requirements make stereo-

based approaches to obstacle detection very challenging.

In order to reduce computational cost, several methods

that use inverse perspective mapping (IPM) have been

proposed[4], [5], [8]. IPM is used to map the right image

so that road regions in the remapped image match those in

the left image under the flat road hypothesis[10]. Therefore,

obstacles are detected by simply calculating the difference

between the remapped image and the target image. However,

those methods do not always work well under various

conditions. For example, it is hard to avoid false detections

when there are reflections on a wet road surface.

Several methods that use dense disparity map have also

been proposed recently[6], [11]. Though they are computa-

tionally heavier than IPM-based methods since they require

extensive correspondence search, it is getting feasible nowa-

days. However, computational cost is not the only problem.

First, it is difficult to find 1-to-1 correspondence where a

region of interest only contains horizontal edges or there is

no texture at all. This is called the aperture problem (see area

A of Fig.1). The larger the aperture is, the less significant

Fig. 1. Since Area A consists of horizontal line segments, it is difficult
to find 1-to-1 correspondence. The signboard in area B is occluded by the
truck and it is not visible in the right image.

the aperture problem becomes. However, using large aperture

produces inaccurate depth estimation in the neighbors of

depth discontinuities because of the violation of smoothness

assumption which the most of the local correspondence

search methods rely on.

Secondly, occlusions cause difficulties. For a half-occluded

area, which is visible in one image but is not in the other one

because of occlusion, there is no corresponding area (see area

B of Fig.1). In order to avoid false detection at half-occluded

areas, a stereo algorithm has to recognize half-occluded areas

and exclude those areas from disparity computation.

Thirdly, the constant luminance assumption that many

correspondence search methods rely on does not hold under

severe lighting conditions (see Fig.2). Therefore, the distance

measure that evaluate the goodness of a match has to be

robust under practical conditions.

In this paper, we propose a global optimization algorithm

for on-board stereo obstacle detection systems. Instead of lo-

cally solving correspondence problem, the proposed method

gives a globally consistent interpretation of entire stereo

image pair. Since the global optimization process explicitly

handles depth discontinuities and occlusions, the aperture

problem is alleviated while the accuracy of depth estimation

around occlusion boundaries is maintained. The optimization

is done efficiently with dynamic programming (DP) so that

the proposed method can be used for real-time applications.

II. BASIC IDEAS

Fig.3 shows the configuration of our stereo camera system

where the optical axises are parallel to each other and the

baseline is parallel to the road surface. Cameras are assumed
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Fig. 2. Because of severe lighting condition, constant luminance assump-
tion does not hold in this pair of images

to be calibrated[12] and images are rectified[1] so that

epipolar lines are parallel to horizontal scanlines of images.

The proposed method approximate the road environment

with simple building blocks which assume that a road surface

is flat and an obstacle consists of a set of columns that

stand perpendicular to the road surface (see Fig.4). This

road environment model is the one commonly used for post-

processing of dense-stereo-based obstacle detection methods

where pixels which have the same disparity and horizontal

position are aggregated to form obstacle hypothesis[6], [11].

Since the model poses a constraint on the 3D structures of

the road environment, the degree of freedom of the disparity

map is significantly reduced. We refer to this constraint as the

road environment constraint. Instead of using the constraint

for postprocessing, the proposed method incorporate it to

stereo calculation and derives a disparity map that best

explains a stereo image pair.

Fig.5 explains the basic ideas of the proposed method. Top

left and top right images in Fig.5 are rectified input stereo

images. Suppose we know the parameters of road surface

plane relative to the camera coordinate. The right image can

be remapped so that the road area of the remapped image

matches that of the left image (see bottom right image in

Fig.5). Since the stereo image pair is rectified, this mapping

is described with an affine transformation. Though the road

areas in top left and bottom right images in Fig. 5 match well

each other, the obstacles in the bottom right image in Fig.5

are skewed and do not match with those in the top left image.

Then suppose we know the boundary between the road area

and the obstacles (see white lines in the bottom right image

in Fig. 5). With the boundary and the skew parameter which

can be derived from the affine transformation parameters, we

can correct the skew of the obstacle areas above the boundary

so that the road and obstacles in the remapped right image

match well with those of the left image (see top left and

Fig. 3. Stereo camera system

Fig. 4. Road environment model

Fig. 5. Image remapping scheme

bottom left images in Fig.5). Though the bottom left image in

Fig.5 is remapped from the original right image with the road

plane parameters and road-obstacle boundaries, it matches

well with the original left image.

The above example shows the following things:

1) Road plane parameters and road-obstacle boundary

determine 1-to-1 correspondence between left and right

image under the road environment constraint.

2) Given an appropriate boundary, the remapped right

image matches well with the left image for not only

road areas but also obstacle areas.

Instead of calculating 2D depth map, the stereo problem

is now reduced to finding the boundary between road and

obstacles that gives the best match between the left and

right images under the road environment constraint, which

is essentially a 1D optimization problem. An efficient algo-

rithm using DP to solve this global optimization problem is

proposed in the following section.

III. ALGORITHM DETAILS

The basic procedure of the proposed method consists of

the following steps:

1) Estimate road plane parameters.

2) Calculate a disparity space image (DSI).
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3) Find the best path in the DSI which represent the

boundary between the road and obstacles.

In order to handle a wide range of disparity and to reduce

computational cost, multiresolution scheme can be applied

where the basic procedure is applied from the coarsest level

to the finest level.

A. Road Parameter Estimation

The road parameters can be estimated by using

Labayrade’s V-disparity technique[7].

Since images are rectified and the camera baseline is

assumed to be parallel to the road plane, the projections of

a point on the road surface to the left and the right images

satisfy the following equation,

(
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)

=

(

1 b
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)

+

(

−bvy

0

)

, (1)

where (xl, yl) and (xr, yr) are the coordinates of the

projected points in the left and right image respectively, vy

is y-coordinate of the vanishing line of the road plane, and b
is a parameter concerning the width of the baseline and the

camera height. We refer to (1) as the road plane constraint.

This constraint gives stereo correspondence for the pixels in

road areas. From (1), the relation between disparity value d
and yr is given as follows,

d = b(yr − vy), (2)

where d = xl − xr.

Since relative position and orientation of the road plane

are subject to change as the vehicle moves, the road plane

constraint parameters (i.e. b and vy in (1)) have to be

estimated for each frame.

Fig.6 shows the edge pixels in the left image (white)

and those of the remapped right image (black) where the

default road plane constraint parameters are used for the

mapping. The black pixels in the road area deviate with

horizontal shift from the corresponding white pixels because

of the inaccurate parameters. Eq.(1) shows that a linear

functions with respect to y gives the amount of the deviation.

Therefore, parameters can be estimated by calculating edge

correlations for each scanline with respect to horizontal shift

and applying Hough transform. In order to increase the

stability of the estimation, the obstacle areas detected by the

previous frame are masked out from the calculation of the

edge correlations. Fig.7 shows an example of the remapping

with updated parameters.

B. Disparity Space Image

The disparity space image (DSI) represents the matching

score between the reference and the target images with

respect to disparity and horizontal position[3]. The DSI has

been used in DP-based scanline optimization methods where

a pixel of the DSI represents a matching score between a

pixel of a reference scanline and that of the target scanline.

The proposed method modifies the DSI so that a pixel of the

DSI represents a matching score for a column of pixels of

the reference image under the road environment constraint.

1) Calculation of DSI: We set the region of interest (ROI)

on the left (reference) image whose upper boundary is the

vanishing line of the road plane and divide the image in

the ROI into vertical columns of pixels (see Fig.8). Under

the road environment constraint, a single disparity parameter

determines the whole correspondence for a column of pixels

in the reference image since the y-coordinate of the road-

obstacle boundary can be calculated from (2).

The DSI is calculated by repeating the following procedure

for every i and j:

1) Calculate the y-coordinate of the hypothetical road-

obstacle boundary from the disparity value j and (2).

2) Calculate the matching score dsir(i, j) for the road

region (pixels below the boundary) of the ith column

with the correspondence given by (1).

3) Calculate the matching score dsio(i, j) for the obstacle

region (pixels above the boundary) of the i th column

where the correspondence is given by horizontal trans-

lation of j pixels.

The matching score of the road regions and that of the

obstacle regions are stored separately for the convenience of

the proceeding optimization procedure.

2) Matching Score: In order to calculate the DSI, we have

to define the matching score which evaluate the goodness

of the match. Most of the conventional stereo methods use

matching score or cost based on the intensity difference

between corresponding pixels or regions, such as sum of

squared differences (SSD) and sum of absolute difference

(SAD). However, intensity-based matching measures are not

robust enough under practical conditions. SAD and SSD rely

on the constant luminance assumption. Therefore, they are

sensitive to differences in camera gain or bias. Normalized

correlation can compensate bias and multiplicative variation

but is sensitive to outliers. Besides, image sampling tends to

cause large intensity differences in textured regions unless

image registration is done with sub-pixel accuracy[2].

Compared to image intensity, the direction of an edge is

stable under various lighting conditions since it is invariant

with respect to bias and multiplicative variation. Since calcu-

lating gradients has blurring effect, we do not need sub-pixel

Fig. 6. Left: edges of a left image and the remapped right image. Right:
edge correlation of each scan line with horizontal shift.
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Fig. 7. Edges of a left image and the right image remapped with the
estimated parameters

image registration for the matching score calculation.

We calculate match scores only at salient edge pixels using

the following simple binary score that compares the gradient

vectors of the corresponding pixels: if the angle between the

two vectors is smaller than the predefined threshold then

score is 1 and otherwise score is 0. Edges are detected

with Canny edge detector though we do not use hysterisis

thresholding. Since scores for the unmatched edges are 0,

outliers are just ignored and do not significantly affect the

result.

Since the road plane is not front-parallel to the image

planes, the directions of the corresponding gradient vectors

in the road regions do not match well[13]. Therefore, we

prepare the affine transformed right image with (1) and use

that image for comparison of the road region pixels.

By using this matching score, the criterion for the opti-

mization becomes quite simple: to find the best path which

gives the highest number of matched edge pixels.

C. Global Optimization Using Dynamic Programming

The DP calculation is done from the right most column to

the left most column using the following recursive equations,

M1(d1) = m1(d1),

Mi(di) = mi(di)

+ max
di−1

{Mi−1(di−1) − ci(di, di−1)}, (3)

where mi(di) is the matching score for node (i, di) (i.e. the

node that represent i th column with disparity value di) ,

ci(di, di−1) is the cost of the path from node (i−1, di−1) to

node (i, di), and Mi(di) is the best score up to node (i, di).
Then, the best path is given as a sequence of disparity

values d∗1, · · · , d
∗

W using the following recursive equations,

d∗W = arg max
dW

MW (dW ),

d∗i = arg max
di

{Mi(di) − ci+1(d
∗

i+1, di)}. (4)

Any obstacle area in the left image has a half-occluded

area on its left and points inside the half-occluded area are

invisible in the right image (see area A and A’ in Fig.9). This

Fig. 8. Matching score calculation

poses the following two requirements on the optimization

procedure.

• The road-obstacle boundary must not go inside half-

occluded areas (which can be interpreted as the ordering

constraint[3]), since the road-obstacle boundary should

be visible in the both images.

• Half-occluded areas have to be excluded from the

matching score calculations, since they do not have

corresponding areas.

The above requirements restrict paths on DSI: no partial path

can have slope any steeper than 45 degree toward upward-left

and the partial path whose slope is 45 degree is considered

to be a boundary between road area and half-occluded area.

This constraint can be realized by the following matching

score mi(di) and path cost ci(di, di−1):

mi(di) = dsir(i, di) + dsio(i, di)

ci(di, di−1) =







∞ for di < di−1 − 1
dsio(i, di) for di = di−1 − 1
0 for di > di−1 − 1

(5)

The optimum path on the DSI is converted to the road-

obstacle boundary in the left image using (2). The partial

paths whose disparity values are smaller than a threshold

or those which are considered to be boundary between road

area and half-occluded areas are eliminated from the result.

Fig.10 shows an example of a DSI and the estimated road-

obstacle boundary.

D. Multiresolution Scheme

Our road environment model approximate obstacles with

column-like structures as shown in Fig.4. In close distance,

a small difference in depth causes a large difference in
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Fig. 9. Occlusions and the ordering constraint

Fig. 10. DSI and road-obstacle boundary

disparity, which makes the approximation unfit. Therefore,

close obstacles should be handled with coarse resolution

while distant obstacles be handled with fine resolution. We

use the multiresolurion scheme which adaptively chooses

resolution for each column of the image.

Let l be the superscript that represent the scale with

which images are reduced to 1/2l−1 of the original size

(l = {1, · · · , L}), dsilr and dsilo be the DSIs of scale l, and

d∗l
i be the estimated disparity of the i th column of scale l.
We begin with the coarsest scale L and estimate the

disparities d∗L
i for i = {1, · · · ,W/2L−1}. In the subsequent

scales, the disparity range for the i th column is limited to an

interval [2d∗l+1

i/2
−δ, 2d∗l+1

i/2
+δ], where d∗l+1

i/2
is the estimated

disparity of the corresponding position in the preceding scale

l+1 and δ is a small integer. If d∗l+1

i/2
is greater than threshold

dth, then, instead of calculating matching scores with current

scale images, the values of DSIs in the preceding scale are

used as follows:

dsil(i, d) = 2dsil+1(i/2, d/2). (6)

Fig. 11. An example of multiresolution processing

Fig.11 shows an example of a multiresolution processing,

where the results of coarser levels adaptively limit the search

range in disparity for each horizontal position.

IV. EXPERIMENTAL RESULTS

We carried out experiments with various image sequences.

The proposed DP-based opitmization allows paths to have

depth discontinuities while the ordering constraint prevent

false-detection in half-occluded areas (see Fig.12).

Since the criterion for the optimization is quite simple, i.e.

to find the road-obstacle boundary that maximize the number

of matched edge pixels, the system works under various con-

ditions without changing parameters. Fig.13 shows examples

of night scenes.

Since the proposed matching measure is insensitive to bias

and multiplicative variation, the system works stably under

severe lighting conditions, such as shown in Fig.14.

Wet road surfaces cause reflections and the mirror images

of obstacles appear to be negative obstacles which have

negative height with respect to the road surface. The mirror

images of obstacles and patterns on road surfaces, such as

lane markings, cause multiple disparities in road areas, which

pose difficulties for many conventional stereo methods. Since

the proposed method is constrained to detect obstacles above

the road surface, negative obstacles do not support any of the

road-obstacle boundary hypotheses. Because of the robust

matching measure which only counts the number of matched

edge pixels, edges of mirror images of obstacles are ignored

and do not significantly affect the results (see Fig.15).

Besides, the proposed method shows high tolerance to

partial occlusions, such as ones caused by the wiper on

the windshield (see Fig.16). The road environment constraint

significantly reduces the degree of freedom of the disparity

map so that neighboring areas can complement the lack of

information caused by partial occlusions.
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Fig. 12. An example of occlusions and depth discontinuities

Fig. 13. Examples of night scenes

V. CONCLUSIONS

A fast and robust stereo algorithm for on-board obstacle

detection systems has been proposed. The proposed method

finds the optimum road-obstacle boundary under the road

environment constraint. The road environment constraint

along with the road plane constraint enables efficient DP-

based global optimization.

Since the proposed method calculate matching score only

at salient edge pixels and DP-based optimization does not

require any iterations, the computational cost is small.

Multiresolution scheme enables to handle a wide range of

disparity. The processing time for VGA size image pair with

140 disparity range is about 15msec on a 3.6GHz pentium

Fig. 14. Examples of severe lighting conditions

Fig. 15. Examples of heavy rain

Fig. 16. An example of partial occlusion by wiper on the windshield

IV processor, which is fast enough for real-time applications.
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