

A Parallelism Analysis Pattern for Real-time
Vehicle Recognition Algorithm

Chunyang Yang, Huai Yuan, Nan Wang, Chunmin Zhang and Bobo Duan

Abstract—With the rise of many-core, parallelization is
expected to be the mainstream to speedup the computation. This
paper presents the study of classic vision based algorithms
applied to vehicle recognition in DAS domain from the point of
view of building a practicable real-time system. The workloads
of the algorithm is illustrated and analyzed. After summarized
the difficulties prevent current algorithm from achieving
real-time, especially considering recent many-core tide, this
paper brings out a parallel analysis pattern for vehicle
recognition, our prime work indicates it can effectively help us
to most exploit and express the parallelism of the algorithm.

I. INTRODUCTION
EHICLE recognition is one of the most important
applications for Drive Assistant System (DAS) . It’s the

foundation for DAS to make correct control decisions so that
it can react to dangerous situation in time. The real-time
requirement of vehicle recognition algorithms is definitively
a critical index. Modern vehicle recognition algorithm
involves the up to date research fruits of computer vision, AI,
sensor fusion and image processing areas, and tends to
employ more complicated statistic/machine learning
algorithms, introduces more kinds of and more
numbers(channels) of sensors and achieve more accurate and
robustness detection rate in a fusion way. Considering the
complexity of the working environment of vehicle
recognition, this is a natural and reasonable way, whereas, it
brings a “sensors × channels × scenarios × targets”
computational workloads [1] and aggravates the difficulties
in achieving real-time.

With the risen of many/multi-core tides, parallelism has
been the mainstream for increasing the computing power, and
the traditional free lunch for software to speed up is out of
date [2]. So, for vehicle recognition algorithm which tends to
exhibit large amounts of computation and parallelism
inherent, the research of parallelization of algorithm, or in
another words, how to most exploiting its parallelism and best

mapping it to the coming many-core hardware is the key to
the issue of the ability of being real-time.

Manuscript received Jan.15th.2007. This work was supported by Intel

Funding Project entitled "Research Image Processing Programs Written in
Data Parallel Language Primitives on Multi-Core Platform."

Chunyang Yang is with Software Center, Northeastern University,
Shenyang, 110004, China (yangcy@neusoft.com).

Huai Yuan is with Shenyang Neusoft Co., Ltd. AAC. Shenyang 110179,
China. (yuanh@neusoft.com).

Nan Wang is with Shenyang Neusoft Co., Ltd. AAC. Shenyang 110179,
China. (wangnan@neusoft.com)

Chunmin Zhang is with Shenyang Neusoft Co., Ltd. AAC Shenyang
110179, China. (zhang.cm@neusoft.com)

Bobo Duan is with Software Center, Northeastern University, Shenyang
110004, China. (duanbb@neusoft.com)

Industry has brought out some specialized chips aiming to
provide support real-time solution of these complex
algorithms, Ex, Kerneltron [3] for SVM algorithm, IMAP [4]
for image processing, and some other Streaming process
oriented chips etc. Most of these chips provide high
computing capability through adapt advanced IC techniques
and SIMD architecture, which are very suitable for speed up
the dense regular computing operations. However, the
algorithms that vehicle recognition involves is much more
complicated, not only does it include the algorithms suitable
for speed up with the means of SIMD, but also algorithms
which are composed of lots of irregular computing or
dynamic scheduling, and some of the algorithms are
computing sensitive whereas some other algorithms are
memory sensitive. This makes the above-mentioned pure
SIMD chips less effective and can not best utilize the
computing capability of the hardware. We start with an
analysis of a vision based hybrid vehicle recognition
algorithm that we developed, conclude the importance and
the difficulties of parallel analyzing for vehicle recognition
algorithm, and then we propose a pattern for analysis,
discover and represent the parallelism of the algorithm, and
our applying it to the parallelism analysis for vehicle
recognition shows that it is an effective methodology.

This paper is organized as follows. Section II describes the
target vision based hybrid algorithm of vehicle recognition
and the classical sub algorithms it employs. A prime
workload analysis is present in this section too, while Section
III gives an analysis from the parallelism analysis point of
view, and summarized the difficulties for speed up the
algorithms as well as the aim and the motivation of the
analysis pattern. In Section IV, after introduce the pattern; we
put importance on the description of our applying it to
parallelization analysis of vehicle recognition algorithm.
Section V concludes it and point out our future work.

II. WORKLOAD ANALYSIS FOR CLASSICAL VISION BASED
VEHICLE RECOGNITION ALGORITHM

A. Target Classical Vehicle Recognition Algorithm
Fig.1 [5] below shows a sketch map of our current vehicle

recognition algorithm. Like other classical algorithms, it
integrates the detection and tracking, the algorithm will find
new object to be tracked and start/stop object tracking
according to the result of detection. The detector adopts a

V

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

WeE1.18

1-4244-1068-1/07/$25.00 ©2007 IEEE. 369

hybrid algorithm, integrates the knowledge based method and
machine learning method (Wavelet for feature extraction and
SVM for classification, 3788 feature sets), the tracer adopts
motion estimation and light-weight algorithm in good match
and pyramid template matching when occlusion and
mismatch. Tracking parts enhanced the robustness of the
algorithm and shorten the process time. A prototype has been
development on an Intel C2.8G PC, it has achieved 95%
detection rate and less than 5% false detection rate for a test
set composed of 37 video segments of various road and traffic

situation, taken in Japan and China, from a camera mounting
on a moving vehicle. The size of the input video is 720 × 480
pixels, and the average process time is 60ms/f, whereas the
peak process time has yielded 200ms/f, we consider this
prototype as a typically implementation of most modern
vision based vehicle recognition algorithm and use it as target
for analysis.

B. A Prime Workload Analysis
Understanding the characteristics of workload is very

important in building real-time system [6], workload analysis
and characterization will indicate under what circumstance or
which part of the algorithm tends to bring out performance
problems from point of view of result analyzing, and what’s
more, for certain algorithm it will also indicate the ineffective
cases such as most part of its rules are ineffective whereas
only a few rules works, this will lead to optimization and
improvement from architecture to algorithm aspects.
1) Necessary of Algorithm Parallelization

Our primary analysis about the workload firstly indicates
the necessary of parallelization of the algorithm. We can find
that the peak process times are most likely to happen at:

a) Complicated scenarios: more vehicles in the picture,
confused background or vehicle appearance such as
occlusion.

b) Close vehicle: large object in the picture and the motion
is relative obvious at this time.

These scenarios are just those driver will have trouble in
making quick and accurate judgment and need the supporting
of DAS, so we can’t use the common engineering methods
such as discard frames, output delay etc to smooth down the
peak time, whereas, we must rely on parallel to ensure the real
time without sacrificing the accuracy and the sensitivity.

2) Bottlenecks and character of the Algorithm
Our major aim of the workload analysis is to find out the

bottlenecks of the algorithm at peak time and their
computation models, especially memory access models, so as
to guide the future tuning and parallelization. Whereas,
because of the hybrid algorithm it adopts, the workload of the
vehicle recognition algorithm is somewhat input depended
and hard to describe. The various input road situation

(background, vehicle appearance, occlusion relationship,
light-condition, motion-relationship and history information
etc) will cause the hybrid algorithm to predicate the most
possible strategy and select best fit sub algorithms (features)
combination dynamically. So, the workload of the peak time
may be a various combination of groups of sub algorithms.

Although an exhaustively enumeration of the peak time
workloads is difficult, but our prime analysis indicates, in
most cases, as described in figure 2, the peak time are
composed of the following workloads, and they’re also the
most probable parts tend to be the bottlenecks in most modern
vehicle recognition algorithms.

a) Image processing for Knowledge based Method: This
group of knowledge based sub algorithms involves serials of
classical image process algorithms such as difference and
projection as basics, and it depends on the extracted geometry
or statistic features to classify the vehicle object. The major
factor of the time consuming of this part can be
approximately consider to be the spending on memory access
of image data, and the most frequently used memory access
pattern are GO (Global Operation), GeO(Geometry
Operation), SO(Statistical Operation) and LNO(local
neighbor operation) [7].

Unlike the global image process such as Sobel (for edge
extraction) to the whole image which can be easily take the
advantage of data parallel with SIMD, whereas, knowledge
based method are more likely a looping for paired statistic
and judgment operation to see if certain feature exists. It’s
more sensitive to memory access and because the image
process and statistic mostly restrict to certain ROI, pure
SIMD optimization seems not so effective. In case of many
vehicles in surroundings, especially when its appearance
features such as corner, layer, symmetry etc which are not

Fig. 2 Peak time Scenarios (>200ms/f among the 37 sample video
segments) and the related Workload. The snapshot of each scenario is
listed in appendix

Fig. 1 Framework of classic vision based vehicle recognition algorithm.
This is a classical program structure of the algorithm, and our target
prototype also adopt this kind of structure as a representation for analysis

WeE1.18

370

ideal, this part tends to be a bottleneck of the algorithm.
b)SVM: Machine learning plays a key role in vehicle

recognition algorithm, and SVM(supported vector machine)
is one of the widely used algorithm, its major way is to
compute a functional relationship between input vector (the
extracted features of a ROI) and the model(pre-trained feature
set). Our current SVM pre-trained model contains 3788
features, and for each ROI, the computation complex is
1024×3788. In case of there are a lot of vehicles, there is
obvious time consuming increase and become a bottleneck of
the algorithm.

rhoCoefZvalueDecision
k

k
kk −×= ∑

=

=

)(_
3788

1

 (1)

∑
= =

−×−
1024

1

2))(()(
m

mYXgamma

k eZ
Most other adopted machine learning algorithms have a

similar form like SVM and are mainly computation sensitive,
like showed by equation (1), the final classification result (viz.
Decision_value) involves a serials of multiplication/addition
operations which often suitable for data parallel.

c) Tracking: Tracking module is another bottleneck of the
algorithm especially when traced object is at image boundary
or in the shadow or occluded which often result in mismatch
and unstable tracking with the light weight tracking algorithm
and in these cases, template matching is expected to be the
valid method.

In theory, the computing of template tracking is to find a
location with minimize motion energy of the specified
template in the searching window, for example, like in
equation (2), the location with the minimize normalized
correlation coefficient(NC) is consider to be has the
minimized motion energy and T is the specified template
while F is the searching area.

∑∑

∑∑

= =

= =

++×

++×
=

M

m

N

n

M

m

N

n

jnimFnmT

jnimFnmT
jiNC

1 1

22

1 1

),(),(

),(),(
),(

 (2)

Instead of computing each possible location offset, in
actual implement, the minimized motion energy is often be
computing in some form of optimization, such as predicated
diamond search or other motion estimation method. If we
don’t take the motion estimation into consideration, this part
is obvious computing sensitive, while the most motion
estimation methods are some kind of data depended or even
recursive algorithm which adds extra complication to the
computation model.

III. DIFFICULTIES AND MOTIVATION

A. Speedup and Parallelization Difficulties
 In Section II above, the major bottleneck of the vehicle
recognition algorithm has been recognized and its
computation model has been characterized to be a more
complicated one comparing with ordinary image processing
domain, and the following difficulties will prevent traditional

mainstream data driven parallel analysis method from to be
applicable.
1) The Complexity of the Algorithm

Because the running environment of the vehicle
recognition algorithm is very complicated, there’s no single
algorithm (orients to certain features) which fits all the
situations, an ideal way is to combine hybrid algorithms and
select best fit algorithms for current scenarios. Current
vehicle algorithm consider the quantitative output of segment,
classification and tracking parts as the evidence of B-N
network to predicate the most suitable scenario/strategy and
feed it back for a more proper algorithm adapt. It’s a dynamic
and complex procedure and make the mainstream function
level parallel analysis method become more difficult.

2) Data Couple
The data coupling makes it difficult to divide the

computing into in-depended tasks and thus can increase the
parallelism.

3) Various Memory Access Model
For parallel algorithm, effective memory access plays a

determined role in achieving real-time performance. But as
the workload analysis showed, current vehicle recognition
algorithms involves various of memory access model, e.g.,
some are computing sensitive and some others are memory
sensitive. The inherent feature of streaming application leads
to easily cache out of date and the irregular computing
operations aggravates the ineffective memory access.

4) Various and Uncertain Hardware
Traditional parallel algorithm often has a close relationship

with hardware; programmer often must to answer some
hardware related questions from the beginning of the parallel
algorithm development, such as the grain of the parallel, how
much the processors available and how many divisions to be
made and correspondingly communication and synchronous
low-level questions. So, the uncertainty of the hardware also
makes it difficult for the traditional parallel analysis.

B. Aim and Motivation
 Considering these factors, we hope we can bring out a
systemically parallel analysis pattern which can:

1) Most exploiting the parallelism of the algorithm
The only restriction is the producer/consumer relationship

explicit or in-explicit defined by the algorithm itself, unlike
with traditional parallel analysis in some forms of parallel
languages which often involves unnecessary restrict of
low-level implement details (such as insert barriers when
using OpenMP [8]) it should have nothing to do with the
low-level parallel model and the parallel languages.

2) Provide more and rich opportunities for
parallelization

Unlike pure SIMD and pure task parallel model (it can’t
handle current vehicle recognition algorithm’s complexity
and hybrid computation model), it must be able to effectively
handle both task parallel and data parallel target to
Many/Multi-core architecture at the same time and in a
uniform manner.

WeE1.18

371

3) Support both fine and coarse grains parallel
modeling and Hardware in-depended

It must be also easy to model the parallel algorithm in
different grains, and can map to future specified hardware
conveniently.

IV. PARALLELIZATION ANALYSIS
Traditional parallel analysis often starts with data

dependency analyzing. Data and the producer/consumer
relationship correspondingly are analyzed function by
function [9]. Functions without producer/consumer
restriction will be organized into independent tasks. And if
necessary, more parallelism can be exploited through data
duplicate and with the support of inter-task data communicate,
the correct execution sequence is ensured by synchronize.
Whereas, as we have pointed out above, for the target vehicle
recognition algorithm, the various input surroundings, hybrid
algorithm it adopted and the complicated execution path
makes the traditional parallel analysis become difficult, and
because traditional parallel analysis method often has a close
relationship with certain concrete hardware and execution
model, some potential parallelism of algorithm may be lost.
So, this paper proposed a top-down parallel analysis pattern
to facilitate the parallelization analysis of vehicle recognition
algorithm.

A. Modeling and Expressing Parallelism
Basically, there’re three levels of parallel: task parallel,

data parallel and instruction level parallel. We mainly
concerns the first two levels of parallel now, and for a
top-down parallel analysis, the first work is to model and
express the parallelism of the algorithm. Here, we choose
TStreams [10] for modeling and high level parallelism
analyzing. TStreams is brought out by HP labs, it is a new
general parallel programming model, simple yet powerful. It
is optimistic (assumed able to be executed in parallel unless it
is explicitly constrained, and the only constrains are the
producer/consumer relations in algorithm itself), can express
all kinds of parallelism equally well and it don’t make any
assumptions about the hardware and other low-level details.
[11]

The kernel of TStreams is composed of Items, Steps and
Tags. Items encapsulate the data, Steps encapsulate the
computation (conceptually atomically) and Tags encapsulate
unique identifier for Step and Items. Tags play an important
role, it describes what/when computations are executed and
what data object exits, it is also the key clues in future
mapping and scheduling.
1) Task Parallelism

Fig. 3 describes the top level modeling of vehicle
recognition algorithm using TStreams. The initial tag space is
“frame tag” at the top; “π” here denotes there’s a 1-1 mapping
from “frame tag” tag space to step “Segment frame”, step
“Segment frame” will dynamically generate ROI tags and
correspondingly ROI data (items), once a certain ROI tag is
generated and added into the ROI tag space, it indicates the
correspondingly recognition step to the ROI is “available”

and can be executed, and hence construct a
producer/consumer relationship between this two steps. In
similar way, when a VDR (vehicle detection result) tag is
generated, the represent track step is available and can be
executed.

With the model in Fig. 3, the top-level task parallel has
been fully described, and the only constrains are the above

mentioned producer/consumer relationship. There’re no
assumption about the executing order between segment for
different frames and recognize/trace for certain objects. All
the latent parallelism including pipeline parallelism has been
exploited and expressed.

Now, at top-level, the Steps are considered as an atomic
computation, whereas, of course they’re much complicated
actually, so, the same modeling procedure can be applied to
each Step recursively until we’re satisfied with a certain
grains.

Fig. 3 The parallel model of top level vehicle recognition algorithm,
TStreams Form expression of the algorithms described in Fig. 1, VDR is
the abbr. of vehicle detection result, and TDR is the abbr. of tracer
detection result.

Fig. 4 The parallel model of the SVM predication algorithm. TStreams
Form expression of equator (1)

2) Data Parallelism
Fig.4 shows the parallel model we got after applying the

same method to SVM algorithm. Feature data set is divided
into blocks and computed in parallel.

With method above, we can model both the task and data
parallel in a uniform way and express all the potential
parallelism of the algorithm. The dynamic generation of tag
and items and the abstract execution model are suitable for

WeE1.18

372

modeling and analyzing the complicated dynamic scheduling
and running behaviors of the vehicle recognition algorithm.
So, the top-down analysis with the help of TStreams can
effectively help to most exploit the parallelism of the
algorithm and leads to a demandable grain of division which
providing rich opportunities for parallelization.

B. Expressing and Abstraction the Data Parallelism
Although the above analysis can be proceed recursively till

we got all the detailed parallel divisions and repressions in
theory, but actually, the above analysis often can be stopped
when we get an “enough” clear parallel division. For example,
while analyzing the data parallel of SVM algorithm, the
model in Fig.4 has described the data parallel clear “enough”
to be understand. So, there’s no need to future divide for the
step “computing Zk” and “computing decision_value” here
we can consider it as an atomic processing for convenient.
And the internal data parallelisms as well as the data parallel
we have modeled are often concrete algorithm related, we
introduces an abstract and well-designed data parallel
primitives to represent the parallelism.

The introduction and the design of the data parallel
primitives utilize the other work which is mainly focus on the
data parallelism on GPU [12]. The primitives are composed
of a serial of operation including element-wise, reduce, prefix,
permute, gather, scatter, vector-scalar, and multi-prefix,
multi-reduce etc. These primitives are functional semantics,
and sheltered the complexity and the lower-level parallel
implementation details. Because of the complexity of vehicle
recognition algorithm, there’re not only regular data parallel
operations but also a lot of irregulars. The primitives adopts
nested vector, operation with masks and custom element-wise
operations to improve and facilitate the expression of
irregular data parallelism. With the support of data parallel
primitives, we can express both regular and irregular data
parallel effectively in a clear and hardware independent
expression.

C. Mapping and Execution Model
Basically, our applying the analysis pattern above to

vehicle recognition has mainly answered the question: How
the data and the computation task should be divided? When
and how the data and computation task can be processed? For
parallel analysis, the only major question left unanswered is
where of the data and the computation task should be? The
effective mapping can be various depending on the concrete
hardware, such as different number of processors, parallel
architectures or other actual low-level conditions with
comprehensive consideration of computation character and
balance. After the concrete mapping, from the point of view
processor, each of them will has its own view of the parallel
model. And each processor will loop to check/update his tag
space and pick the available steps to execute in parallel.

V. CONCLUSION
In this paper, we first briefly present a prototype of vehicle

recognition algorithms which employs some classical
algorithms and adopt hybrid algorithm architecture. This

prototype is considered to be a representation of modern
vision based vehicle recognition algorithms. And a prime
workload analyzing to it shows that vehicle recognition
algorithm is a complicated algorithm involves different type
of computation characteristics, and the dynamic algorithm
adapting and scheduling required by the hybrid algorithm
aggravates the complexities and difficulties for traditional
parallel analysis.

We proposed a new top-down parallelism analysis pattern
for the parallel analysis of the vehicle recognition algorithm.
It adopts TStreams for modeling and expressing the
parallelism (both task and data parallel) of the algorithm and
introduces a set of data parallel primitives support to express
the rich irregular data parallel in vehicle recognition
algorithm. TStreams based high-level modeling provides an
effective way to describes and exploit the parallelism of the
algorithms and at the same time it doesn’t constrain to concert
low-level details, and benefits from the functional semantics
and the data decoupling it supported, we can exploit and
express the parallelism of the algorithm utmost.

We’re now going to parallelization the algorithm and
implement a prototype on board target at many-core
architecture platforms. And two most possible options are
many-core SIMD as co-processors, and chip symmetric
multi-processors. Although the architecture and the hardware
details of the two optional platforms are different in many
ways, but with the help of the parallelism analysis pattern we
proposed, we can focus on the algorithm itself all through,
modeling and analyzing the parallelism of it in a more
essential way and the analysis result is ready for easily
mapping to the future platforms. Our prime work of applying
this pattern indicates that it is an effective parallelism analysis
pattern for vision based hybrid vehicle recognition algorithm.

APPENDIX
Fig. 5 below lists the snapshots of scenarios which bring

out peak times in Fig.2.

 Scenario 1 Scenario 2 Scenario 3

 Scenario 4 Scenario 5 Scenario 6

Fig. 5 Snapshots of peak time scenarios in Fig. 2, the shadow in scenario 1
and 6,the unobvious vehicle feature in scenario 2 and 6, the noise of
whit-line in scenarios 1,3,4,5 and big and occlusion vehicle in scenario 5
are the major factors which caused the algorithm to bring out peak process
time.

REFERENCES
[1] Shorin Kyo, Shin’ichiro Okazaki, and Tamio Arai, “An Integrated

Memory Array Processor Architecture for Embedded Image
Recognition Systems”, ACM SIGARCH Computer Architecture News,
Volume 33,Issue 2, pp.134-145,May 2005.

WeE1.18

373

[2] Sutter, Herb, “A Fundamental Turn Toward Concurrency in Software”.
Dr. Dobb's Journal. Vol. 30, no. 3, pp. 16-20, 22. Mar. 2005.

[3] Roman Genov, and Gert Cauwenberghs, “Kerneltron: Support Vector
Machine in Silicon,” Proceedings of the First International Workshop
on Pattern Recognition with Support Vector Machine. pp. 120-134,
2002.

[4] Shorin Kyo, Takuya Koga and Shin'ichiro Okazaki,"IMAP-CE: a 51.2
GOPS video rate image processor with 128 VLIW processing
elements." ICIP (3),pp.294-297,2001.

[5] Margrit Betke, Esin Haritaoglu and Larry S.Davis, “Multiple Vehicle
Detection and Tracking in Hard Real-Time,” Intelligent Vehicle
Symposium, Proceedings of the 1996 IEEE, pp.351-356, 1996.

[6] Lizy Kurian John, Purnima Vasudevan and Jyotsna Sabarinathan,
“Workload characterization: motivation, goals and methodology”,
Workload Characterization: Methodology and Case Studies, pp.3-14,
1998.

[7] P. P. Jonker, “Architectures for Multidimensional Low-and
Intermidiate Level Image Processing,” Proc. Of IAPR Workshop on
Machine Vision Application (MVA’90), pp.307-316, 1990.

[8] “OpenMP Application Program Interface”, 2005, Specification
Available at http://www.openmp.org/drupal/mp-document/spec25.pdf.

[9] Sean Rul,Hans Vandierendonck and Koen De Bosschere, “Function
Level Parallelism Driven by Data Dependencies”, Workshop on Design
and Simulation of Chip Multi-Processors, 2006

[10] Kathleen Knobe,Carl D.Offner, “TStreams: How to Write a Parallel
Program”, Technical report HPL-2004-193,2004. Available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-193.pdf.

[11] Kathleen Knobe and Carl D. Offner. “TStreams: A Model of Parallel
Computation (Preliminary Report).” Technical report, HP Labs
Technical Report HPL-2004-78, 2004. Available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-78.html.

[12] David Tarditi, Sidd Puri, and Jose Oglesby, “Accelerator: simplified
programming of graphics processing units for general-purpose use via
data parallelism”, Technical Report MSR-TR-2005-184, 2005.
http://research.microsoft.com/research/pubs/view.aspx?type=technical
%20report&id=1040

WeE1.18

374

