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Abstract—Data from vehicles approaching an intersection
during a red-light phase has been recorded by measuring real
traffic in urban areas. Using a laser scanner based tracking
system, vehicle velocities during approaches to the red light
have been estimated and various metadata (such as object class,
distance to the intersection when the traffic light turned from
green to orange and weather data) has been collected. The
experimental setup is validated using a Real-Time Kinematic
(RTK) GPS system. The resulting information can be used
when designing warning strategies for Advanced Driver Assistant
Systems (ADAS). Examples of a warning strategy estimation for a
misinterpretation of the traffic situation for both the host vehicle’s
driver as well as other drivers endangering the host vehicle are
presented.

I. INTRODUCTION

Analyses of accident statistics have shown intersections to

be a major source of conflicts. In urban areas in Germany,

collisions at intersections is the predominant accident type [1].

Technical systems assisting the driver at specific intersection

scenarios are being developed ([2], [3], [4]) and sensor-

equipped cars have been built up to do research on driver

behavior and test Advanced Driver Assistant Systems under

real traffic conditions (e.g. [5]). Many of these systems aim

to avoid automatic intervention into vehicle control and are

restricted to present warnings to the driver when possible.

Those systems face a “warning dilemma” [6]: A warning is to

be issued as late as possible, so that the driver is not bothered

with unnecessary warnings. On the other hand, a warning has

to be early enough to enable the driver to react suitably in

order to avoid the dangerous situation.

Risk assessment systems can benefit from accurate informa-

tion about typical driver behavior. This is the case for both,

systems that try to detect known dangerous object configura-

tions as well as system approaches that simulate all possible

future object paths. While the former can use this information

to separate normal from atypical and potentially dangerous

situations, the latter can possibly use such information for

more accurate object path prediction. When studying the

warning dilemma for stop sign assistance, experiments were

done with test subjects that approach a stop sign [6]. In general

however, not much investigation about typical driver behavior

approaching intersections has been done.

This work studies the approach of vehicles to crossings

with traffic lights, which involves an additional parameter that

affects driver behavior: The distance of the vehicle to the

stopping line when the lights turn from green to orange and

the driver decides to stop. Also, in this work test persons did

not drive a test vehicle, but real traffic has been examined

using a tracking system based on a laser scanner manufactured

by IBEO AS, Germany. This system is briefly described in

Section II-A.

Driver behavior recording using a vehicle driven by test

persons or examining real traffic both have their own inherent

advantages and disadvantages. A big advantage of recording

normal traffic scenarios is that it is easier to get a sample set

that contains a representation of all sorts of drivers, even those

that might be harder to win as test persons for an experiment.

Secondly, when driving in their own cars, unaware that an

experiment is going on, drivers will act more naturally. This

is harder to accomplish when putting drivers in a test car,

where they know that data will be recorded. Thirdly, all kinds

of vehicle types can be examined, not only a limited number

of test vehicles.

The biggest challenge of this approach is that it is difficult

to measure the vehicle data accurately and reliably enough

for data collection. It will be shown in Section II-C that the

laser scanner based tracking system performs very well in the

chosen experimental setup.

II. DATA COLLECTION

This section describes the steps needed to reliably collect

detailed traffic data.

A. Laser Scanner based Object Tracking

Recent work described the use of a laser scanner for object

tracking [7] using a Kalman Filter [8]. The tracking algorithm

employed here uses the “rectangle tracking” technique, which

means that for each tracked vehicle, a length, width, and

orientation are estimated and the tracking reference point

is chosen stationary on a fixed point inside the resulting

rectangle. This way, the tracked reference point does not move

inside the object when an object is passing by and is thus seen

from different sides, so ostensible additional velocities of the

object reference point inside the tracked objects are inhibited.

The Kalman Filter works with an object model of constant

acceleration and yaw angle [9]. However, since a laser scanner

only measures distances directly and a Kalman Filter naturally

lags behind when estimating derived states, only the estimated

position is used in this work. The object velocities can be
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Fig. 1. Data recording vehicle with embedded laser scanner. The vehicle
cannot be recognized as sensor equipped test vehicle at first glance.

more accurately estimated by postprocessing the position data

offline. This is done with a smoothing spline interpolation. By

optimizing the spline parameters according to a cost function

that includes the smoothness of the resulting curve, the object

position over time can be obtained as an analytic smooth spline

from which the derivative can then be taken to get the object

velocities.

B. Experimental Setup

The tracking algorithms use an IBEO AS laser scanner

which is embedded into the front bumper of a test vehicle, al-

lowing for unintrusive measuring of flowing traffic, Fig. 1. The

hiding of the sensors is important in order to get information

about typical driving behavior, because drivers tend to change

their behavior when they realize that they are monitored, as it

can be seen from visible speed traps.

The tracking algorithms perform best when the rear parts of

vehicles are observed, because the sharper shape corresponds

better to the idealized rectangular object form. At the same

time, it is also important to get a good measurement of the

object length to allow for a robust tracking of the reference

point. It was found that the best layout for the experiment was

a parked car about 100m in front of a traffic light, Fig. 2.

The passing cars allow for both an accurate object length

estimation and robust tracking. Objects are very close when

they enter the field of view of the laser scanner, so due to

the radial measurement principle, there are many scan points

Fig. 2. Schematic layout of the experiment. Normal traffic passes a parked
test vehicle during an approach to a traffic light. The test vehicle records the
dynamic object data of the passing traffic.

on each object as the Kalman Filter is set up, which also

supports the tracking algorithms. The downside of this setup

is that a relatively straight road is needed for the last 100m

of the approach to the crossing for non-occluded view, thus

limiting the kind of crossings that can be monitored. Drivers

are assumed to drive at least as fast on straight roads as

on curvy roads. Since mainly upper bounds of the velocities

during normal driving are interesting for ADAS, the types of

crossings that can be monitored can be expected to be the most

problematic ones.

Comparisons have shown that cars drive with a slightly re-

duced velocity when following a leading car when approaching

a red light compared to cars that arrive at the intersection

first. Since leading cars are the ones of particular interest for

driver assistant systems, only those have been included in this

work. For every car, the corresponding timestamp at which the

light changed from green to orange has been manually marked

during the data collection, and vehicles were clustered into

groups depending on their relative position to the crossing at

that timestamp. For each object, metadata such as object class

and weather condition has been collected.

C. Validation of the Experimental Setup

In order to validate the velocity estimates of the tracking

algorithms for the described setup, the experiment has been

simulated on a closed test track with a second test car, and the

tracking results have been compared to an onboard RTK GPS

measurement of the moving vehicle. The RTK GPS sensor

measures its position with 10Hz and accuracy in the cm-

level, and also does a Doppler-measurement of its velocity.
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Fig. 3. Validation of laser scanner data acquisition vs. velocity estimation of
a RTK GPS sensor as reference system. Top: A hard and a moderate braking
maneuver is measured with the laser scanner and compared to the RTK GPS
measurement of the braking vehicle. Bottom: Maximum absolute error during
the hard braking maneuver. The error during the moderate braking maneuver
is considerably smaller.
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Fig. 3 illustrates the object velocity over the distance to the

final stop position. Shown are a moderate and a hard breaking

maneuver, recorded from the vehicle with the laser scanner

and postprocessed tracking and with the RTK GPS sensor.

The hard braking maneuver corresponds roughly to a braking

with a constant deceleration of 7
m

s2 during the last phase. The

results show that the velocity estimation of the laser scanner

based tracking and RTK GPS measured object movement are

almost identical. At the bottom of Fig. 3 the absolute error

during the hard braking maneuver is shown. Even during

that maneuver the maximum deviations do not exceed 0.4 m

s
.

During more moderate braking maneuvers, the error is even

considerably smaller, so that it can be concluded that very

accurate velocity estimations can be achieved with the laser

scanner based object tracking.

III. DATA EVALUATION

Fig. 4 depicts the data base for all vehicles consisting of

about 270 separate objects approaching a traffic light in an

urban area with a speed limit of just under 14
m

s
(50

km

h
).

Statistical tests have shown that the velocity distribution of

different drivers approaching an intersection is not a normal

distribution. In the case where a vehicle is supposed to

stop it can be assumed that the higher a vehicle’s velocity

approaching an intersection is, the higher the potential for a

dangerous situation as a harsher braking maneuver is required

to stop and yield. The meaning of “high” velocity here is to be

taken relative to the distance to the crossing. Even a moderate

but constant velocity becomes “high” at some distance, as

stopping at the intersection becomes more difficult. Therefore,

it is usually of interest for driver assistant systems to know

which part of the sample lies below some velocity/distance

threshold curve, which is exactly what quantiles express. The

Fig. 4. Distance/velocity graph of all measured objects during the last 100 m

of the approach to the traffic lights. Notable is the high variance in velocity
of the approaching vehicles, ranging from around 8

m

s
2

for extremely careful

drivers to almost 20
m

s
2

for very sporty drivers at a distance of 70 m to the

intersection. The allowed speed limit was 14
m

s
2

.
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Fig. 5. Distance/velocity graph of envelope curve, Q.97 quantile, and median
of all measured objects approaching a red light. The velocity level of the
quantiles decreases rapidly at the upper end, meaning that there are only a
few sporty drivers compared to a vast majority of normal and careful drivers.

1-quantile Q1. corresponds to the envelope curve, the 0.5-

quantile Q.5 corresponds to the median.

Fig. 5 shows the envelope curve of all approaches as a solid

red line. Comparison of the envelope to the median (black

dash-dotted line) reveals a big difference between the behavior

of “sporty” and “normal” drivers. The divergence between the

envelope curve and the Q.97 curve (blue dashed line) however

shows that there are only a few sporty drivers that push the

envelope towards high velocities.

It is interesting to investigate how braking maneuvers are

influenced by the distance of the vehicle to the traffic lights

when the lights turn from green to orange, Fig. 6. Obviously,

the drivers that are already close to the lights have no other

−60 −50 −40 −30 −20 −10 0
0

2

4

6

8

10

12

14

16

distance to stop position [m]

v
e

lo
c
it
y
 [

m
/s

]

 

 

0−30 m, Q
1.

0−30 m, Q
.9

over 60 m, Q
1.

over 60 m, Q
.9

Fig. 6. Braking maneuver depending on the distance of the cars to the lights
on switch to orange. Even when approaching the red light from far away,
some drivers choose a sporty trajectory, so a sporty approach is not always
forced by a suddenly changing light surprising the driver.
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Fig. 7. Comparison of cars and trucks. An average approach of a car
and a truck is very similar, while a sporty truck driver still chooses a more
conservative trajectory than a sporty car driver.

choice but to do a hard braking maneuver if they decide to

stop (blue curves). As expected, the vast majority of drivers

that are still far away from the lights do a moderate braking

maneuver (red dotted curve). Still, there are some drivers that

approach even a red light in a very sporty way (red dashed

curve), which has to be taken into account when designing

advanced driver assistant systems.

As it can be seen from Fig. 7, trucks approach a red light

on average only slightly slower than cars. However, there is a

notable difference for the envelope curve between trucks and

cars that shows that sporty truck drivers are on a lower velocity

level than sporty car drivers. This information could be used

by systems that are able to distinguish between several object

classes [10].

Fig. 8 presents a comparison between driving behavior

in good weather conditions as opposed to rainy weather, in

which only around 15 drivers have been recorded. During the

approach, the velocity in rainy conditions is on average slightly

lower than in good weather conditions. Still, even in rainy

conditions there are drivers that do very sporty approaches to

a red light. The car that produced the envelope (red dashed)

curve for rainy conditions was more than 60m away from

the crossing when the light turned red, so the rapid braking

maneuver was not caused by a suddenly changing light.

Although the small number of drivers during rainy weather

can not be statistically analyzed, this is a notable observation.

IV. IMPLICATIONS FOR INTERSECTION SAFETY SYSTEMS

When designing warning strategies for intersection safety

systems, avoiding false and thus irritating warnings is vital

for user acceptance of the assistance system. To reduce faulty

warnings, two conditions have to be met for a warning to be

issued: An atypical driving behavior (either by the driver of

the host vehicle or by other drivers) has to be recognized and

this possibly faulty behavior must pose a direct threat to the
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Fig. 8. Driving behavior in good weather conditions and rain. Rainy
weather conditions do not stop some drivers to perform a rather hard breaking
maneuver. Data analysis has shown that the sporty driver on the envelope
curve in rainy conditions was not surprised by a suddenly changing light, as
the light changed to red when the driver was still at a distance of more than
60 m.

host vehicle.

In order to check for the first condition, atypical driving

behavior has to be differentiated from normal maneuvers. If

the ADAS has the information that a car is supposed to stop

and yield (e.g. via infrastructure-to-car communication [11]),

one way of separating expected from exceptional behavior

during the approach of the car is to define a limiting curve in

the velocity/distance diagram, and claim that every maneuver

above that limiting curve is an atypical driving behavior.

If an atypical driving behavior has been detected, it is still

necessary to make sure that this behavior does in fact pose

a threat to the host vehicle. This can be done by means of a

collision risk assessment.

A. Traffic Situation Misinterpretation of the Host Vehicle

In this section, we are investigating a possible warning strat-

egy for the case when the host vehicle does not brake when

approaching an intersection where it has to yield (e.g. a red

light or a stop sign). In this case, the misinterpretation always

poses a direct threat to the host vehicle, so the predominant

design variable for a decision to issue a warning is the limiting

curve in the distance/velocity diagram. A reasonable choice

for this limiting curve would be a last physically-possible

warning point with the assumption of a constant maximum

deceleration after a certain driver reaction time. In Fig. 9, an

example approach of a vehicle with 15
m

s
(54

km

h
) is depicted.

The general limiting curve of an emergency breaking for any

velocity is assumed to result from a duly stop after a constant

deceleration of 9
m

s2 and a time delay of 1.5 s which accounts

for the human reaction time (typically a little more than 1 s)

as well as a time delay in the braking system (assumed as a

little less than 0.5 s). The vehicle crosses this limiting curve at

around 35m away from the targeted stop position. After that,
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Fig. 9. Idealized warning strategy for a missed braking maneuver of the
host vehicle at an intersection. A vehicle approaches with a constant velocity.
When it hits the dashed curve of the last possible warning point, a warning
is issued, and the vehicle brakes with full deceleration of 9

m

s
2

after a time
delay of 1.5 s. So the dashed curve partitions the the graph in an area where
a warning is still possible and one where it is too late.

it continues straight for 1.5 s and then follows the trajectory

of an automatic emergency braking. It must be emphasized

that the curve of the emergency braking after a certain time

delay is not a trajectory of a vehicle, but a limiting curve that

partitions the two-dimensional state space into an area where

a warning under the given assumptions is still possible and

an area where this warning would come too late. In the area

where the warning would be too late for collision avoidance,

there is still potential for collision mitigation maneuvers.

In Fig. 10 the quantiles Q1., Q.97, and Q.5 are overlaid with

the physically last possible warning point. From this figure it
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Fig. 10. Investigation of the warning dilemma for the given approach: Even
normal drivers cross the last possible warning point at some distance during
an approach. The last possible warning point can not be taken as the sole
criterium for a warning to avoid false warnings.

can be seen that during a typical approach, most vehicles that

do in fact yield and do not pose a danger cross the limiting

curve of the last possible warning point at some distance. No

warning is to be issued in such a case, so the crossing of the

limiting curve can not be taken as the sole criterium for a

warning. Clearly, there is a need for additional constraints on

the warning strategy to overcome the warning dilemma. One

feasibly additional constrait could be put on the driver-induced

pedal positions. Since in this case the warning is supposed

to make the driver aware of a missed stopping and yielding

responsibility, a warning is probably redundant if the driver

is already in the braking process. Checking for a deceleration

of the vehicle during the last meters before crossing the limit

curve could be another possible way to overcome the warning

dilemma. It can be seen on Fig. 10 that the velocity curves

are decelerating when crossing the limit curve. It is still to

be investigated if these measures are sufficient to lower the

false alarm rate below acceptable thresholds. Adjusting the

limiting curve to the type of driver could also increase the

system performance, but induces further problems and should

be avoided if somehow possible.

B. Traffic Situation Misinterpretation of Another Road User

In a second test case, another road user’s failure to yield

to the host vehicle is examined. The scene in Fig. 11 shows

a vehicle in red approaching an intersection. It is assumed

that the host vehicle has an up-to-date high-level map of the

intersection ([12], [13]) together with traffic regulations, and

knows that the host vehicle has the right of way. Considered

is the case when both vehicles are going straight. The host

vehicle in blue might interfere with the other vehicle in the

red conflict zone. Possible conflict zones can be computed in

advance when approaching an intersection [2].

Now it is assumed that both vehicles are staying in their

respective traffic lanes, and that the dynamic state of the ob-

jects only changes in the longitudinal direction by a maximum

assumed acceleration and deceleration. When simulating the

objects for future timestamps, the object boxes expand in

the longitudinal direction to a zone in which the vehicle is

Fig. 11. Test case for failure to yield of another vehicle. The blue host
vehicle (driving horizontally) is assumed to have the right of way, but the red
vehicle (driving vertically) fails to yield. The red area is the pre-calculated
conflict zone.
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Fig. 12. Longitudinal expansion of object boxes. Drivers are assumed to
stay in their respective lanes. Acceleration and deceleration maneuvers are
modelled by an expansion of the object boxes in longitudinal direction. A
possible crash occurs whenever these elongated boxes overlap.

contained under the assumptions mentioned above, Fig. 12.

If the boxes of two vehicles at a certain timestamp overlap, a

collision is possible. It is possible to take the amount of overlap

normalized to the box sizes as a collision risk metric for that

timestamp, but this metric of course highly depends on the

assumptions made on maximum acceleration and deceleration.

In order to check if the other vehicle poses a danger to the

host vehicle, it is only necessary to compute the timestamps

of the earliest entry into and the latest exit (possibly never)

out of the conflict zone for both vehicles. If the geometry of

the intersection is known, no time resolution of the simulation

is necessary, so this can be done extremely fast. If those time

intervals overlap, the vehicle poses a potential threat to the host

vehicle, and the first timestamp of overlap is the timestamp of

the earliest possible collision.

As a consequence, if the time intervals overlap, the con-

dition of posing a threat to the host vehicle is met. It still

needs to be judged if the other vehicle behaves atypically for a

warning to be justifiable. The measure of atypical behavior can

once again be taken from the distance/velocity diagram, where

a limiting curve that separates normal from atypical behavior

has to be defined. To avoid false warnings, the chosen limiting

curve has to be quite restrictive. The Q1. quantile of the driver

data recording seems like a feasible choice.

The usefulness of such a system can be analyzed by looking

at the time gap between the warning point and the earliest

possible collision (“time to collision”, TTC), or alternatively

by the time gap that still remains for the driver of the host

vehicle to react until a maximum braking maneuver has to

be initiated in order to avoid the collision (“time to react”,

TTR). The latter can also be seen as the time gap between

the warning timestamp and the beginning of an automatic

emergency braking that would avoid the collision. A TTR

that is lower than the assumed reaction time of the human

driver shows that a warning will probably not enable the driver

Fig. 13. Exemplary simulation run showing the time to react of a vehicle that
is 10 m away from the intersection when an atypical behavior is detected. The
time to react (TTR) is dependent on the host vehicle’s velocity and distance to
the conflict zone as well as the other vehicle’s position. The graph shows the
areas where a warning would be feasible depending on the assumed driver
reaction time. The cyan line shows that if the host vehicle approaches the
intesection at 14

m

s
, the warning must be issued at a distance of 35 m to the

conflict zone in order to allow for a collision avoidance maneuver.

to avoid the collision, but could still be useful for collision

mitigation maneuvers.

As a testcase, the maximum acceleration and deceleration of

the host vehicle was chosen to be 1
m

s2 and −2
m

s2 respectively,

the parameters for the other vehicle were 1
m

s2 and −6
m

s2 .

Vehicles sizes have been set to 2m width and 4.5m length.

With the additional assumption of the other vehicle’s atypical

behavior being caught at the earliest possible point in time (the

crossing of the limiting curve, so distance and velocity of the

object are coupled), three variables characterize a situation:

The host vehicle’s velocity and distance to the conflict zone,

and the distance to the conflict zone of the other vehicle.

Fig. 13 shows an example simulation run for a traffic situa-

tion where atypical behavior of the other vehicle is recognized

10m before it reaches the intersection. As the limiting curve

was chosen to be the Q1. quantile of the driver data recording,

it can be seen from Fig. 5 that the other vehicle’s velocity is

around 11
m

s
in that case. The TTR is plotted as a function

of the dynamic state of the host vehicle. The contour line

where TTR equals 1.5 s is of particular interest: Under the

assumptions made about driver reaction delay and braking

system time constant, the warning would be early enough to

allow for a collision avoidance maneuver by the host vehicle’s

driver for all dynamic states below that line. On the line of

TTR equal to 0 s, only an automatic emergency braking system

would be able to avoid the collision, for states between those

two lines a human driver could still do collision mitigation

with a hard braking maneuver. For dynamic states above a

TTR of 0 s, even an automatic emergency braking system

could only do collision mitigation. The white area on the

left of the figure is caused by the host vehicle leaving the

conflict zone before the other vehicle reaches it. In the depicted
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example of a host vehicle that approaches with 14
m

s
(around

50
km

h
), the warning needs to be issued at a distance of at least

about 35m away from the conflict zone in order to assist the

driver in avoiding the collision (cyan lines in Fig. 13). Given

that the view at intersections is often occluded by obstacles,

detection and tracking of such imperiling vehicles at an early

stage is a hard task.

V. CONCLUSIONS

It has been shown by a comparison to RTK GPS mea-

surements that a laser scanner based tracking algorithm is

well suited for traffic recording and data acquisition of driver

behavior. Approaches of ordinary drivers to a red traffic light

have been collected and impacts of several influences on the

driver have been analyzed. The resulting information of typical

driver behavior when approaching an intersection has then

been used to estimate whether warning systems for intersection

safety can have the potential to avoid or at least mitigate

collisions for two selected situations. It was shown that in

general the warning dilemma is not negligible. For failure-

to-yield situations by the host vehicle, the warning dilemma

can possibly be overcome in many situations, rendering an

assistant system useful. It is however hard for driver assistant

systems to account for yielding failures by surrounding drivers

at intersections, especially when the viewshed is occluded.
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