
 
 

 

  

Abstract—Application of high level fusion approaches 
demonstrate a sequence of significant advantages in 
multi sensor data fusion and automotive safety fusion 
systems are no exception to this. High level fusion can be 
applied to automotive sensor networks with 
complementary or/and redundant field of views. The 
advantage of this approach is that it ensures system 
modularity and allows benchmarking, as it does not 
permit feedbacks and loops inside the processing. In this 
paper two specific high level data fusion approaches are 
described including a brief architectural and algorithmic 
presentation. These approaches differ mainly in their 
data association part: (a) track level fusion approach 
solves it with the point to point association with emphasis 
on object continuity and multidimensional assignment, 
and (b) grid based fusion approach that proposes a 
generic way to model the environment and to perform 
sensor data fusion. The test case for these approaches is 
a multi sensor equipped PReVENT/ProFusion2 truck 
demonstrator vehicle. 

I. INTRODUCTION 
THIS paper presents part of the work taking place in the 

IP PReVENT ProFusion2 subproject concerning the 
development of data fusion algorithms for object refinement. 
This includes the issue of managing information, from 
multiple sensors, in a common platform for advanced 
vehicle applications extracting high level information for 
typical objects of road environments.  

 Even though there is a dispute whether solely vision 
sensors are adequate to support the automotive safety 
applications [1], there seems to be a wide recognition that 
both range sensors like radars and lasers are absolutely 
necessary. The only obvious solution towards 
simultaneously exploiting this multisource and 
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heterogeneous amount of information is data fusion. First 
ADAS applications were operating with a single sensor in a 
specific topology, but as more applications are integrated in 
the vehicles more sensors are deployed as well. Thus, data 
fusion has to be applied; in order to handle this redundant 
and complementary information ensuring the extension of 
single sensor efficiency and making system design economic 
as a set of applications would share the same sensors [2].    

However, the unanimous acceptance of sensor data fusion 
(SDF) has generated in turn a series of new arguments for 
which SDF architecture is the most appropriate. The main 
architectures are the High Level Fusion (HLF) approach 
where an amount of processing (tracking) takes place in 
sensor level, and the Low Level Fusion (LLF) approach with 
the main processing of raw sensor data to take place in a 
central level. Both approaches demonstrate a set of known 
well advantages and disadvantage (e.g. [3]), but the 
heterogeneous information of automotive systems changes 
significantly the situation.    Supporters of LLF claim that 
the main shortcoming of  HLF is that the performance of 
target’s class identification is deteriorating after the 
processing of single sensor data, and that the great amount 
of computational load is paid off with the better results in 
object detection and classification using all the available 
information [4]. On the other hand, researchers in favour of 
HLF argue that this approach offers modularity and allows 
benchmarking and substitution of sensorial systems as it 
does not allow feedbacks and loops inside the processing. 
Consequently, HLF requires less computational load and 
communication resources. Yet, in HLF arises the issue that 
some times the implied modeling of sensor level information 
is vague and even contradictory with the assumptions in the 
fusion processor [5], and certainly that the sensor level 
errors are depended with each other and should be taken into 
consideration.   

  Authors, who are supporters of HLF approaches, aim at 
overcoming the limitations referred above taking advantage 
at the same time of the many benefits of these schemes and 
at introducing generic solutions for SDF in the automotive 
area. In this paper two specific approaches of HLF 
architectures are proposed for the vehicle environment 
recognition. Track Level Fusion (TLF) by ICCS that follows 
the classical data association (DA) methods and Grid Based 
Fusion (GBF) by INRIA that proposes a generic way to 
model the environment and to perform sensor data fusion.  

Related work on multi sensor data fusion for preventive 
safety has been carried out in a chain of research activities 
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such as the ARCOS project [6] with a forward collision 
mitigation combining stereo vision and laser scanner, the 
EUCLIDE research project [7] which is a forward collision 
warning and vision enhancement application using far 
infrared and mmw radar sensor. The same sensor 
combination was used in the PAROTO project [8], while in 
the CARSENSE [9] project information from a radar, video 
sensors and a laser was fused. These first fusion systems in 
automotive safety where using a limited number of sensors 
and were focused in one particular application (e.g. forward 
collision warning). However, in IP PReVENT more 
sophisticated fusion systems are being tested with a group of 
integrated applications, characteristic example is the 
LATERAL SAFE subproject with eleven sensors observing 
holistically the rear and side areas of the vehicle [10]. In 
ProFusion2 innovative research on SDF takes place and 
prominent vehicle manufacturers offer useful test cases 
where several independent sets of sensorial systems are 
used. In this work the test demonstrator vehicle is a Volvo 
Technology Corporation sensor equipped truck. For the 
ProFusion2 application case, this vehicle comprises sensors 
with redundant field of view looking forward: long-range 
radar (LRR), a laser scanner, two short-range radar sensors, 
and a lane camera system.  

II. TEST VEHICLE APPLICATION AND OBJECT REFINEMENT 
REQUIREMENTS  

Within the ProFusion2 research initiative, high-level data 
fusion is investigated for the sensor set of the Volvo 
Technology demonstrator truck. Objective of the sensor 
signal processing is to provide a perception of the vehicle’s 
environment to support the functionality of the PReVENT 
sub-project COMPOSE of collision mitigation by braking 
(CMbB).  

Collision mitigation deals with the situation in the last 
second before a collision. If a collision has been detected to 
be unavoidable by laws of physics, it is crucial – particularly 
for a truck – to minimize velocity and thus crash energy 
before the impact. Therefore, the COMPOSE project aims at 
applying full brakes once a collision has been detected to be 
imminent. Additionally, the driver shall be warned before a 
collision to allow him to react, e.g. with a steering 
manoeuvre.  

To apply fully automated braking to a truck in traffic 
scenarios, a substantial amount of reliability has to be 
provided by the environment perception to allow a safe 
decision. For this reason, a set of complementary sensors is 
investigated consisting of: a laser scanner, a long-range 
radar, two short-range radar sensors and a lane tracker 
camera system. All of the sensors observe the area in front 
of the truck; an overview is shown in Figure 1. The lane 
tracker system is intended to provide additional information 
about the ahead road curvature.  

With respect to the collision mitigation application, the 
object refinement requirements are to provide an 
environment perception that is sufficiently reliable for this 

challenging application. A particular concern is given to 
reliability of object detection and a low false alarm rate of 
fused sensor data.  

 
Fig. 1: Volvo FH12 demonstrator truck 

It also is of interest to combine the information from 
different sources about the same object to better derive its 
properties and object classification. It is a further challenge 
to provide a generally better perception of the environment. 
Therefore, the track level fusion approach does not only 
comprise fused information about surrounding objects, but 
also takes lane tracker information into account to 
investigate the objects’ position with respect to the own 
lane, allowing better warning strategies. 

III. HIGH LEVEL DATA FUSION ARCHITECTURES  
As already mentioned authors support the HLF 

approaches for managing the multisource and significantly 
heterogeneous information of multisensor equipped 
vehicles. Apart from the known issues HLF concerns also 
the topics of filtering and state estimation, having to deal 
with the complicated issues of data association that arise in 
such systems. These issues are discussed in sections IV and 
V in more detail, with a brief overview of their architectures 
to be given in this section.   

A. Track Level Fusion Architecture   
The main parts of the TLF algorithm as illustrated in Fig. 

2 are: the time and space alignment of track arrays, the 
division of fusion sub problems according to the area 
covered by each sensor or sensor system, the track to track 
association procedure that is solved with 2D and S-D (if S ≥ 
3) assignment, the fusion object update from the pairs or S-
ples of tracks and the object management that is the final 
step before the objects pass to the output.  

The core of Track Level Fusion (TLF) is the track to 
track association algorithm. This plays a key role to the 
performance of TLF ensuring the continuity and 
maintenance of objects all around sensor covered area and 
the solution of multi-source objects assignment. Important 
part of TLF approach is the Sensor Tracking (ST) of single 
sensor measurements. The output of this procedure is the 
high level track information input to the TLF system 
illustrated in Fig. 2. The main characteristic of the ST 
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algorithm that is developed is the capability with simple 
functionalities to deal with different sensors input (type, 
measurement, orientation) providing the best possible 
solution.  

 
Fig. 2: Track-Level Fusion architecture 

B. Grid Based Fusion Architecture   
The idea of the approach called grid based fusion is to 

develop a new framework to multi-sensor fusion called 
occupancy grids (OGs) [12]. An OG is a stochastic 
tessellated representation of spatial information that 
maintains probabilistic estimates of the occupancy state of 
each cell in a lattice. 

 
Fig. 3:  The Grid Based Fusion architecture 

In this framework, each cell is considered separately for 
each sensor measurement, and the only difference between 
cells is the position in the grid. The main advantage of this 
approach is the ability to integrate several sensors in the 
same framework, taking the inherent uncertainty of each 
sensor reading into account, contrary to the geometric 
paradigm. The major drawback of the geometric approach is 
the number of different data structures for each geometric 
primitive that the mapping system must handle: segments, 
polygons, ellipses, etc. 

Taking into account the uncertainty of the sensor 
measurements for each sequence of different primitives is 
very complex, whereas the cell-based framework is generic 
and therefore can fit every kind of shape and be used to 
interpret any kind and any number of sensors. For sensor 
data integration, OGs only require a sensor model which is 
the description of the probabilistic relation that links a 

sensor measurement to a cell state, occupied (occ) or empty 
(emp).  

 As our objective is to have a robust perception using 
multi-sensor approaches to track the different objects 
surrounding a car, the grid based fusion approach is 
combined with multi-objects tracking techniques. The whole 
architecture is depicted in Fig. 3. This architecture is 
composed of two distinctive parts: a Grid based fusion and 
Extraction level and a Tracking level. In the first level, we 
perform mapping of the environment and fusion of data 
given by different sensors to build a map of the current 
environment .i.e. a snapshot of the current environment. In a 
second step, using this map, we search the objects currently 
present in the environment. Finally, in the tracking level, we 
associate this list of objects with the list of objects 
previously present in the environment. An implementation 
of the complete architecture could be found in [13]. 

IV. TRACK LEVEL FUSION APPROACH  
As written in Section III the key components of the TLF 

approach are the ST algorithm for the set of the available 
sensorial systems and data association module that should 
deal with all around object maintenance and 
multidimensional assignment. 

A. Mathematic formulation 
Skipping the well known equations of state estimation, 

we present here the formulations of the multidimensional 
data association problem [16]. Let regard that we have Ν 
data sources applicable for association with pM  observed 

values from each source p with p=1,2,...,N. Next the 
following quantity is defined 

Niiiz ...21
, which corresponds to 

the hypotheses of association formulations, where 
observations Niii ,....,, 21  come from the same target-

source. For instance 322z  refers to the fact that observation 
3 of source 1, observation 2 of source 2 and observation 2 of 
source 3 come from the same target. If any index is equal to 
zero means that this source gives no detection. Thus the dual 
variable 

Niiiz ...21
 for the association of an hypothesis is 

defined as:  
=

Niiiz ...21
1, track hypothesis is correct 

    =
Niiiz ...21

0, track hypothesis is false 

In a similar manner the cost of formation of associations 

Niiic ...21
is defined. The prediction that the observation of 

source p is a false alarm has the following cost 
00...0...0 =

ki
c . Taking all these definitions into 

consideration the problem of generation of associations 
using data from N sources is transformed into the 
subsequent optimization problem: ∑ ∑
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 (2) 
Equation (2) shows that all observations of source p 

should be taken into account only once in order to produce 
all possible combinations of the rest of the sources. The case 
that the associated sources are two is solved by known 
constrained optimization problems solution algorithms (e.g. 
auction algorithm [11]) for 1-to-1 assignment, and with 
possible the extension to probabilistic solutions. The not 
optimum but efficient solution to the multidimensional 
assignment problem is feasible with the method of Lagrange 
multipliers relaxation (e.g. [16]). This kind of solutions for 
our multidimensional DA problem (see Section II) is 
searched in the TLF research approach we investigate.   

Track Fusion of distributed sensors data in HLF 
architectures is the next step in TLF approach. In TLF a set 
of N different sensors with ΜΝ tracks from each one, after 
the generation of the associated groupings, let them be G of 
MG tracks each, finally it gives the G ultimate fused objects 
together with the objects observed by solely one sensor. A 
track is consisted apart from the estimated state vector also 
from a quality measure, which usually is the covariance 
matrix of the estimation error. The track array coming from 
sensor n (n from 1 to Ν) is: { }1 1 2 2{ , },{ , },..., ,Mn Mnx P x P x P     

What is requested for each group of associated sensor 
level tracks is a fused track (object) that is a best estimation 
compared to each of the single sensors outputs individually. 
The estimation of the state and covariance of the fused 
object i (with i between 1 and G) that arrives from 
estimations of MG sensors, let specify them as λ1, λ2,…, λMG 
(MG from 1 to  Ν) are functions of these parameters:  

( )MGMGfused f λλλλλλ PxPxPxx ,,...,,,, 22111=   (3) 

( )MGfused f λλλ PPPP ,...,, 212=          (4) 
There are several approaches to find the most appropriate 

method to identify the best functions f1 and f2 in order the 
fusion requirements to be met [23][24][25].  

B. System design  
The several steps of design process of the TLF approach 

require firstly a robust ST algorithm for the single sensor 
data. Then the main fusion algorithm comes which is heavily 
based in the DA performance.  

Therefore, ST for the different available sensors long 
range radar and short range radars, laser scanner and vision 
systems is developed. Moreover different topologies for 
each of them are applied. Processing of vision systems (e.g. 
image processing) does not takes place and data are taken 
from built-in systems. The same would be probably 
followed also for laser scanner, but testing is in progress. 
Sensor specific ST algorithms that take account for different 
object measurements, measurement models, object 
occlusions with small modifications are under development.     

DA research work in TLF concerns techniques to handle 
various sources of object information from the available 
sources (e.g. multipoint objects, different quality). These 
include initialization of objects, generation of association 
metrics, two dimensional and multidimensional constrained 
optimization solution algorithms to solve the track to track 
assignment issue and object management approaches.  

Two general categories of assignment problems are 
identified: the classical 2D assignment problem and the S-D 
(with S ≥ 3) [16]. The first is most common in the problems 
in the typical sensor topologies in automotive area but the 
second can be also observed in the cases of more than two 
sensors observe a common area, as happens in the Volvo test 
vehicle in ProFusion2.  

These two algorithms and their switching selection are 
adequate to solve the 1 to 1 assignment problem in 2D data 
association. 2D data association is completed with the 
integration to the overall algorithm for the case 1 to N 
assignment. The case of 3 or more sensors observing a 
common area was also investigated. The typical Lagrangian 
relaxation (e.g. [16]) method is used to solve this 
multidimensional data association case. The process of 
sequential relaxation of constraints and reduction in 
subproblems of lower dimension and then the Lagrangian 
multipliers update phase until an assignment solution will be 
found, is illustrated in Fig. 5.  

 
Fig. 4: Data association cases in automotive area 

 
Fig. 5: Solution S-D assignment in TLF 
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V. GRID BASED FUSION APPROACH  
As described previously, the Grid Based Fusion 

Architecture has 2 levels. In this section, we describe the 
two levels of the architecture:  

1. the fusion and extraction level where the environment 
is mapped and sensor data fusion is performed using 
occupancy grids and finally the moving objects are extracted 
from the grid. 

2. The tracking level where the objects present in the 
environment are tracked using Multiple Hypothesis 
Tracking method [16]  

A. Fusion and Extraction level 
Mapping the environment and fusing sensor data using 

occupancy grids: 
a) Probabilistic variable definitions 
Z = (Z1,…, ZN)  a vector of N random variables, one 

variable for each sensor. We consider that each sensor i can 
return measurements from a set Zi. 

Cx,y in {occ, emp}. Cx,y is the state of the bin (x,y), where 
(x,y) in C2. C2 is the set of indexes of all the cells in the 
monitored area. 

b) Joint probabilistic distribution 
The lattice of cells is a type of Markov field and many 

assumptions can be made about the dependencies between 
cells and especially adjacent cells in the lattice. In this article 
sensor models are used for independent cells i.e. without any 
dependencies, which is a strong hypothesis but very efficient 
in practice since all calculus could be made for each cell 
separately. It leads to the following expression of a joint 
distribution for each cell. 

( ) ( ) ( )
1

1...
N

x,y 1 N x,y i x,y
i=

P C ,Z , ,Z = P C P Z | C
Z

×∏     

c) Updating probability for each cell 
Given a vector of sensor measurements z=(z1,…,zN), we 

apply the Bayes rule to derive the probability for cell (x,y) to 
be occupied: 

( )
( ) ( )

( ) ( ) ( ) ( )

1
1

1 1

...

N

x,y i x,y
i=

x,y N N N

i i
i= i=

P c P z | c
P c | z , ,z =

P occ P z | occ + P emp P z | emp

×

× ×

∏

∏ ∏
For each sensor i, the two conditional distributions P(zi|occ) 
and P(zi|emp) must be specified. This is called the sensor 
model definition. The e-Motion group 
(http://emotion.inrialpes.fr) of GRAVIR Laboratory and 
INRIA Rhône Alpes has a strong background in building 
sensor models to map environment using OGs for Intelligent 
Transports Systems [14][15]. For each cell, the two 
probabilities P(occ) and P(emp) must also be specified. This 
is called the prior on cell occupancy. 

B. Tracking level 
In this part of GBF architecture, MHT method is used to 

solve the association problem of new extracted objects with 
tracks, each track corresponding to a previously known 

moving object.  Also it permits to detect and reject spurious 
extracted objects (generated by sensors' noise) and to 
identify new moving objects incoming in the sensors' range.  

 The basic principle of MHT is to generate and update a 
set of association hypotheses. A hypothesis corresponds to a 
specific probable assignment of observations with tracks. By 
maintaining and updating several hypotheses, none 
irreversible association decisions are made and ambiguous 
cases are solved in further steps. As shown in fig. 3 (light 
yellow blocs), this cyclic method is composed of three 
different parts: 

1) Objects to tracks association 
A particular set of hypotheses at time k is defined by Θk. 

Knowing the set of current assignment θk, children of each 
previous hypothesis at time k-1 from Θk-1 is computed to 
form the new set of association hypotheses Θk. The set of 
current assignment θk is generated considering state 
prediction of known objects and incoming extracted objects. 
The probability of each association is computed   taking into 
account distance from each objects' prediction to incoming 
object. 

2) Tracks management 
In a second step, considering the set of computed 

hypotheses Θk, tracks are deleted, confirmed by computing 
estimations, or new tracks are created.  

3) Filtering: compute prediction and estimation 
The quality of association relies directly on the quality of 

filtering and especially the prediction step. Moreover, there 
exist several kinds of filters; the most classical is the well 
known Kalman filter [17]. But in all kinds of filters, the 
motion model (cf Fig. 3) is the main part of the prediction 
step. However, in the presence of uncertainties on objects' 
motion, defining a suitable motion model is a real difficulty. 
Indeed, under real world conditions, the object can have 
very different displacement models and it is therefore quite 
impossible to define a unique motion model which can 
match all different motions a highly maneuverable object 
such as pedestrian could execute. Thus it is necessary to 
cope with motion uncertainties in such a case. 

To deal with these motion uncertainties, Interacting 
Multiple Models (IMM) [18] have been successfully applied 
in several applications [19][20]. The IMM approach 
overcomes the difficulty due to motion uncertainty by using 
more than one motion model. The principle is to assume a 
set of models as possible candidates of the true displacement 
model of the target at one time. To do so, a bank of 
elemental filters is run at each time, each corresponding to a 
specific motion model, and the final state estimation is 
obtained by merging the results of all elemental filters. Also, 
the probability the target changes of displacement model is 
encoded in a transition probability matrix (TPM), i.e the 
transition between modes which is assumed Markovian.  

Nevertheless, to apply IMM on a real application a 
number of critical parameters have to be defined for instance 
the set of motion models and the transition probability 
matrix (TPM). To cope with this design step which can no 
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match the reality, we define an efficient method in which the 
TPM is on-line adapted [21][22].  

 

 
Fig. 6: Principle of TPM adaptation method 

Fig. 6 illustrates the principle of our method. In this 
figure, software is in dark color while data are in light. To 
adapt the TPM in our specific situation i.e tracking moving 
objects, trajectories of objects are considered. Indeed, 
extracted objects are taken into account by set, each set 
corresponding to a specific object trajectory. The first 
observation of a trajectory is the first time the object is 
observed in the environment and the last one is the last 
observation before the object leaves the environment. While 
objects are tracked by the MHT and so filtering is done by 
IMM, each model probability is computed and stored by 
trajectory. When data is collected for a given number of 
trajectories (N in the Fig. 6), the TPM is adapted using 
models probabilities and is reused in the IMM for the next 
estimations. In this way an on-line adaptation of the TPM is 
obtained. Thus, the effectiveness of the MHT is improved 
since the prediction quality is enhanced by our method. 

VI. CONCLUSION 
In this paper a short overview of the main SDF 

architectures takes place with the presentation of two 
characteristic approaches of HLF architectures, that aim to 
solve the major issues observed in the past. TLF and GBF 
were briefly presented with a description of their modular 
components and the basic idea behind them. Results on their 
implementation would be available in the next months.   
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