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Abstract— Markov localization is one of the effective tech-
niques for determining the physical locations of an autonomous
vehicle whose the perceptions of the environment are limited.
To improve the localization, a multi-sensor approach is used. A
landmark selection process is usually employed. The aim of this
selection strategy is to select the landmark that answers at best
to a criterion. In general, the selected landmark is the one that
improve the most the vehicle’s location. In this paper, we extend
the landmark selection problem into a resource selection (i.e.
sensor and feature detection algorithm) problem. This selection
is also based on a criterion. However, this criterion is defined
in function of the application’s objectives. Here, the application
concerns vehicle’s guidance. This last one requires an accurate
and reliable estimation. Thus, we propose a novel selection
strategy of the landmark, the sensor, and the feature detection
algorithm to offer an accurate and reliable localization. We
demonstrate the practicality of this approach by guiding an
experimental vehicle in real outdoor environment.

I. INTRODUCTION

Recent years have witnessed a growing interest towards
autonomous robots: several industrial and scientific research
projects are aimed at obtaining increased autonomy of mo-
bile robots, in order to reduce the intervention of human
operators. For instance, such systems are used for touristic
courses, cleaning vehicles, farm vehicles guidance,. . . Several
guidance devices have already been developed (e.g. CLAAS
[1], John Deere [2], see also [3]). However, these systems
have been designed to perform specific tasks (harvesting [1],
achieving perfectly straight runs [2], and so on).

In this work, we are interesting in vehicle localization
dedicated to a vehicle guidance system. The development of
this autonomous robot relies on a Map Aided Localization
(MAL) approach. It is obvious that environment perception
is the key point for an efficient localization system. Several
works have been addressed using a range-finder (see, e.g.,
[4], [5], [6], [7]), others using camera (see, e.g., [8], [9],
[10]) or both ( [11]). However, only one sensor can perceive
a small part of the environment and most of the case, it
measures a single physical component (eg. luminance for
a camera). A multi-sensor approach is a way to improve
environment perception: a larger and more complete area
can be perceived from a given position. Consequently, it

A video of this work is available at the following address:
http://tessiercedric.free.fr/manip.wmv

will be possible to observe a greater diversity of landmarks
along the trajectory to follow. This permits to use the
localization system in larger environments having a better
accuracy. As the goal of the system is to guide accurately
the vehicle, an accurate localization is necessary but most of
all a reliable position estimation is required. Effectively, the
system is based on a MAL approach and thus is susceptible
to make wrong data associations [12], [13]. A solution to
this problem is to use a Multi-Hypothesis Tracking filter [7],
[14]. However, we have decided to not use such a system,
too time consuming, which didn’t permit us to control the
vehicle every 100ms. Rather than propagating all matching
hypothesis at a particular time, the system propagates the
most probable one. To deal with wrong data association, it
can undo a previously made data association.

This paper mainly deals with the landmark and sensor
selection problems in Markov localization. A good selection
strategy has to optimize the use of the set of sensors fixed
on the vehicle and observable landmarks, to answer system’s
objectives. One of the popularly used strategies is based on
the expected information gain, as first proposed in [15]. This
information gain was also introduced in [10], [16] and proven
to be effective in landmark selection. The mutual information
between predicted sensor observation and the current robot
location was used to calculate the expected information gain
about the robot location attributable to the landmark detec-
tion. A novel entropy-based heuristic for landmark selection
was proposed in [16] which is computationally more efficient
than those relying on the use of a grid-map [15]. Given
(a) prior probability distribution of robot location and (b)
the location of a set of candidate landmarks, the entropy
based approach selects the most informative landmark such
that the resulting posterior distribution of robot location has
maximal reduction in the entropy compared with the prior
distribution. However, this approach answers partially to this
problem since it doesn’t take into account the reliability
notion of the estimation. In Zhang’s target tracking system
[17], a simple criterion is proposed for sensor selection to
maximally increase the probability that a target is at its actual
location. We propose here to develop a selection strategy
which permits to select not only a landmark but also a sensor
and able to take into account guidance process requirements
(i.e. accuracy and reliability).

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

WeB1.16

1-4244-1068-1/07/$25.00 ©2007 IEEE. 123



II. VEHICLE LOCALIZATION PRINCIPLE

The autonomous vehicle guidance system proposed esti-
mates periodically the vehicle’s pose with a confidence level
(e.g. see [18]) associated to this estimation. After this task,
it steers the front wheel and fine-tunes the vehicle’s speed in
order to track the trajectory previously recorded or defined.

This localization system takes part in the Map Aided Lo-
calization family and uses a geographical information system
(GIS) to identify all landmarks of the environment. From the
vehicle’s pose, the localization system chooses a landmark
to observe. Then, it realizes a data association between
the selected landmark and the detection, which permits to
locate the vehicle. The landmarks’ detection is made using
exteroceptive sensors fixed on the vehicle (camera and range-
finder). A multi-sensor approach is used that permits to
increase the number and variety of the visible landmarks at
a particular time. Consequently, the system should be able
to locate itself accurately in a larger area. In some cases,
a landmark is susceptible to be detected by several sensors,
with an appropriate feature detection algorithm associated to
each of them. Generally, the couple sensor/feature detection
algorithm has not the same landmark recognition perfor-
mance as another. For instance, some are accurate, others
are reliable with a fast detection. In addition, because of
the geometric position of landmarks, all landmarks don’t
improve the estimated vehicle state in the same manner.
For instance, at a particular moment, a landmark will be
useful to estimate the vehicle’s heading and at another time,
it will be only useful to correct the position. The proposed
system takes explicitly into account this way to detect a
landmark thanks to the use of the perceptive triplet concept.
A perceptive triplet is the association of a landmark, a sensor
and a detector in a same entity. Thus, the system’s goal is no
longer to select a landmark to detect but to select a perceptive
triplet to use that defines accurately all the steps to recognize
the landmark.

Furthermore, due to outdoor considerations, an active
search approach ( [16], [10], [15]) is used to improve the
perceptive triplets observation process. This approach con-
sists in searching the landmark in a small area of the sensor
data. This region of interest (ROI) takes into account all the
geometrical information of the landmark. It is built using
the estimated vehicle position, its uncertainty area and the
landmark position in the map (Figure 1). This approach has
been extended to our multi-sensor system enabling the use
of the focusing concept for each sensor data. For instance,
detecting a perceptive triplet in camera image will lead to a
focusing on landmarks existing in camera image but also on
those existing in range finder space. As the system’s objective
is to guide the vehicle, an accurate estimation of the
vehicle’s pose with a high confidence level is necessary.
When these two constraints (accuracy and confidence) are
not satisfied, the localization system uses perceptive triplets:
it means a way to sense and recognize a particular landmark
of the environment. Although many such triplets may be
observable in a given view of the vehicle’s environment,

Rangefinder data

GIS representation

Fig. 1. Illustration of the active search method representing the ROI of a
tree landmark in the range-finder data.

only a few such triplets are necessary to estimate the robot’s
position and orientation with a high confidence level. One
objective of our system: triplets selection strategy, is to
iteratively select when it’s necessary, the minimum (optimal)
set of triplets from the entire set of triplets observable in the
robot’s environment to satisfy vehicle process requirements.
Unfortunately, the whole system is still susceptible to realize
a wrong matching hypothesis. The final objective of our
system is to manage the confidence level over the estimated
vehicle’s pose. After each landmark detection or detection
failure, this probability is modified function of triplet’s
performance. When it drops below a threshold, the system
is able to revise a previous matching hypothesis in order to
recover an uncorrupted vehicle estimation.

III. A PROBABILISTIC FRAMEWORK

A. System’s objectives

The objective of our system is to guide the vehicle from
an estimated vehicle’s pose. This last one is represented by
the state vector X associated with its covariance matrix Q.
This vector is estimated by a Bayesian approach through the
use of an Extended Kalman filter.

X = (x, y, θ, v, ω)T (1)

with:

• x abscissa of the position in the world reference,
• y ordinate of the position in the world reference,
• θ vehicle orientation angle in the world reference,
• v linear velocity
• w angular velocity,

We define the event H: the true vehicle’s position belongs
to the uncertainty area (the ellipsis of equiprobability defined
by one standard deviation around the estimated position). In
the following of the document, we will use the expression
“the state is valid” when the event H is true.

In summary, the proposed localization system estimates
periodically the vehicle’s state, it means:

• the state vector X , the associated covariance matrix Q
using an active search with an EKF and

• the probability of the event H using our probabilistic
framework detailed in the next parts.
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B. Confidence level evolution

The estimated confidence level over the estimated vehi-
cle’s state is function of data associations realized, i.e. the
matching hypothesis made between the searched landmark
and its detection. Using our focusing system, the landmark
detection is made in a ROI. Thus, when the system looks
for a landmark in a ROI and no result is returned, the
confidence decreases. Conversely, if a result is returned,
the confidence increases. This confidence level takes into
account not only positive information but also negative ones.
Positive information pertains to the detection of a landmark
whereas negative information pertains to the detection failure
of a landmark. In general, localization systems don’t take into
account those negative information. Clearly, not seeing a fea-
ture when one expects to see it carries relevant information.
For example, not seeing the Eiffel Tower in Paris implies
that it is unlikely that we are right next to it. We propose
now several propositions about ROI’s characteristics.

Proposition 1: If the searched landmark doesn’t belong to
its ROI, then the current vehicle’s state is invalid.

Proposition 2: The negation of the proposition 1 is wrong.
Effectively, if the current vehicle state is invalid, the searched
landmark can yet be present in its ROI. This comes from the
fact that the projection function of the landmark from the
GIS frame to the sensor data is sometimes surjective. Thus
several vehicle’s positions can lead to the same ROI for the
same landmark.

In our case, the localization system uses a feature detection
algorithm to recognize the landmark in its ROI. When the
vehicle’s state is valid, this algorithm can:

• succeed in detecting the searched landmark,
• detect an information (another landmark or noise) think-

ing it is the searched landmark,
• fail in recognizing the landmark (no result is returned)

whereas the system’s state is valid.

When the vehicle’s state is invalid, this algorithm can:

• return no result,
• detect an information (noise).

When the feature detection algorithm returns a result, it
does not mean that the searched landmark belongs to its ROI.
This comes from the fact that the result could be a spurious
measurement. In the same way, when it returns no result, it
does not mean that the system’s state is invalid like it has
been explained in proposition 1 because such a result can be
obtained from a valid state. That’s why we suggest to modify
the confidence level in a stochastic manner. This sums it up:

1) Detecting a landmark strengthens the current estima-
tion of the vehicle’s state. It means that the landmark
is assumed to belong to the ROI and therefore the
vehicle uncertainty area contains the true vehicle’s
position. Thus the confidence level of the current
state increases. Then, a new vehicle’s state is created
with a new position, a new covariance matrix and a
new confidence level. This last one is function of the
confidence level of the current state and the probability

the system has made a right data association.

Detection success:
P (H)current state : increases
P (H)new state : f(P(H)current state)

(2)

2) Not detecting a landmark weakens the current esti-
mation of the vehicle’s state because the landmark is
assumed to belong to the ROI and the detector returns
nothing. Thus the confidence level decreases.

Detection failure:
P (H)current state : decreases (3)

When a detection fails, this notices that maybe the
system has made a previously wrong data association.
Effectively, after having made a wrong data associa-
tion, the estimated path doesn’t correspond anymore
to the true path. Thus, all attempted detections will
fail. Consequently, the system can detect a wrong data
association by monitoring this confidence level. To
recover a correct estimation, it has to undo the last
matching.

Detection failure:
if P (H)current state is too low

undo the last matching
(4)

The recognition and detection performances of a landmark
depend on the type of the searched landmark, the sensor
used and the feature detection algorithm employed. However,
the perceptive triplet concept presented in this work is
used here to define a way to perceive the environment.
By characterising accurately triplets’performance in terms
of detection and robustness face to noisy sensor data, the
system is able to offer a good estimation of this confidence
level.

C. Confidence level calculation

1) Notation: We denote the discrete time index by the
variable k, the vector describing an odometry measurement
from time k − 1 to time k by the variable u[k], a detector’s
result at time k by the variable y[k] and the state vector
describing the true location of the vehicle at time k by the
variable x[k]. A discrete random variable h[k], corresponding
to the event H at time step k, is associated to the estimated
vehicle’s state x[k].

2) Theory: The problem of confidence level calculation
can be formulated by a dynamic Bayesian network where
the goal is to compute the probability: P (h[k] | y[1 : k]).
As we have seen in Equations (2) and (3), the confidence
level updating is function of the probability that the feature
detection algorithm returns a result. Thus, we define for each
perceptive triplet, two terms:

• P (y[k]|h[k]) (P (y[k]|h[k])): represents the probability
that the detector returns (or not) a result when the
vehicle localization is valid.

• P (y[k]|h[k]) (P (y[k]|h[k])): represents the probability
that the detector returns (or not) a result when the
vehicle localization at time step k is invalid.
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These two probabilities must be computed taking into ac-
count the sensor, the feature detection algorithm, the land-
mark used and most of all of the shape of the ROI. It
means that when the focusing is important (small ROI),
P (y[k]|h[k]) is far superior over P (y[k]|h[k]) because of the
presence of the searched landmark in the ROI. Thus, thanks
to a Bayesian inference, the confidence level is updated in
the following manner:

• when the system succeeds in detecting a landmark
(i.e.: a result, not necessarily recognizing the searched
landmark):

P (h[k]|y[k]) =
P (y[k]|h[k]) · P (h[k])

P (y[k])
(5)

with:
P (y[k]) = P (y[k]|h[k])P (h[k]) + P (y[k]|h[k])P (h[k])

• when the system fails in detecting a landmark (i.e.: no
result is returned):

P (h[k]|y[k]) =
P (y[k]|h[k]) · P (h[k])

P (y[k])
(6)

with:
P (y[k]) = P (y[k]|h[k])P (h[k]) + P (y[k]|h[k])P (h[k])

When the system succeeds in detecting a landmark (event
y[k] occurs), a new vehicle’s position estimation is created
like it is represented in Figure 2). After having updated the
confidence level of the current state, the system computes
the new vehicle’s state using the Extended Kalman Filter. It
must also calculate the confidence level of this new state.
This last one (P (h[k + 1])) is function of the probability of
the current state and the probability to have made a right
data association.

Q(X,    , P(H) )

Q P(H/Y)(X,    ,              ) (X, Q, P(H) )

New state

1) Confidence level
updating

Current state

2) New state creation
(detection success)

Fig. 2. Presentation of the two steps that occur after a detection success.
The first step consists in updating the confidence level of the current step
(Eq 5). The final step is the creation of the new vehicle’s state with its own
confidence level.

Actually, this new probability corresponds to the joint
probability of all the matching hypothesis:

P (h[k + 1]) = P (h[k + 1], h[k], ..., h[1])
= P (h[k + 1]|h[k]) · P (h[k])

(7)

where
• P (h[k + 1]|h[k]) is the probability that the vehicle

localization at time step k + 1 is correct, it means the
probability to have detected the searched landmark. (a
right data association)

• P (h[k]) is a hidden state of the dynamic Bayesian
network. Thus, it will be replaced by P (h[k]|y[k]),
computed by the previous Bayesian inference.

The final term to express is P (h[k + 1]|h[k]). If there
are several landmarks of the same type than the searched
landmark in the ROI of the searched landmark, the detector
will have a low probability to return the correct landmark.
The idea is to take into account the fact that other landmarks
of the same type than the searched landmark, recorded in
the GIS, can belong to the ROI of the searched landmark.
Moreover, bigger is the size of the ROI, greater is the
probability that some noise is returned. Thus, we suggest
to divide this probability into two terms:

P (h[k+1]|h[k]) = P (h[k+1]|z[k]) ·P (z[k]|y[k], h[k]) (8)

where
• P (z[k]|y[k], h[k]) is the probability that the detector

returns a registered landmark of the same type than the
searched landmark. Thus, this probability corresponds
to the capability of the detector to be robust against
noise.

• P (h[k + 1]|z[k]) is the probability that the detector
returns the searched landmark among all landmarks of
the same type existing in the ROI. This probability can
be easily computed since it is a combinatorial problem.

In summary, the probability P (h[k + 1]) is:

P (h[k +1]) = P (h[k +1]|z[k]) ·P (z[k]|y[k], h[k]) ·P (h[k])
(9)

and each perceptive triplet is defined by these probabili-
ties:

• probability to have a result:
P (y[k]|h[k]) and P (y[k]|h[k])

• probability to detect a landmark (not noise):
P (z[k]|y[k], h[k])

• probability to detect the searched landmark:
P (h[k + 1]|z[k])

IV. A TRIPLET SELECTION STRATEGY
In the section II, the perceptive triplet concept has been

presented. This concept permits to the localization system to
efficiently select the resources to employ and the landmark
to look. The part of the system in charge of this selection is
the supervisor that has two objectives:

1) determine when it is necessary to sense the envi-
ronment. The localization system is entirely devoted
to the guidance process. When the guidance process
requirements aren’t satisfied, the localization system
will have to use some perceptive triplets. It means that
the system only runs some perception algorithms when
needed and doesn’t process all measurement.

2) determine what perceptive triplet, the system must use
to answer at best to the vehicle process requirements.

There are three main steps in the localization process. At
first, this is a monitoring of the vehicle process require-
ments. Then, the second step is a decision step to select a
perceptive triplet. And finally, this is an action step where
the detection of the perceptive triplet is realized.
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A. When to look ?

The localization system proposed computes every 100ms
an estimated vehicle’s state in order to achieve the vehicle
control. This estimation is used by the guidance process that
controls the vehicle’s heading so that it reproduces faithfully
the prerecorded path. It is generally admitted that an accurate
and reliable position is a necessary condition to control accu-
rately the vehicle. In this part, we defined these conditions.
The problem is to know the link between the accuracy of the
estimated state at input of the guidance process (computed
by our localization system) with the accuracy at output (the
lateral deviation with the real path). To answer this question,
we have used a simulator based on the control law proposed
by [19]. The vehicle used in this simulation is a vehicle
with a wheel base of 2.75m moving at 4.1m/s (Fig. 3)
and the trajectory to replay is a straight line. As input,
the simulator takes the true position and heading of the
vehicle affected with a white Gaussian noise with standard
deviation respectively σposition and σheading . As output, the
simulator gives the true guidance precision: it means the
lateral deviation with the path. In our case, we are interesting
in an accuracy of ±0.15m that implies a standard deviation
on the estimated pose about 0.25m and 0.052rad for the
heading. In the following, we will call the volume defined
by 0.25m around the estimated vehicle’s pose and 0.052rad
around the estimated vehicle’s heading, the guidance area.
Thus, the estimation is sufficiently accurate when the current
estimation is inside this guidance area. As the system uses
an extended Kalman filter, the vehicle’s state is estimated by
a Gaussian probability law. However, what is important, is
to have a sufficient probability (Pmin) that the estimation is
inside the guidance area. We suggest to define a criterion to
represent the system’s accuracy compared with the guidance
area. This criterion is:

ACCURACY = max(1.0,
P (x ∈ [µx ± 0.25])

Pmin
)×

max(1.0,
P (y ∈ [µy ± 0.25])

Pmin
)×

max(1.0,
P (θ ∈ [µθ ± 0.052])

Pmin
)

(10)

When this criterion is below 1.0, the estimation is not enough
accurate to guide efficiently the vehicle.

In the same way, a criterion is defined to represent
the reliability of the current estimation. This criterion is:
P (h[k]). When this criterion is below a particular threshold,
it means that the estimation is not enough reliable.

As a conclusion, the system has to detect some perceptive
triplets when the current estimation is not enough accurate
or reliable.

B. What and how to look ?

The perceptive triplet concept was introduced in the sys-
tem to permit a selection of resources to use to locate the
vehicle. Contrary to other works [15], [10], [20], [16], the
resources to select doesn’t correspond only to the choice
of landmarks but consists in determining landmarks, sensors

and detectors in a coherent manner. Effectively, all detectors
are not able to recognize all landmarks: some combinations
landmark/sensor/detector are not possible. The aim of this
selection process: determine “What and how to look?”, is to
compute the best location accuracy for the vehicle with a
high probability.

When selecting appropriate landmarks, it is essential to
maximize the perceptual distinctiveness of landmarks. The
further apart landmarks are, the smaller the chance to ac-
cidentally confuse them. It is therefore common practice
to choose landmarks that are sufficiently far away from
each other so that the probability of confusing one with
another becomes small. It can also be interesting to select
landmarks that cannot be recognize with the same couple
sensor/detector.

1) The selection procedure: An important issue is how
to define a meaningful metric that can be used to optimize
the performance of the entire system. A specific criterion
must be associated to each perceptive triplet evaluating the
appropriateness in estimating the robot location. This crite-
rion can be either static of dynamic. In Markov localization,
it is dynamic; i.e. data dependent. This means that past
measurements together with past choice of triplets will affect
which triplet to choose at present. However, when dealing
with the triplet selection problem, it faces a combinatorial
explosion in the search space. The optimal solution requires
to exhaustively explore the triplet list which has exponential
complexity. For this reason, we decide to adopt a greedy
heuristic method.

Fox [15] and Davison [16] suggest to use a payoff func-
tion. The payoff, denoted r, is a function of the state and the
perceptive triplet and can be divided into two terms:

• the utility: U , that indicates how a triplet participates to
system’s objectives,

• and the cost: C.
Given the utility and cost of all observable perceptive triplets,
the system chooses the triplet “triplet∗” to detect that
maximizes:

triplet∗ = argmaxtriplet(U(x, triplet)− δ · C(x, triplet))
(11)

Here δ determines the relative importance of utility versus
cost. The choice of δ depends on the application.

2) Perceptive triplet description: It’s necessary to define
the utility and the cost for each perceptive triplet. When a
perceptive triplet is detected, the detection leads to:

• a rise of the confidence level of the current estimation.
We define the variable CONFIRMATION as the updated
confidence level.

• a rise of the vehicle location accuracy.
• the creation of a new estimation with a confidence

level function of the probability to have made a right
data association. We define the variable BELIEF as this
new confidence level.

and the detection requires:
• a detection time.
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Thus, the utility and the cost of a triplet are:

U(x, triplet) = α · CONFIRMATION(x, triplet)+
β · ACCURACY(x, triplet)+
γ · BELIEF(x, triplet)

C(x, triplet) =
detection time(x, triplet)

system’s period
(12)

Here, α, β, γ determine the relative importance of each term
of utility. The terms CONFIRMATION, ACCURACY and
BELIEF correspond here to expected value.

V. EXPERIMENTATIONS

A. OVERVIEW

The following section describes experimentations that
were carried out to validate our approach. A terrestrial
vehicle was used for the experiments. This research platform,
called “Arocco” (Figure 3), was initially equipped with
odometers, a wheel direction angle sensor and an on-board
PC running Linux RTAI. A video camera (Sony VL500)
giving 7.5 640x480 YUV422 images per second and a range-
finder was added to the robot.

Fig. 3. “Arocco” with the camera and the range-finder

B. PROBABILISTIC FRAMEWORK

The aim of this part is to illustrate the probabilistic
framework used. The figure 4 presents the scene seen on
the top. On this map, we can distinguish five tree landmarks
and the true vehicle’s pose in green. The system is first
initialized using a magnetometer and a low cost GPS. This
initial position is represented by the red circle and the red
ellipsis represents the uncertainty area.

At the end of the experiment, we have built the matching
hypothesis tree represented on Figure 5. Figure 6 shows
the probability curve and Figure 7 the system’s accuracy.
What we can notice is that the initial state is reliable but not
accurate. A fist matching is realized with landmark (a) that
permits to increase the accuracy and a new state is created
with a probability of 0.23. Then, the system fails in detecting
landmark (b). This detection failure and the low confidence
level indicates that the previous data association is wrong.
Then other detections are realized and all ones succeed in
detecting a result. It permits to increase the system’s accuracy
and to strengthen the current state.

(e) tree

(d) tree

(b) tree (c) tree(a) tree

Fig. 4. The map seen on the top with 5 tree landmarks, the true vehicle’s
pose in green and the estimated initial vehicle’s pose in red with its
uncertainty area.

1. State 0

e c b

State 1 State 1

b c d

 Detection failure

a c e

State 2

b c e

State 3

c

State 4

a d

b

e

Fig. 5. The hypothesis matching tree.
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Fig. 6. Probability of the a posteriori state during the experiment.
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Fig. 7. Accuracy of the localization during the experiment.

By using focusing system characteristic, the proposed
probabilistic framework is able to offer an estimation of
the confidence level. When the system fails in detecting
a landmark, this probability is used to detect wrong data
association and recover a valid vehicle’s state.

C. TRIPLET SELECTION STRATEGY

The triplet selection strategy is integrated in our system
to better answer application’s objectives. The aimed appli-
cation concerns vehicle’s guidance. It requires an accurate
localization. As we have seen it in Section IV, the estimated
position must have an accuracy of ±25cm and the estimated
heading must have an accuracy of ±3o. This permits to
define a guidance area. For this first experiment, we have
chosen to set the minimum probability to belong to this
area to Pmin = 0.7. In addition, the application also
requires a reliable localization. We have chosen the criterion
P (H) > 0.8.

TABLE I
COMPARISON OF SYSTEM’S RESULTS.

with strategy without strategy
number of wrong matchings 1 2

nb steps to be accurate 6 8
nb steps to be reliable 5 8

From the previous experiment, we have compared localiza-
tion’s results using our strategy in the first case and without
it in the second case. The second case means that the observ-
able perceptive triplets list is built but it is not sorted using a
specific criterion like the payoff function. Thus, triplets are
selected randomly. Table I summarizes these results. For this
experiment, the strategy permit not only to answer quickly to
accuracy criterion and reliability criterion but also to reduce
the number of wrong matchings. In summary, the triplet
selection strategy is a way to improve the vehicle localization
system in relation with the application.

VI. CONCLUSION

This paper presents a landmark and sensor selection strat-
egy for multi-sensor perception systems. It fits very well
into the proposed system. This last one uses a probabilistic
framework to compute a confidence level on the system’s
state estimation. The suggested strategy uses the set of prob-
abilities defined in this framework and the accuracy of the

estimation. In addition, application’s goals were formulated
that permits to the strategy to launches detections when
it’s necessary and useful. In our case, we have used this
strategy in a vehicle localization application. This multi-
sensor application was able to guide a vehicle in an outdoor
environment on a 300m length path. The vehicle followed
faithfully this trajectory ten times (without stopping). The
max lateral deviation with the reference path was below
10cm.
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