
 
 

 

  

  
Abstract—This paper presents a system for road sign 

detection based on edge orientation histograms. Edge 
orientation histograms are reliable, scale and contrast 
invariant features that can be extracted efficiently using 
integral images. A learning method is introduced that selects 
features based on the implicit transmission function of the 
designer’s template to the object’s appearance in the image. 
The system is able to detect 85% of the objects on from 12 
pixels width and 95% for objects on from 24 pixels width at a 
low false alarm rate.  

I. INTRODUCTION 
OAD sign detection is mainly interesting for driver 
assistance systems, in case the human detection 

performance can be reached. The main reason for this is that 
the size and duration of visibility for normal driving 
conditions are thus far minimized that even human may miss 
signs if he/she is not fully attending. This paper discusses a 
monocular vision system for reliable road sign detection at a 
range that is sufficiently large to perform interactions, based 
on a method for feature selection and matching using edge 
orientation histograms. The desire for detection and 
classification of road signs is relatively old. However, 
current image processing methods still fail to solve the main 
problem given the underlying issues for road sign detection. 
These issues include (1) poor quality of image data, 
especially of color at large distances for conventional 
camera systems, (2) a fast detection procedure that 
determines the true object out of many potential object 
positions as required for real world applications and (3) 
design and traffic related dynamics that are highly optimized 
for (excellent) human performances on computer vision. 
This paper aims to solve two out of three issues by using a 
method for fast matching of edge orientation histograms.  
 First, a distinction is made between detection and 
classification. Detection tells where in the field of view a 
road sign is situated. Typically, detection uses features that 
are specific to the road sign itself and justifiably it ignores 
contextual information. Classification indicates which type 
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of sign is present, at any desired level of detail, including 
optical character recognition for reading numbers and text. 
In fact, most features that are used for classification are used 
also for detection, and classification can be seen as a sub 
task of the detection process. This paper discusses features 
related to detection of the different road signs types, which 
also may provide a good basis for classification.  

 Second, road signs are signals, on purpose put there by 
man, with the desire to be optimally well visible. This results 
in the typical geometric shape and a highly reflective and 
homogeneous colored planar surface. The human vision is 
able to detect such object at far distances and large clutter of 
other (more natural) objects. For computer vision, detecting 
such a precisely defined object, is a rather specific task, and 
different from more general tasks, such as detection of all 
types of vehicles with a large variety in shape and 
appearance. In case of the vehicle, basic properties need to 
be extracted from the appearance, e.g. by evaluating a large 
set of sample images, or by human intuition. In case of road 
sign detection the original template (signal) is known, and in 
fact, machine learning methods can be applied to learn the 
possible transmission of this signal. This approach is 
different from general detection method, as used for 
vehicles, where all objects invariants need to be extracted 
from the image in an unsupervised way. Using prior 
knowledge, this paper proposes a method for learning the 
implicit transmission functions of a priori known object 
template: 

,..},,,{ RZYXT  : ),( yxISType →  (1) 

where, ,..},,,{ RZYXT  is the transmission function with specific 

context dependent parameters, camera position, rotation, 
illumination, occlusion and manufacturing conditions. The 
function is denoted as implicit, since in praxis, the explicit 
parameters cannot be retrieved from the image data. TypeS is 

the explicit road sign model as defined by designer’s 
template and ),( yxI is the road sign as it appears in the 
image with horizontal and vertical coordinates, yx,  
respectively. 
 Third, the human eye performs excellent on detecting 
noisy objects and rules out any camera system in the trade-
off between a large field of view and a high spatial 
resolution. Due to the low resolution of camera systems, 
reliable features for road sign detection cannot be based on 
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detailed modeling of the object’s shape. Instead, state-of-
the-art object descriptors include statistically relevant 
features, starting from the single Gaussian parameters such 
as mean, variance to local shape descriptors, such as edge 
orientation histograms and more complex SIFT. This paper 
proposes a method for matching edge orientation histograms 
(EOH) for local object regions. Edge orientation histograms 
can be calculated efficiently using integral images and, 
moreover, they are robust for small variations in position 
and rotation. It emphasizes the use of a constitution of local 
indicators in a similar fashion as weak classifiers for 
AdaBoost related detection methods. 
 The paper is organized as follows. Section II discusses 
previous work on road sign detection. Section III discusses 
the method for feature extraction, learning and evaluation 
strategies in detail. Section IV presents the system layout 
using a color camera and user interfaces. Section V presents 
results on real world driving scenarios within city. 

II. RELATED WORK 
 Proposed methods on road sign detection concentrate on 
color [1-4], local and global shape features [5-8] and several 
learning methods [8-11], including extensions to text 
recognition [12,13]. Learning methods based on local 
invariant statistical descriptors include color variation [14] 
and wavelets [15]. The latter uses responses of wavelets, 
using Haar-like features shapes and a boosted cascade [16-
18]. The main advantages of such a classifier are the fast 
feature evaluation using integral images and real-time 
performance using a decision tree. Most interesting of [15] 
is the joint evaluation for features of different road sign 
types, including both, general and type specific features in 
one equation.  
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Where, 0>iy  indicates a positive object, and it xf ,  

indicates the distance measure between feature vector tf  

and observation vector ix , including shape and color 

entries. tα  and tθ are derived by a boosting procedure. 
Two remarks have to be made. First, multi-class AdaBoost 
has been topic of investigation recently [19-21] and 
knowledge of individual modalities of the training set a 
priori may help prevent cyclic behavior between features of 
concurrent modalities [22].  
 Second, as for other learning based methods, bottom up 
learning of appearances require a large variety in the 
training set. In terms of equation (1), variety of ,..},,,{ RZYXT  

is difficult to determine only out of the sample space 
),( yxI , even if many images are used. This paper 

discusses an alternative, using semi-supervised learning that 
starts first from the designer’s template TypeS . Second, the 

method uses training samples to select features that are 
invariant of the transmission function ,..},,,{ RZYXT .  

III. ROAD SIGN LEARNING AND DETECTION 
 The proposed system detects 5 road sign types in parallel. 
Currently detected signs include: Give Way, Priority Road, 
Stop, No Entry and Speed Limitation. Fig. 1 shows the 
templates as obtained from road legislation for the local 
area. The template for speed limitation is mirrored, 
indicating an arbitrary number in this area. The learning 
procedure is done in two steps.  

A. Training 
 First, candidate edge orientation histograms are extracted 
for each of the designer’s templates, in the same way as 
done for evaluation (see below). Fig. 2 exemplifies different 
characteristic regions for a total of 5, 4, 4, 5 and 4 sub 
regions, for the different road signs, respectively. For 
reasons of fast evalution, the regions are extended to 3x3 
blocks on a regular grid basis. Each block covers half of the 
object width and height (as shown by the 2nd, 3rd and 5th 
template of fig. 2), but includes also intermediate positions, 
with half block-size overlap. Each block results in one 
template vector tf , consisting of the edge orientation 
histogram for all the template’s pixels within the block. The 
set of templates are used for matching to the observation 
vector ix , in the image. The combination of neighboring 
image regions result in the observation value for each 
position in the image: 

∏=
i

i
iCyxC α)(),(  (3) 

 Where ),( yxC  is the matching result at position {x,y},  

iα are the set of weights for each of the templates, 

10 ≤≤ iα  and iC = it xf ,  is the dot product between 

template vector tf  and the observed edge orientation 

histogram ix for the local image region. Note that tf  and 

ix  are properly normalized and 10 ≤≤ iC . Since  iα  and 

iC  are normalized, ),( yxC  is, and DyxC ≥),( , where 

10 ≤≤ D is the detection threshold. Now, the set of 

 
Fig. 1.  Designer’s templates for five types of road signs (luminance only, 
from left to right): Give Way, Priority Road, Stop, No Entry, Speed 
Limitation (the number is mirrored in order to mimic typical number like 
structure). 

 
Fig. 2.  Division in 5, 4, 4, 5 and 4 sub regions, respectively, for edge 
orientation histogram determination. 
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weights { 1α , 2α , … nα } for all n sub regions, can be 
determined based on the transmission for each of the 
template vectors individually, and   
 ( ) n

it xfyxC /1,),( ∏=  in case ni /1=α  for all of  

totally of n  selected features. 
 Second, the values iα , comprising the transmission 

function ,..},,,{ RZYXT  are trained using a validation set of 

example images. Fig. 3 shows typical appearance of 
different road sign types after transmission. The upper row 
shows examples for the type priority road, including 
rotations (3rd) and low contrast differences (4th and 5th). The 
second row shows various types, including inhomogeneous 
regions (2nd and 5th) , and low contrast (4th). The third row 
shows examples of speed limitation, including bleached 
color (1st), motion blur (3rd) and over saturation (5th). 
 Images at different instances of totally 32 road signs were 
used to validate the transmission of the template vectors. 
Training is performed by evaluation 3x3 sub regions as 
discussed above, with vectors consisting of edge orientation 
histograms with 8bins. The resulting classification space is 
restricted to 3x3x8=72 dimensions, totally. Increase of the 
vector length, e.g. by a higher region density is avoided. 
This has two reasons: (1) the minimal amount of pixels per 
region would require a better object resolution (which is not 
available at large distances) and (2) the evaluation 
complexity increases. Extension of the vector length by 
adding additional object features, like color, did not lead to 
substantially better results, especially in cases where the 
object was small in the image and the apparent red rims of 
the Give Way and Speed Limitation signs where strongly 
eroded by neighboring pixels.  
 In order to determine the values iα , a set of validation 
images for each sign type at all relevant scales was designed. 
For each scale, a match to each feature vector was made and 
the median response was estimated. As reference, the 
response to a set of randomly chosen image regions, 
containing no road sign, were used. Because of the relative 
low dimensionality of the classification space, iα  were set 

in order to determine a binary decision: iα =1 in case 

NegPos RR 5.1≥ ,  where PosR  is the median response on 

the positive training samples and NegR is the median 

response on the reference set, and iα =0 otherwise. 

B. Evaluation 
 Given the set of trained classifiers, the input image is 
scanned for presence of each one of the road signs 
individually. This is done in three steps. First, starting from 
a gray coded image, a Gaussian pyramid is built and for 
each layer a region of interest is selected. The region of 
interest is selected so that full resolution is only evaluated 

near to the horizon, whereas uppermost pyramid levels are 
evaluated for the entire field of view. Fig. 4 indicates this 
multi-resolution approach graphically. Left, it shows the 
search area from a top-view perspective. Right, it shows the 
ROI for different pyramid levels. For the lower two pyramid 
levels (higher resolution) only part of the field of view is 
evaluated. The search area is chosen so that all road signs on 
the right side of the vehicle are detected, even incurves and 
multilane scenarios with changes in the pitch angles due to 
acceleration and braking.  
 For all specified search regions, the gradient strength and 
orientation is determined using central differential filters, [-1 

 
Fig. 3.  Typical appearance of road signs, recorded from a driving 
vehicle (120x120 pixels). 

 

 

Fig. 4. Search space reduction. Left: top view with rectangular search 
region. Right: projected of band regions with different resolutions on 
the image  
 

 
Fig. 5. Graphical User Interface 
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0 1] and [-1 0 1]T, in order to determine horizontal and 
vertical image gradients, respectively. For each position, the 
gradient orientation is determined as the angle between the 
horizontal and vertical gradient strength. The edge 
orientation is determined by quantification of the gradient 
orientation to 8 bins that cover the contrast invariant range 
of edge orientations between 0 and 180deg. For each bin, an 
integral image is determined by updating the following 
equation:  

)1,1()1,(),1(
),(),(

−−−−+−+
=

yxIyxIyxI
yxGyxI

kkk

kk  (4) 

 Where kI is the integral image for orientation k , 

0),0()0,( == yIxI kk  and |||| yxk GGG +=  is the local 

gradient strength, in case the pixel has orientation k , =kG 0 
otherwise.  Now, for a given region with coordinates {x, y, 
w, h}, the edge orientation histograms can be extracted by 
evaluating:  

),(),(),(
),(),,,(

yxIhyxIywxI
hywxIhwyxH

kkk

kk

++−+−
++=  (5) 

 For each integral image kI , and normalizing the output 
vector so that 12 =∑

k
kH .  

IV. SYSTEM LAYOUT 
The system is implemented as a graphical application 

running under Microsoft Windows XP. It was developed 
using Microsoft Visual C++ and the Microsoft Foundation 
Class (MFC) library. The system reads input images from 
either a color camera through an IEEE1394 connection, or a 
pre-recorded Audio Video Interleave (AVI) file. Information 
about the detected road signs are displayed on the screen, 
and sent to the vehicle’s Controller Area Network (CAN) 
through a USB to CAN interface. 

The Graphical User Interface (GUI) continually displays 
the input camera image along with the position of the 
detected road signs as overlaying bounding boxes. It allows 
for easy configuration of the system through menus and 
dialog boxes. Additionally, the system provides a few 
(hidden) engineering features, such as displaying the 
position of the road sign hypotheses, or recording the input 
(unprocessed) and/or output (with bounding boxes) image 
streams to AVI files. 

The underlying application consists of three threads 
running in parallel: image acquisition, image processing and 
CAN interface. The image acquisition thread manages the 
camera interface and feeds the image processing thread with 
new images. The image processing thread, which performs 
the actual road sign detection on the images provided by the 
image acquisition thread, makes heavy use of the Intel 
Integrated Performance Primitives (IPP) for optimal 
performance. The CAN interface manages the 
communication with the vehicle network according to a 

proprietary transport protocol. The system achieves real time 
performance at 7.5 frames per second on a Laptop PC 
including post-processing, online visualization of the results 
and a search range for all objects between 20 and 160pixels 
width. 

V. RESULTS 
 Results are obtained in two steps, for driving scenarios 
around the city of Vienna, Austria. First, results were 
evaluated off-line, for sequences of a rather high quality 
camera. Second, on-line results were evaluated, for a camera 
system that meets current automotive constraints. For off-
line evaluation, a color camera is mounted behind the 
windshield of a test vehicle with a field of view of about 
35deg horizontally. Images were captured at a size of 
1024x768 pixels, horizontally and vertically, respectively. 
Images were converted to gray levels and a Gaussian 
pyramid was created. Due to noise of the camera, color 
coding etc., images showed sufficient quality on from the 
second pyramid level. Regions of interest were defined 
comprising maximally 256x80 pixels in horizontal and 
vertical dimension, respectively. For this configuration, the 
third pyramid level (1/4 resolution) already covers the entire 
field of view in horizontal direction (see also fig. 4). For 
each region of interest, 8 integral images were determined, 
comprising different edge orientations. Feature vectors were 
extracted and matched to the templates according to 
equation (3). Fig. 5 shows the receiver operation 
characteristics for the average of the different object types in 
typically cluttered background. The different lines show that 
a false alarm rate of less than 10-4 or 10-3 (0.01-0.1%) can 
achieved at 80-90% detection rate. 
 For evaluation of each pyramid level, sub regions are 
extracted at 6x6 and 8x8 pixels in width and height, using 
half size overlap. These settings results in a total of 1844 
and 960 image positions evaluated for each level and both 
scales, respectively. Without any further processing, the 
detection includes one or two false alarms per frame, 
depending on the amount of background clutter. Two post-
processing methods are used in a cascaded way, using 

 
Fig. 5.  Receiver operation characteristics (ROC) for typical road sign 
examples. 
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features additional to the edge orientation histograms. First, 
spatial and temporal smoothing of the detection map rules 
out the majority of “sporadic” false detections. Second, 
remaining detections were verified for symmetry in positive 
Cr response (red, all signs) and negative Cb (yellow, Priority 
Road only) response of the YCbCr color space extracted for 
the down sampled images. Although, the false alarms from 
the detection show similar EOHs, they were not consistent 
over space-time and did not show proper color symmetry. 
After post-processing false alarms were only found 
sporadically, at locations of dense background clutter, such 
as advertisement panels. 
 For online evaluation, a camera type was chosen at VGA-
resolution (640x480pixels) and a small-size lens mount 
(12mm-type) with 8mm focal length. Due to the lens mount, 
images contained much blur, and detection was only applied 
on from the second pyramid level (320x240 pixels, width x 
height). The system was evaluated online in urban areas at 
different driving occasions, including different illumination 
conditions, clutter and occlusion. Totally about 8h of driving 
were required to obtain recordings for a set of 105 relevant 
road signs. Detection results were stored along with the 
image data for off-line statistical evaluations. For each sign, 
the sequence of the detected image patch was stored. The 
sequence several appearances as follows from change in 
size, position and rotation as follows from the range and the 
vehicle pitch, roll and yaw. Signs are collected for following 
shapes: circular (speed limitations, no entry, forbiddance), 
triangular (give way), diamond (priority road) and octagonal 
(stop sign). Depending on the driver’s speed, the number of 
relevant frames ranged between 10 and 200 per sign 
(recorded at 7.5fps).  
 Totally 16 of the 105 road signs were missed. This was 
mainly due to 1) insufficient visibility, 2) rotations and 3) 
clutter. Insufficient visibility was mostly caused by over 
saturation of the road sign region and lack of temporal 
presence in case of a fast turn. The temporal integration was 
set, so that road signs were required to be visible at least for 
three subsequent frames. Rotations and deformations were 
found for many occasions, and only a part of the rotated 
signs was missed. Clutter and partial occlusions were mainly 
caused by stickers and elongated objects like poles. Some 
sporadic false alarms occurred at specific occasions, mainly 
in strongly cluttered background of inner city scenarios.  
 The remaining 89 detected signs include red-rimmed 
circular shapes other than speed limitations. These can be 
eliminated using simple classification methods. However, in 
order to show generality of the detection method, these are 
included for the statistical evaluation. Totally, 11 signs for 
speed limitations were detected and 35 for other 
forbiddance, of which 18 for no parking. The other target 
signs include 16 for give way, 8 for priority road, 7 for stop 
and 12 for no entry. For each road sign, the width in the 
image at first detection was determined with an accuracy of 
2 pixels and the 30% and 70% point of the distribution was 

derived. Table 1 shows the results. 
Object Width        (Image: 
320x240pixels) 

#Signs Width 30% 
(pixel) 

Width 70% 
(pixel) 

Priority Road  8     8   12 
No Entry 12     8   14 
Speed Limit* 28   10   16 
Give Way 16   12   16 
Stop   7   14    20 
All  71 10.3 15.6 
 Table 1. * including forbiddance other than no parking 

Depending on illumination conditions, signs were 
detected on from 8 pixels width, only few were first detected 
if larger than 24 pixels width. For totally 89 signs (including 
no parking) 30-70% is detected between 10 and 16 pixels 
width and 95% is detected on from 24 pixels width. Fig. 6 
shows these results graphically. Fig. 7 includes an 
enlargement of the detected area in the lower right corner. 
Please note the inhomogeneous surface for the different 
regions, if enlarged on the electronic version of this paper.   

VI. CONCLUSIONS 
 This paper present a method for road sign detection based 
on weighted matching of edge orientation histograms. The 
method aims to detect the road sign as early as possible, 
using a camera system as available for automotive industry. 
A classifier was designed that combines weak indicators for 
sub regions using a learning procedure for the implicit 
transmission function of the designed template to the image 
appearance. Results show 85% detection rate of objects on 
from 12 pixels width and 95% on from 24 pixels, for largely 
cluttered scenes in real time driving scenarios. False alarms 
were reduced by post-processing, to strongly cluttered 
scenes, and run-time can largely be improved by reducing 
the search range  (currently 7.5fps for full coverage between 
20 and 160pixels object width).  
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Fig. 6. Object width at first detection, for different road sign types. 
Widths relates to image at second pyramid level (320x240 pixels). 
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Fig. 7. Results for different road sign types at detection. The insert on the lower right corner shows an enlargement show of the object.
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