
Online Verification of Cognitive Car Decisions

Matthias Althoff, Olaf Stursberg and Martin Buss

Abstract— Verifying a safe locomotion of cognitive cars is
indispensable for their participation in road traffic. This paper
suggests an approach for verifying safety by computing reach-
able sets for the position of relevant traffic participants, i.e. a
cognitive car as well as moving objects in its environment. In
order to account for the uncertainty in the behavior of traffic
participants, a stochastic setting is chosen, in which Markov
chains represent the positions probabilistically. An efficient
online algorithm is presented that leads to the result whether
the reachable sets of different traffic participants can intersect,
meaning that the control strategy of the cognitive car is possibly
unsafe.

I. INTRODUCTION

Cognitive cars navigate autonomously through traffic

based on measured information (cameras, lidar, radar,...)

without intervention of human drivers. Analog to human

drivers, cognitive cars need a sense of safety, i.e. they have

to know which behaviors possibly lead to an accident.

Behavior is referred to a computed reference trajectory

that the cognitive car tries to follow. Driving along the

path of the reference trajectory may cause an accident if

the possible behavior of other traffic participants is not

appropriately considered. Additionally, it is important to

account for the deviation between the actual behavior of the

cognitive car and the reference trajectory due to disturbances.

An approach towards collision free path planning in

static environments can be found, e.g. in [1]. For dynamic

environments, current literature shows that safe navigation

of intelligent vehicles is largely an open research problem,

see e.g. [2], [3], [4], and forward collision avoidance

systems still exhibit deficiencies [5]. A novel approach for

safe motion planning is established by avoiding inevitable

collision states in [6]. However, this work differs from the

approach presented here by applying simulation instead of

verification techniques. A major drawback of simulation is

that it can only proof that a system with uncertain behavior

is unsafe, but not that it is safe. This is due to an infinite

number of initial and disturbance values that have to be

simulated if the uncertainties are modeled by sets of initial

and disturbance values.

Algorithmic verification, as it is applied in this work,

has been developed for hybrid systems in recent years.

Hybrid systems evolve according to a mixed discrete and

continuous dynamics. The model framework of hybrid

Research supported by the German Research Council (DFG) through the
Collaborative Research Center SFB-TR 28 (Cognitive Automobiles).

All authors are with the Institute of Automatic Control Engineering (LSR)
, Technische Universität München, 80290 München, Germany.

systems is very useful in the context of traffic modeling:

traffic participants, e.g. cars, trucks and bicycles make logic

decisions, such as lane changing, turning and stopping

which are appropriately modeled by discrete dynamics.

Additionally, the vehicle dynamics is best described by

continuous differential equations. Most hybrid verification

algorithms compute the set of (discrete and continuous)

states which are reachable by the investigated system. If the

set does not intersect sets of unsafe states, safety can be

concluded. However, the verification problem is known to be

decidable for a limited class of hybrid systems only [7]. For

this reason, sets of reachable states are overapproximated

which allows to conclude safety, but possibly leads to

the result of unsafe behavior for safe systems. However,

this conservative approach is suitable in traffic since only

confident trajectories of the cognitive car should be executed.

Prominent verification algorithms using overapproximated

reachable sets compute ellipsoids [8], polytopes [9], oriented

rectangular hulls [10] and zonotopes [11]. In contrast to

the common use of verification techniques for offline safety

analysis, verification algorithms are applied for online safety

analysis in this paper. The online application is necessary as

unsafe states originating from the reachable sets of moving

obstacles (other traffic participants) are not known a priori.

Along with the online application comes the demand for real

time constraints of the verification algorithms. In order to

speed up the verification process for online application, the

continuous system dynamics of the cognitive car and other

traffic participants is abstracted by Markov chains, similar

as used in a different context in [12]. This conservative

transformation is based on a discretization of the state and

input space of the model. However, Markov chains provide

fast and probabilistic computations of reachable sets which

has been shown in [13] and for stochastic aircraft conflict

situations in [14]. The presented approach is an extension

of the previous work in [15] by

• allowing disturbances bounded by hyperrectangles (in-

terval hulls) instead of hypercubes,

• probabilistically modeled disturbances,

• improving the abstraction process from nonlinear to

linear systems,

• more efficient execution of Markov chains due to partial

transition executions,

• advanced construction of reachable sets of other traffic

participants.

In contrast to [15], not only the state space is discretized,

but the input space, too, which allows faster computation of

probabilistic reachable sets.

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThB1.34

1-4244-1068-1/07/$25.00 ©2007 IEEE. 728

An overview of the approach from the nonlinear dynamics of

the cognitive car and its surrounding traffic participants to the

probabilistic computation of reachable sets is given in Fig.

1. The offline computation consists of the following steps:

first, the nonlinear continuous dynamics is conservatively

abstracted by a linear differential inclusion (Sec. III).

The linear uncertain model is then further abstracted to

Markov chains for different input and disturbance sets

as well as for discrete time and time intervals (Sec. IV

and V). During online application, the Markov chains

obtained from the offline computation are executed. They

compute the reachable sets of the cognitive car and of other

traffic participants based on behavior assumptions (Sec.

VI) between the time indices l − 1 and l, see Fig. 1. Each

verification process ends with intersecting the reachable sets

of other traffic participants with the one of the cognitive

car as shown exemplarily for a traffic scenario (Sec. VII).

This allows to calculate the probability of a crash and due

to the conservative computation of reachable sets, safety

can be guaranteed if the set intersection is empty. After

the verification process is finished, it is reset and started

with actual sensor values so that the safety of locomotion is

continuously evaluated.

Offline Online

Nonlinear
Model

Abstraction

Linear Model

Discretization

Markov chains

Probability
of Safety

Markov Chain Selection

Markov Chain Execution

Updated probabilities

Intersection

Other
reachable sets
(obtained by the
same method)

l
:=

l
+

1

Input Trajectory

Fig. 1. Verification process overview

II. PROBLEM STATEMENT

At the beginning of each verification process, one has

the following situation: Given are the uncertain positions

and velocities of other traffic participants that are identified

by the cognitive car and modeled by sets. The position,

velocity, direction and angular speed of the cognitive car

are also known but subject to uncertainties. Additionally,

the reference trajectory of the cognitive car is assumed to

be given. The goal of the presented method is to determine

the probability that the cognitive car will crash into another

traffic participant within certain time intervals t ∈ [0, ti],
for a given horizon t ≤ k∆t, k ∈ N+, ∆t ∈ R>0 when

following the reference trajectory, see Fig. 2(a). The time

interval ∆t specifies the time span after which actual sensor

values are read out and k is the factor for ∆t determining

the time horizon. The probability of a crash is computed by

the reachable set of the cognitive car and the ones of other

traffic participants starting from the uncertain initial states

under disturbances. This is illustrated exemplarily for the

cognitive car and one additional traffic participant in Fig.

2(b). If the intersections of the reachable sets are empty,

the trajectory of the cognitive car is safe and otherwise, the

probability of the crash is computed. The verification process

is repeated after each time step ∆t using an update of the

dynamic models according to the current sensor readings.

Note that the verification has to be terminated after the time

∆t, i.e. the procedure has to run k times faster than real

time.

time

Probability
of crash

Time horizon
k∆t

t1 t2 t3 t4

(a) Probability of a crash for
the time horizon k∆t

Initial set of
the other car

Reachable
sets

Set intersection

Initial set of
the cognitive car

Reference path

x-position

y-position

(b) Problem setup

Fig. 2. Verification results

III. ABSTRACTION FROM NONLINEAR TO LINEAR

CONTINUOUS DYNAMICS

In order to simplify the computation of the reachable

sets, the dynamics of the nonlinear systems is conservatively

abstracted to linear but uncertain ones, i.e. the reachable

sets of the nonlinear systems are enclosed by the ones of

the uncertain linear systems. In order to apply the presented

abstraction method, the state x of the nonlinear system, the

input u and the disturbance v are limited to sets: x ∈ X ⊂
Rn, u ∈ U ⊂ Rm and v ∈ V ⊂ Rn. In case of the cognitive

car, the input u is interpreted as the reference trajectory, or

respectively, as the acceleration for other cars, see Sec. VII.

The nonlinear system has the following form:

ẋ = f(x, u) + v, x(0) ∈ X, u ∈ U, v ∈ V (1)

For the presented approach it is necessary to discretize the

sets X , U and V . The discretization DX : X → I is a

map which assigns to each value x ∈ X ⊂ Rn an identifier

i ∈ I ⊂ N+ where I is the finite set of identifiers1. The

connected subset that is mapped to an identifier i is denoted

by Xi = {x|DX(x) = i} and referred to as a cell. The state

space is discretized rectangularly and equidistant by DX so

that all cells Xi are interval hulls (]x, x]) of equal lengths

with x, x ∈ Rn. Analogously, there exists a discretization

function DU : U → J that assigns to each identifier j a cell

Uj and another discretization function DV : V → M that

assigns identifiers m to cells Vm. The sets of initial states

x(0), inputs u ∈ Uj , and v ∈ Vm are expressed in terms of

1The discretization can lead to a large number of cells for high-
dimensional systems, requiring to use order reduction techniques.

ThB1.34

729

these cells. This allows to conservatively approximate (1) by

a linear system that is modeled as a differential inclusion:

ẋ ∈A
j
i x + B

j
i u + b

j
i + v

︸ ︷︷ ︸

1st order Taylor expansion

⊕ E
jm
i

︸︷︷︸

Lagrange

remainder

,

x(0) ∈ Xi, u ∈ Uj, v ∈ Vm, t ∈ [0, T]

(2)

A
j
i is the system matrix, B

j
i the input matrix, b

j
i is a

constant vector and T is the time horizon for which the

above equation holds. The values A
j
i ,B

j
i ,b

j
i are obtained by

a first order Taylor expansion of the nonlinear system (1)

and the indices i and j refer to the indices of the sets X i

and Uj . Note, that b
j
i �= 0 as the nonlinear system is not

linearized in a steady state. In order to abstract the nonlinear

dynamics conservatively, the linearization error E
jm
i is

added by Minkowski addition2. In contrast to A
j
i ,B

j
i and b

j
i ,

the result of E
jm
i also depends on the uncertainty cell Vm.

The set E
jm
i can be obtained by evaluating the Lagrange

remainder of the first order Taylor expansion using interval

arithmetics [16] as shown in [15]. A disadvantage of this

method are the relatively conservative bounds of E
jm
i . In

order to tighten these bounds, branch and bound methods

known from global optimization [17] have been applied for

the traffic scenario in this paper. This method is based on

selective division of intervals (branching) so that interval

analysis returns better bounds (bounding).

A remaining task is the proper selection of the linearization

point to reduce the linearization term E
jm
i . In order to

suggest a selection of the linearization point, the set of

overapproximated reachable states of (2) in the time interval

[0, T] is introduced. This set is denoted by R
jm
i ([0, T]) and

defined over an auxiliary set R
jm
i (T):

Definition 1: R
jm
i (T) is an overapproximated set of the

exact reachable set Rjm
i (T) at time t = T : Rjm

i (T) =
{x|x(t) is solution of (2), t = T, x(0) ∈ Xi, u ∈ Uj , v ∈
Vm} and R

jm
i (T) ⊃ Rjm

i (T).

Definition 2: R
jm
i ([0, T]) is the union of all overapprox-

imated reachable sets R
jm
i (t) for t ∈ [0, T]: R

jm
i ([0, T]) =

⋃

t∈[0,T] R
jm
i (t)

The description of the computation of R
jm
i ([0, T]) is given in

Sec. IV. The selection of the linearization error is motivated

by the observation that it usually grows with increasing

distance to the linearization point. As all states are within

R
jm
i ([0, T]), the maximum linearization error is reduced by

the heuristics that the volumetric center of R
jm
i ([0, T]) is

chosen as the linearization point x∗ (this choice is different

from the one in [15]). The linearization point for the input

u∗ is chosen as the center of U .

IV. REACHABILITY

The reachable set of the continuous evolution R
jm
i ([0, T])

is computed by zonotopes [11], [15], see Fig. 3(a). Zonotopes

2A ⊕ B = {a + b|a ∈ A, b ∈ B}

are used as they are closed under Minkowski sum which

results in an efficient computation of reachable sets under

uncertain inputs. The difference to [11] and [15] is that the

input B
j
i u + b

j
i + v ⊕ E

jm
i ∈ B

j
i Uj ⊕ b

j
i ⊕ Vm ⊕ E

jm
i =:

W ∗ is within an hyperrectangle (interval hull) instead of a

hypercube. For further computations, the uncertain input W ∗

is split up into an interval hull W = W ∗ − mid(W ∗) with

the volumetric center at the origin and the constant input

mid(W ∗), where the operator mid() returns the volumetric

center of a set. The reachable set occurring due to the input

W is denoted R̄
jm
i ([0, T]) and the reachable set resulting

from the solution of the dynamics for the initial state x(0)
and the constant input mid(W ∗) is denoted R̂

jm
i ([0, T]). The

superposition principle allows to compute the reachable set

R
jm
i ([0, T]) of the linear sytstem (2) by Minkowski addition

of R̂
jm
i ([0, T]) and R̄

jm
i ([0, T]):

R
jm
i ([0, T]) = R̂

jm
i ([0, T])⊕ R̄

jm
i ([0, T])

The computation of R̂
jm
i ([0, T]) is presented in [11], and the

reachable set R̄
jm
i ([0, T]) is computed in modal space:

˙̂x ∈ Â
j

i x̂ ⊕ Ŵ

with x̂ = M−1x, Â
j

i = M−1A
j
iM , Ŵ = M−1W and M

is the matrix of eigenvectors of A
j
i . The transformation to

modal coordinates is done as the k-th dimension of the input

Ŵ exclusively affects the k-th component of x̂. The k-th

component of the interval hull, denoted Ŵ k is an interval

[−ŵk, ŵk] with ŵ ∈ Rn. The trace of Â
j

i is represented by

a vector α, and αk is the k-th element of α. The reachable

interval hull F is obtained elementwise by intervals Fk (k-th

dimension of F) by the following estimates:

Fk =

∫ T

0

eαk(t−τ) dτ [−ŵk, ŵk]

‖Fk‖∞ ≤

∫ T

0

‖eαk(t−τ)‖∞ dτ‖[−ŵk, ŵk]‖∞

≤

∫ T

0

e‖αk‖∞(t−τ) dτ‖ŵk‖∞

=‖αk‖
−1
∞ (e‖αk‖∞T − 1)‖ŵk‖∞

The norm estimates are necessary as the trace α may contain

conjugate complex values. The infinity norm is chosen as the

set of maximum size fulfilling the infinity norm is an interval

hull: Fk = [−fk, fk] = {x : ‖x‖∞ < fk}. The reachable set

R̄
jm
i ([0, T]) results in R̄

jm
i ([0, T]) = MF .

V. MARKOV CHAINS

The reachable set R
jm
i ([0, T]) is used to obtain the

transition probabilities of the Markov chain abstracting the

behavior of the linear system. The Markov chain consists of

states i ∈ I which are the cells of the discretized state space,

and pi is the probability that the system is in cell i. The

transition matrix Φ specifies the transitions between states:

p(l + 1) = Φp(l) and p(l) is the probability vector at time

step l. The conversion from continuous dynamics to Markov

chains is based on the assumption that the continuous state

ThB1.34

730

of the linear system is evenly distributed within the reachable

set R
jm
i ([0, T]):

Φjm
oi ([0, T]) =

V (Rjm
i ([0, T]) ∩ Xo)

V (Rjm
i ([0, T])

where V () is an operator determining the volume of a

geometric object. The transition matrix Φjm
oi ([0, T]) contains

the probabilities that a trajectory starting in cell Xi with input

u ∈ Uj and disturbance v ∈ Vm can be found in cell Xo

within the time span [0, T]. This is in contrast to [12], where

time is not explicitly considered. A two dimensional example

of computing probabilistic reachable sets of x =
[
x1 x2

]T

based on the reachable set in Fig. 3(a) is shown in Fig.

3(b). In order to obtain the transition matrix for a certain

input u(t) and disturbance v(t), t ∈ [lT, (l+1)T], additional

probabilities are introduced. The probability that the input is

in cell Uj for t ∈ [lT, (l + 1)T] is denoted by qj(l) and the

probability that the disturbance is in cell Vm is denoted by

cm. In contrast to the probability vector q(l), the probability

vector c is modeled time invariant. Applying the rule for the

computation of unconditional probabilities 3, the transition

matrix under input u and disturbance v is computed as:

Φoi([lT, (l + 1)T]) =

|J|
∑

j=1

qj(l)

|M|
∑

m=1

cmΦjm
oi ([0, T])

The transition probabilities for the time point solution

Φoi(lT) are calculated in an analogous way. The time

point solution is computed in order to provide the initial

probabilistic set for the time interval solution after each

time step. This approach differs from the one in [12] and

improves the accuracy compared to the exclusive use of

Φoi([lT, (l + 1)T]) for two reasons: First, reachable sets

for linear systems at time points without uncertain inputs

can be computed exactly, see e.g. [9]. Consequently, the

worse approximation of the time interval solution is not

propagating as it is computed based on the time point

solution. Second, the computation of R
j
i ([0, T]) and hence

for Φoi([lT, (l + 1)T]) is based on an initial set of states

at a time point so that an initial set obtained from a time

interval solution would be more conservative. The equations

for the computation of the probability vector p(l + 1) in the

time interval t ∈ [lT, (l + 1)T] and the auxiliary probability

vector p̃o(l) for the time point t = lT are:

p̃o(l + 1) =Φoi(lT)p̃i(l)

po(l + 1) =Φoi([lT, (l + 1)T])p̃i(l)
(3)

In order to save computation time for evaluating (3),

transitions of the Markov chain are executed depending on

the original continuous system dynamics (1). After defining

θi(T) = max
j,m

‖Ejm
i (T)‖∞, one can choose time constants

Ti = ρT , ρ ∈ N+ that are assigned to cells Xi in order

to ensure that the linearization error stays below a specified

bound θ̄: θi(Ti) < θ̄. The time varying set containing the

3P (β) =
P

b

a=1
P (β|αa)P (αa), where αi are mutually exclusive

events and
S

b

a=1
αa = Ω is the certain event Ω

−0.4 −0.3 −0.2 −0.1

−0.01

0

0.01

0.02

x
1

x
2

Initial cell

Sample trajectories

(a) Reachable sets described by
zonotopes

−0.4 −0.3 −0.2 −0.1

−0.01

0

0.01

0.02

x
1

x
2

Initial cell

Sample trajectories

(b) Probabilistic reachable set

Fig. 3. From zonotopes to transition probabilities

admissible states k at time step l is denoted K(l). Note that

K(l) enables transitions at the beginning of any time interval

[lT, lT + Ti] to ensure conservativeness of the probabilistic

reachable set. The extended probability update function is:

p̃i(l + 1) = Φik(lT)p̃k(l) + p̃m(l)

pi(l + 1) = Φik([lT, (l + 1)T])p̃k(l) + pm(l)

k ∈ K(l), m ∈ I\K(l)

VI. BEHAVIOR MODELING OF OTHER TRAFFIC

PARTICIPANTS

For safety assessment of cognitive cars, prediction of the

behavior of other traffic participants is crucial. Similar to

human driving, the cognitive car expects a certain behavior of

other traffic participants which is addressed in the following.

A. Assumptions

The most important assumption about the behavior of

other road users is that road traffic regulations are met. This

excludes behaviors such that an approaching car from the

opposite lane steers into the cognitive car. If such behavior

is observed, the verification algorithms have to take the

physically possible instead of the permitted behavior of this

traffic participant into account.

B. Path Generation and Path Following

The behavior of other traffic participants is modeled in two

stages: path generation and path following. Possible paths of

traffic participants can be composed by elementary actions

such as lane following, turn left/right or lane changing. This

is illustrated in Fig. 4 for a car approaching a crossing.

The paths consist of clothoid segments [18] of length s or

s ≤ s′ ≤ 2s in front of branching points. In a next step, the

finite set of paths is enhanced by considering deviations from

these which represents an infinite set of possible paths. De-

viation is modeled as a static piecewise constant probability

distribution that varies between road user types. Examples

for these probabilities are given for cars and bicycles in Fig.

5. Path following is also modeled by elementary actions,

like accelerating, braking, stand still and drive at speed

limit. Note that elementary actions cover a set of behaviors,

e.g. accelerating encloses all behaviors in between minimum

and maximum acceleration. An exemplary model of the

longitudinal dynamics along possible paths is presented in

Sec. VII-B.

ThB1.34

731

clothoid segment

branching points:

s s ≤ s′ ≤ 2s

lane following

turn left/right

Fig. 4. Path Generation

car/truck bicycle

left lane right lane

segment length s

path

x
y

p(x, y)

Fig. 5. Deviation probabilities

VII. VERIFICATION OF AN EXEMPLARY TRAFFIC

SCENARIO

To demonstrate the presented method, a typical traffic

scenario is investigated, see Fig. 6. The cognitive car is

controlled along a reference trajectory to avoid the static

obstacle and the oncoming car on the opposite lane. As

discussed before, it is assumed that the other car respects

the traffic regulations, i.e. it does not leave its lane.

other car

reference path

static obstacle

cognitive car

reference point

x1

x2 x3, x4

Fig. 6. Verification scenario

A. Model of the Cognitive Car

The lateral dynamics is modeled by a simplified bicycle

model [19] with yaw angle x3 and yaw rate x4, see Fig. 6.

The position deviation of the center of gravity to the refer-

ence point on the reference path in road-fixed coordinates is

denoted x1 and x2, see Fig. 6. The lateral control is given

as u = w − x3 − 0.1(x2 cos(w) − x1 sin(w)), where u(t) is

the steering wheel angle and w(t) is the orientation of the

reference trajectory. The controlled car model is:

ẋ1 = c3(cos(x4) − cos(w))

ẋ2 = c3(sin(x4) − sin(w))

ẋ3 = x4

ẋ4 =
c1

c3
x4 + c2(w − x3 − 0.1(x2 cos(w) − x1 sin(w)))

The car parameters c1, c2 and the constant speed c3 of the

car can be found in table I.

TABLE I

PARAMETER VALUES

cognitive car other car

c1 160 m

s2
·rad

c4 10 m

s2

c2 53 1

s2
·rad

c5 60 m

s

c3 15 m

s
c6 15 m

s

p1, p2, p3, p4 0.5 –

B. Model of the Other Car

The longitudinal dynamics of the other car for path fol-

lowing is modeled as a switching system with the modes

standstill, speed limit, brake and accelerate, see Fig. 7.

Invariant sets are denoted by I and transitions by t. The

transition guards or probabilities can be found next to the

transition arrows. When a transition is taken, the continuous

states are not reset. The continuous dynamics is described by

standstill braking

acceleration speed limit

t1 : y2 = c6

t2 : p1

t3 : y2 = 0

t4 : p2

t5 : p3

t6 : p4

I1 : y2 = 0 I2 : 0 < y2 < c6

I3 : 0 < y2 < c6 I4 : y2 = c6

ẏ1 = 0
ẏ2 = 0

ẏ1 = y2

ẏ2 = h1(u)

ẏ1 = y2

ẏ2 = h2(y, u)
ẏ1 = y2

ẏ2 = 0

Fig. 7. Other car model

the position y1 and the velocity y2. The brake model h1(u)
and the acceleration model h2(y, u) are given as

h1(u) = −c4u, u ∈ [0, 1]

h2(y, u) = c4(1 −

√
y2

c5
)u, u ∈ [0, 1]

Note, that the input u of the brake and acceleration model is

uncertain in its bounds. The discrete dynamics of the switch-

ing model also contains uncertainty. In opposite to transitions

t1, t3, all other transitions are taken by probabilities p. It is

believed that the stochastic driver model is best suited as only

few information is available about other traffic participants.

C. Reachable Sets

The parameters for the reachable sets of both cars are

given as follows: The set of initial conditions is listed

in table II. The variables pacc, pbrake, psl, pss refer to the

probability that the discrete state is in acceleration(acc),

brake(brake), speedlimit(sl) or standstill(ss) mode at t = 0.

The state space discretization is summarized in table III

ThB1.34

732

TABLE II

SET OF INITIAL CONDITIONS

cognitive car other car

x1 [−0.3, 0.3] m y1 [90, 95] m
x2 [−0.3, 0.3] m y2 [8, 10] m/s
x3 [−0.05, 0.05] rad pacc, pbrake 0.5 –
x4 [−0.2, 0.2] rad/s psl, pss 0 –

TABLE III

DISCRETIZATION PARAMETERS

variable segment length segments

cognitive car: 512 cells
x1 0.5[m] 4
x2 0.5[m] 4
x3 0.05[rad] 8
x4 0.4[rad/s] 4

other car: 1500 cells
y1 1[m] 100
y2 1[m/s] 15

and the cognitive car is disturbed by ‖v‖∞ < 0.01. The

computation time was 2.7s for the cognitive car and 0.5s

for the other car on a dual core processor (1.66 GHz) for

4s in real time. The probability of a crash is 0.01% for

t ∈ [3, 4]s and 0% for all other times. The probability of

crash is simply determined by the scalar product of the

probability vector of the cognitive and the other car.

The resulting reachable sets of both cars are visualized in

Fig. 8 for four time intervals. The car starting from the right

lane is the cognitive car, the one starting from the left one is

the other car. The green line shows the reference trajectory

of the cognitive car. The red box is a static obstacle on the

road. Dark blue color indicates high probability and light

blue color small probability that a car is located on the

road. Note, that the probabilities refer to the presence of

the whole car and not to its center of mass only (car length:

4m, car width: 2m).

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

Cognitive

car

Obstacle

Planned

path

Other

car

(a) t=0-1 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(b) t=1-2 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(c) t=2-3 sec

−20 −10 0 10

0

10

20

30

40

50

60

70

80

90

(d) t=3-4 sec

Fig. 8. Reachable sets of the traffic scenario

VIII. CONCLUSION

It has been shown that the probability of an accident for the

above verification example can be computed faster than real

time (3.2s computation for 4s in real time), resulting in a k-

factor (Sec. II) of k = 1.25 which is planned to be increased

to k ≈ 4. Besides future improvements, the computation time

can be reduced by enlarging the cell size of the discretized

state space at the expense of decreasing accuracy (while

keeping the conservativity of the computation).

REFERENCES

[1] I. Ulrich and J. Borenstein, “Vfh*: Local obstacle avoidance with
look-ahead verification,” in In Proc. of the International Conference

on Robotics and Automation, 2000, pp. 2505–2511.
[2] C. Laugier, S. Petti, D. Vasquez, M. Yguel, T. Fraichard, and

O. Aycard, “Steps towards safe navigation in open and dynamic
environments,” in Autonomous Navigation in Dynamic Environments:

Models and Algorithms. Springer, 2006.
[3] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning

and replanning in dynamic environments,” in Proc. of the International

Conference on Robotics and Automation, 2006, pp. 2366–2371.
[4] A. E. Broadhurst, S. Baker, and T. Kanade, “A prediction and planning

framework for road safety analysis, obstacle avoidance and driver
information,” in Proc. of the 11th World Congress on Intelligent

Transportation Systems, October 2004.
[5] K. Lee and H. Peng, “Evaluation of automotive forward collision warn-

ing and collision avoidance algorithms,” Vehicle System Dynamics,
vol. 43, no. 10, pp. 735–751, 2005.

[6] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. of the Conference on Intelligent Robots and Systems,
2005.

[7] G. Lafferiere, G. Pappas, and S. Yovine, “A new class of decidable
hybrid systems,” in Hybrid Systems: Computation and Control, ser.
LNCS 1569. Springer, 1999, pp. 137–151.

[8] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations,” in Hy-

brid Systems - Computation and Control, ser. LNCS 1790. Springer,
2000, pp. 73–88.

[9] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” in IEEE Transactions on Automatic Control,
vol. 48, no. 1, 2003, pp. 64–75.

[10] O. Stursberg and B. H. Krogh, “Efficient representation and com-
putation of reachable sets for hybrid systems,” in Hybrid Systems -

Computation and Control, ser. LNCS 2623. Springer, 2003, pp. 482–
497.

[11] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Hybrid Systems : Computation and Control, vol. 3414, 2005, pp.
291–305.

[12] J. Lunze and B. Nixdorf, “Representation of hybrid systems by means
of stochastic automata,” Mathematical and Computer Modeling of

Dynamical Systems, vol. 4, pp. 383–422, 2001.
[13] X. Koutsoukos and D. Riley, “Computational methods for reachability

analysis of stochastic hybrid systems,” in Hybrid Systems: Computa-

tion and Control, 2006, pp. 377–391.
[14] M. Prandini and J. Hu, “A stochastic approximation method for

reachability computations,” Final Report of the Hybridge Project, pp.
115–147, 2005.

[15] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment of au-
tonomous cars using verification techniques,” in to appear in the Proc.

of the American Control Conference, 2007.
[16] L. Jaulin, M. Kieffer, and O. Didrit, Applied Interval Analysis.

Springer, 2006.
[17] E. Hansen, W. Walster, and G. W. Walster, Global Optimization Using

Interval Analysis. CRC Press, 2003.
[18] H. Delingette, M. Hebert, and K. Ikeuchi, “Trajectory generation with

curvature constraint based on energy minimization,” in International

Workshop on Intelligent Robots and Systems, 1991, pp. 206–211.
[19] S. Brennan and A. Alleyne, “Dimensionless robust control with appli-

cation to vehicles,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 624–630, 2005.

ThB1.34

733

