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Abstract— The issue of collision avoidance in road vehicles
has been investigated for years from very different points of
view. A very interesting approach consists of the creation and
interpretation of a scene of the vehicles that can be involved in a
conflictive situation. In order to determine the role of the vehicle
in the scene, having information of its position, orientation and
velocity, as well as its current maneuver state is advisable. This
paper is to present a solution based on a very low cost GPS/IMU
navigation unit running an interactive multimodel filter (IMM).
The description of the proposed architecture for scene creation,
the multimodel filter developed and experimental trials in urban
and highway scenarios are presented in this paper. The results
obtained show the suitability of the proposed solution to the
problem under consideration.

I. INTRODUCTION

The current development of new services and advanced

driver assistance systems (ADAS) allows supplying new

interesting features in our vehicles. A few examples of these

are:

• Collision avoidance,

• Detection of unfriendly situations and risky scenes,

• Emergency vehicle management,

• Automation of tasks, such as parking maneuvering,

• Adaptive cruise control.

To obtain this, new ADAS demand higher level of per-

formance of the supporting onboard equipments (OBE).

In a low level of abstraction, applications based on the

denominated Location Based Services (LBS), such as fleet

management, hazardous good tracking, or automated emer-

gency calls mainly rely on communication availability and a

reliable navigation system aboard. The main requirements

regarding the navigation system concern continuity of an

accurate positioning, fault detection and the provision of

an integrity parameter. In more complex ADAS, a decision

making process encourages the creation and interpretation

of a scene in order to determine the vehicle role in its

environment. In this frame, the need of high level abstraction

cannot be fulfilled by traditional multi-sensor data fusion

filters. The issue of situation awareness has been pointed

by several authors from the point of view of the artificial

intelligence, specially for military purposes [1] – [5]. Most

of these authors agree to divide multi-sensor data fusion into

four levels of increasing situation complexity. Some other ap-

proaches, like the one proposed by University of Melbourne,
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prefer different architecture schemas not necessarily oriented

to military scenes [6].

Regarding maneuver detection, very different approaches

depending of the sensors used can be found in the current

literature. Several authors have been focusing their efforts in

the recognition of vehicle behaviors by using a set of diverse

kinematical models. Each model is developed to represent

the vehicle behavior in a particular maneuvering state. In [7]

a concrete model is selected according to its dynamic state.

In [8], FIR filters are used to detect maneuvers and track

targets.

The work presented in this paper proposes a low cost

GPS/INS based solution for the problem of navigation and

maneuver recognition in highways, as a part of the in-

vestigations performed in our group regarding navigation

systems for road vehicles. Previous papers published by

the authors presented the GPS/INS solution as suitable for

unfriendly scenarios, such as built-up environments with low

GPS coverage [9]. In [10], an extensive study of GPS/INS

navigation systems is done. The work presented in [11]

focus on the benefits of the interactive multimodel (IMM)

approach for improving the positioning quality. In this paper,

the IMM method will be analyzed to test its suitability to

detect maneuvers in road vehicles.

The rest of the paper is organized as follows. Section II

presents briefly the four layer based architecture Quadrant,

including the hardware of the OBE. In Section III, dedicated

multiple model filtering techniques are explained. Trials in

urban (Section IV) and highway scenarios (Section V) are

next presented. Finally, conclusions of the results obtained

are commented and future works of the group in this topic

introduced.

II. THE QUADRANT ARQUITECTURE

Quadrant is an architecture for ADAS applications based

on the separation of four layers according the level of ab-

straction of the fusion performed, paying special attention to

its communication framework [12]. The first layer (or sensor

layer) is in charge of the measurement collection, sorting

and synchronization. These measurements are sent to upper

layers via the sensor network, consisting of RS-232 serial

ports for the INS and the GPS device, and CAN bus for the

odometry. Secondly, the fusion layer fuses the data coming

from the sensors. This layer, oriented to the interpretation

of the vehicle behavior to be performed in the following

phase, is described by an IMM-EKF multisensor data fusion

filtering algorithm in which the vehicle models represent

different maneuver states, to determine the role of the vehicle
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in a concrete scene. Fused data are then supplied to the third

layer via ad hoc networks in the vehicle environment. Those

networks are supported by WLAN connection availability,

thanks to the WIFI PCMCIA card installed in the vehicle

computer. Third layer or interpretation layer is in charge

of the dynamic classification of the vehicle and the scene

interpretation. The use of the IMM method in the lower

layer eases the dynamic classification process, according to

the probability values of the maneuver states of the vehicle,

that will be calculated as explained in subsequent Sections.

Finally, the interpreted data (and any other data coming from

previous phases) can be used by the application in order to

provide the final service to the user.

A. Maneuver Detection in Quadrant

This paper is focused on the second layer of Quadrant, and

the maneuver recognition performed by the IMM method.

Fig. 1 shows schematically the Quadrant proposal for ma-

neuver detection and scene interpretation.

Fig. 1. Maneuver detection and scene interpretation in Quadrant.

A scene will be defined by the information of the vehicle

itself, those surrounding, and geographical information of

interest in the area (type of road, speed limits, geographical

accidents, etc.). Each vehicle in the scene is in charge of

identifying its maneuver state and reporting it, along with

its pose, to the rest of vehicles in the scene (typically a few

close enough to be involved and capable to communicate via

ad hoc WLAN). In this frame, the IMM method presented

in this paper presents several benefits:

• Improving the quality of the positioning of the vehicle,

• Providing more precise and realistic confidence values

of the navigation solution,

• Enabling maneuver recognition by using individual

models oriented to maneuver states.

First and last benefits will be analyzed in subsequent

Sections. Future works will extend this investigation to

analyze further possible improvements of the filter. In our

architecture we have defined five maneuver states, intended

to be recognize in highway scenarios: lane change, keep

the lane, accelerations and decelerations, cruise navigation

and stop. This paper is focused only on the longitudinal

movements of the vehicle.

B. Onboard Equipment

The hardware architecture of the OBE is based on a stan-

dard single board computer with a 32bit Pentium processor.

The vehicle PC interacts with the user via the HMI (Human

Machine Interface) by monitor, keyboard and mouse. Serial

buses communicate the sensors with the PC via RS232 and

CAN bus. Some other additional communication networks

are also available. A BlueTooth wireless link can be used

to connect the vehicle PC mobile devices such as PDAs,

PocketPCs, etc. A WLAN connection is available through the

PCMCIA slot of the vehicle CPU, facilitating the commu-

nication with nearby vehicles. Finally, a GPRS/UMTS link

supplies Internet connection to the system. The GPRS/UMTS

link is used for receiving the EGNOS messages via SISNeT

[13], and can be also used to communicate the vehicle

with remote stations (or other vehicles), for location based

services.

The IMU sensor used is a low cost MEM (Micro-electro-

mechanical) MT9-B XSens. Although different 2D and 3D

models were tested, in this paper only 2D models will be

considered, and the assumption of a bicycle model with

the acceleration and the velocity vectors defined by the

same angle is done. Therefore, only one yaw gyro and

one accelerometer will be used in our tests. For the GNSS

receiver, a Trimble DGPS was employed to evaluate the sys-

tem performance with a position accuracy of 15 cm. within

the 95% of fixes. Nevertheless, single GPS positions were

considered as filter inputs to emulate a low cost receiver.

III. MULTIPLE MODEL FILTERING: IMM

METHOD

The basic idea of using multiple models is based on

the fact that a vehicle performs very different maneuvers

depending on the scenario features. For a road vehicle,

typical maneuvers in highways differ from those usual in

city environments. Thus, a single vehicle model can hardly

represent all possible maneuvers, and the use of multiple

models, representing different maneuver states and running

in parallel is advisable. The output of the multiple model

approach is typically the model with highest probability

value, or a weighted composite of the individual filters [20].

A. Interactive Multiple Model (IMM)

In the last years, the implementation of interacting multi-

ple models in aerial navigation systems has been proved to be

very efficient [14] – [20]. In the IMM approach, the manner

in which the state estimates from the individuals filters are

combined depends on a Markovian model for the transition

between maneuver states. The IMM method can be described

according to four different parts.
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1) Interaction: In this part, individual filters are mixed

according to the predicted model probabilities. The predicted

model probability is given by the model probability in the

previous cycle, µ
(j)
k−1|k−1 and the probability that a transition

from state j to state i occurs, πji,

µ
(i)
k|k−1 =

∑

j

πjiµ
(j)
k−1|k−1 (1)

being the conditional model probability, given the object is

in state i that the transition occurred from state j

µ
(j|i)
k−1|k−1 =

πjiµ
(j)
k−1|k−1

µ
(i)
k|k−1

(2)

and the mixing of the state estimates x̂
(j)
k−1|k−1 and covari-

ances P
(j)
k−1|k−1,

x̄
(i)
k−1|k−1 =

∑

j

µ
(j|i)
k−1|k−1x̂

(j)
k−1|k−1 (3)

P̄
(i)
k−1|k−1 =

∑

j

µ
(j|i)
k−1|k−1

[

P
(j)
k−1|k−1 +

(

x̄
(i)
k−1|k−1 − x̂

(j)
k−1|k−1

)(

x̄
(i)
k−1|k−1 − x̂

(j)
k−1|k−1

)′
]

. (4)

The probabilities πji that a transition occurred from state j
to state i are calculated according to a Markovian process,

as described in [21], and will depend on the statistics of real

traffic situations.

2) Model individual filtering: Now, individual filters pre-

dict and update their state and covariance, by using their

kinematical assumptions. Predicted state estimates x̂
(i)
k|k−1

and covariances P
(i)
k|k−1 will be calculated by using a loosely

coupled extended Kalman filter (EKF), as described in [20].

The kinematical models used will be presented in next

Sections. Innovations and their covariances are calculated in

this phase, also following [20].

3) Model probability update: In this part, each model

probability is updated according to the innovation error. As-

suming Gaussian statistics, the likelihood for the observation

can be calculated from the innovation vector ν
(i)
k and its

covariance S
(i)
k following

Λ
(i)
k =

exp
[

− (1/2)(ν
(i)
k )′

(

S
(i)
k

)−1
ν

(i)
k

]

√

∣

∣2πS
(i)
k

∣

∣

, (5)

updating the predicted model probabilities

µ
(i)
k|k =

µ
(i)
k|k−1Λ

(i)
k

∑

j µj

k|k−1Λ
(j)
k

. (6)

4) Combination: Combined state x̂k|k and its covariance

Pk|k are now calculated from the weighted state estimates

x̂
(i)
k|k and covariances P̂

(i)
k|k.

x̂k|k =
∑

i

µ
(i)
k|kx̂

(i)
k|k (7)

Pk|k =
∑

i

µ
(i)
k|k

[

P
(i)
k|k +

(

x̂k|k − x̂
(i)
k|k

)(

x̂k|k − x̂
(i)
k|k

)′
]

. (8)

IV. CITY ENVIRONMENTS

A. Vehicle Models

In city environments abrupt maneuvers are often per-

formed. However, a single model capable to consider high

dynamics maneuvers will present a poor performance when

smooth trajectories are described, due to the overestimation

of the filter noise considerations. The main purpose of these

tests is to analyze the suitability of the IMM method to

increase the positioning accuracy of the navigation system.

In this case, an IMM filter with two individual models,

dedicated to maneuver and non-maneuver states, was de-

veloped. The models selected (based on [22]) represent the

movements of a four wheel vehicle (assumed to be a rigid

solid), the back wheels of which can rotate only about a

transversal axis of the vehicle, and the forward wheels turn

describing curves centered in their instant rotation center.

The state and noise vectors of the non-maneuvering model

are

xNM = [ x y θ θ̇ v φ s ]′

ηNM = [ θ̈ v̇ φ̇ ṡ ]′ (9)

where x, y are the coordinates of the center of mass (COM)

of the vehicle, θ the vehicle orientation, v the velocity in

the COM, φ is the angle of the velocity v, and s the slide

correction angle. The s term represents the slip bias angular

component in the COM that effectively causes the vehicle to

deviate from its ideal course, typically as a consequence of

unbalanced weight distribution and inaccurate wheel align-

ment. Thus, the final velocity angle, referred to the North, is

given by the addition of θ, φ and s. In this non-maneuvering

model, constant acceleration and constant yaw angle rate are

assumed.

In the maneuvering model, a second order equation for

yaw rate is assumed, being its state and noise vectors

xM = [ x y θ θ̇ v φ φ̇ s ]′

ηM = [ θ̈ v̇ φ̈ ṡ ]′ (10)

GPS, odometry, and inertial measurements will form the

observation vector as described in [10].

B. Experimental Tests

The results of the experimental tests performed in this

scenario are shown in Fig. 2. In the upper graph, the

trajectories supplied by single model (SM) and IMM ap-

proaches, as compared to the ground reference can be seen.

In tests performed, DGPS data were used as ground truth

reference. The difference between both solutions will be

much clearer next. The probability values of the models show

how the suitability of the non-maneuvering model (Nmm)

and the maneuvering model (Mm) change depending on the

trajectory features. Finally, the reduction of the estimated

position error during this test can be seen graphically. Despite

the fact that both models behave acceptably during the test,

the RMS value of the estimate position error (calculated as

the Euclidean distance with the ground truth) decreased from

1.703 to 1.219 m. using the IMM method suggested. In order
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to dismiss the influence of the satellite coverage on the test,

no GPS data were supplied to both filters during this trial.
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Fig. 2. Trajectory during the positioning accuracy test performed in an
urban scenario. Single model (SM dashed green) and IMM (solid red)
present similar results referred to the ground truth (solid black). Below,
the probability values for non-maneuvering model (Nmm) and maneuvering
model (Mm) during the test, and the estimated position error calculated as
the Euclidean distance with the ground truth.

V. HIGHWAY SCENARIOS

In Section IV, two models were used to distinguish be-

tween maneuver (high dynamics) and non-maneuver states.

The results presented showed the suitability of that approach

to increase the positioning accuracy. In case of highway

scenarios, our attention is focused on maneuver recognition

for a collision avoidance application. Two typical conflictive

situations are considered: stop&go and lane change scenes.

Our investigations aim at the detection of these maneuvers,

in order to serve this information to upper levels of the

Quadrant architecture. In this paper, due to size constraints,

we only present the study of stop&go situations.

A. Vehicle Models

Different model-sets are used separately for lateral and

longitudinal movements. In stop&go situations main features

of interest are concentrated on the longitudinal axis of

the vehicle. In the current literature, models representing

constant acceleration (CA) and constant velocity (CV) ma-

neuver states are commonly used. However, in our tests,

interesting results are achieved by using another approach,

based on two different constant acceleration models with

different noise parameter adjustments. Moreover, a stationary

model is included to considered this non-maneuver state.

The combination of CV and CA models has been analyzed

lately in the literature [23], [24]. However, some of these

authors found problems with the transition to the CA model,

including those who used the IMM method [25]. In this

interesting paper, the tuning of the CA noise parameters

to avoid often unrealistic switches from one state to the

other was found problematic, impoverishing the perception

of the situation. In case of highways, typical accelerations

and decelerations do not last long enough to accomplish the

transition from the CV state, to the CA state, diminishing

the IMM benefits.

In the approach presented in this paper, three possible

maneuver states are defined to detect stop&go situations.

As previously commented, the kinematic model proposed

is a simplified bicycle model, in which the orientation of

the acceleration and velocity are assumed to be equal. The

results achieved will show that this assumption can be done

for highway scenarios.

1) Acceleration/deceleration (AD): The state vector of the

acceleration/deceleration model is xAD = (x, y, φ, v, ω, a),
representing north, east, velocity angle, velocity, yaw rate

of turn, and the acceleration, in the center of mass of the

vehicle. The similar nature of accelerations and decelerations

from the point of view of vehicle dynamics, allow us to

propose a common model for both, described by

ẋAD =

















(v + at) cos(φ)
(v + at) sin(φ)

ω
a
0
0

















+

















0
0
0
0

ηωAD

ηaAD

















(11)

where ηωAD
and ηaAD

are white noise terms representing the

errors due to model assumptions of constant acceleration and

constant yaw rate.

2) Cruise (CR): The state vector of the cruise model is the

same as in the AD model. However, in this case constant yaw

rate is assumed, being ω = 0, and the differential equation

ẋCR =

















(v + at) cos(φ)
(v + at) sin(φ)

0
a
0
0

















+

















0
0

ηφCR

0
ηωCR

ηaCR

















(12)

In this case, a new term ηφCR
must be considered for errors

in the constant yaw assumption. In addition, noise parameters

due to ω and a must be much lower to represent the cruise

vehicle dynamics.

3) Stationary (S): In this case, the vector state is simpli-

fied being v = ω = a = 0, and the differential equation

ẋS = [ ηxS
ηyS

ηφS
0 0 0 ]′ (13)

where ηxS
and ηyS

are white noise terms representing the

errors due to the model assumptions. All the noise parameters

will be fixed in the tuning process of the filter, starting from

the sensor datasheet error values. Observations for the AD,

CR and S individual filters are GPS north and east values

(xgps, ygps), odometry velocity (vodo) and inertial measure-

ments for angular rate (ωins) and longitudinal acceleration

(ains).
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B. Experimental Trials

Different tests have been performed in order to check the

suitability of the proposed method to the problem under

consideration. Due to the number of pages constraint, only a

situation with abrupt deceleration, stop and go is presented in

this paper. The results achieved during this highway test are

shown in Fig. 3. As can be seen, the velocity of the vehicle

decreased suddenly until the vehicle finally stops. After a few

seconds of stop, the vehicle accelerates to achieve a normal

value of velocity in a Spanish highway. Observing the two

lower graphs, we can appreciate that the sigma value of the

velocity is strongly related to the maneuver state anytime.

During cruise maneuver state, this value remains very low,

being increased when AD state appears.

The main aim of the algorithm is to detect the vehicle

maneuver state and report it to upper levels of the archi-

tecture. Comparing the graph of the velocity reference and

the model probability values in Fig. 3, we can appreciate

that cruise, acceleration, deceleration and stationary states

are clearly detected by the algorithm implemented. Figs. 4

– 6 show the behavior of the detector in several cases with

GPS coverage gaps. The system performs well in typical

cases with a few seconds of GPS outage in highways (Fig. 4

and Fig. 5), typically due to crossing roads, but also presents

a robust performance in case of longer periods without GPS

measurements (Fig. 6), such as tunnels.

Regarding latency for maneuver recognition, although it

depends on IMM parameters, such as the πij matrix, in

the different tests performed values surrounded 0.2 seconds,

regardless of the status of the GPS coverage. In this sense, the

use of inertial sensors not only allows continuous positioning

but also shortens the reaction time for maneuver recognition.
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Fig. 3. Velocity reference (vref ), calculated according to the ground
truth. Below, velocity estimated error (vee solid blue), 2-sigma envelope
of the velocity (2sev solid black) and probability values of the acceler-
ation/deceleration (AD), cruise (CR) and stationary (S) maneuver models
during the test.
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Fig. 4. GPS availability (QGPS = 0 means no GPS and QGPS = 1

means single position). In this test, 2 seconds of coverage outage (30 to
32) are simulated. Below, velocity reference (vref ), calculated according
to the ground truth, velocity estimated error (vee solid blue), 2-sigma
envelope of the velocity (2sev solid black) and probability values of the
acceleration/deceleration (AD), cruise (CR) and stationary (S) maneuver
models during the test.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents the suitability of the proposed IMM

method for detecting vehicle maneuvers in highways, as a

part of a scene interpreter system. Besides, results show that

the accuracy of the positioning can be improved, as compared

with single model solutions. Real trials in city and highway

environments have tested the performance of the system. In

cities, the use of two models based on a four wheel vehicle

definition, with different constant yaw and constant yaw rate

assumptions has been found to be useful to increase the

positioning accuracy, along with detect abrupt turns. In this

case, both filters assumed constant acceleration. In highway

scenarios, three maneuver states were used for stop&go

situations: stationary, cruise and acceleration/deceleration. In

order to avoid problems found in the literature, cruise state

has not been defined by a constant velocity model, unlike

some authors. Both acceleration/deceleration and cruise ma-

neuver states employ constant acceleration models, with very

different noise parameters. The results achieved show the

suitability of this option in the cases analyzed. Finally, the

proposed low cost GPS/INS unit has been proven to be a

reliable navigation unit (the system performs correctly in

absence of GPS coverage), as well as an efficient maneuver

detector with short latency values.

Future works will extend this investigations to ana-

lyze the benefits of the IMM filter in different accelera-

tion/deceleration situations, lateral movements and integrity

provision.
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