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Abstract— Occupants inside the vehicle can be deadly injured 

by the deployment of airbag at the time of crash. New 
collision safety technology requires classifying the occupant 
and tracking their position in real-time in order to 
adaptively deploy the air bag. This paper presents a fast 3D 
model fitting algorithm based on grayscale correlation of 
stereo disparity data, to detect and track occupant head 
position. The proposed system uses stereo vision with IR 
illumination for depth data acquisition. By detecting body 
center line and extra-near disparity calculation, this method 
is proven to be robust and accurate in variant lighting 
condition and occupant movement. Evaluation of the method 
shows over 98% correct head detection and near 100% 
correctness with head tracking. 

I. INTRODUCTION 
ITH the development of collision safety technology in 
recent years, delicate control of air bag deployment 
which adaptively deploys the airbag depending on 

occupants’ body shape, weight and position, has being 
intensively studied during past few years. The main purpose 
of the smart air bag system is to deal with the threat that 
occupants may be seriously injured by the deployment of an 
air bag at the time of crash if the occupant is too near to the 
airbag.  

The National Highway Traffic Safety Administration 
(NHTSA)[1] specifies different classes for the occupancy 
including infants in rear facing infant seats, children and small 
adults, and out-of-position zones for the human occupants, on 
which the air bag deployment has to be controlled.  

Research on detecting the type and position of occupant 
can be divided into 3 main categories based on different 
sensing technologies: I) Weight sensors on the seat measure 
the pressure distribution and classify the occupant into 
different types[2][3]; II) Electric-magnetic or ultrasound 
sensors that detect the change in the electric-magnetic field to 
confirm occupant type and position[4]; III) Computer vision 
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sensors that directly detect occupant head and body position 
with 2D or 3D information, and classify the occupants[5]-[9]. 
Category I and II are the most popular sensors in the market in 
current stage of air bag control, which requires a reliable 
classification of adults, children and rear-faced child seats. 
However they are not adaptable for precisely detection of 
occupant position and posture, which is vital to the delicate 
control of air bag deployment.   

Vision sensor provides the richest information of occupant 
position and posture. Depending on the number of cameras 
used, these studies can be further divided into two categories: 
monocular camera based methods and stereo vision based 
methods. Monocular camera always employs edge, contour 
and other image features to detect ellipse-liked shapes for 
head detection. By combining with the infrared detector, 
single camera solution can also obtain satisfied result in some 
well-controlled environment. However, it suffers from strong 
shadows, hot weather and insufficient 3D information which 
is necessary for functions such as the out-of-position detection. 
Stereo vision based methods use two co-planar cameras to 
calculate the disparity data and detect occupant head position 
and posture. Many algorithms employ the general 3D model 
fitting method to detect the ellipsoid-like 3D shape from a 
range image obtained from the stereo rig. M. Trivedi [5]-[7] 
uses shape and size constraints to eliminate search regions for 
less computation purpose, which may have serious 
side-effects that the head region can be also eliminated when it 
appears relative smaller than other ellipsoid-like shapes such 
as waving arms and shoulders. B.Alefs [9] uses depth data to 
recovery the occupant body surface and edge data to generate 
head candidate. Head recognition was carried out with a large 
trained dataset.  

To achieve real-time performance while keeping high 
accuracy of occupant head detection, this paper presents a fast 
3D parametric model fitting algorithm based on grayscale 
correlation of range data. Comparing with the traditional 3D 
parametric model fitting algorithms, this method simplifies 
the problem of searching 3D model from depth image into 2D 
grayscale correlation problem, which simultaneously 
determine all parameters with the best fitting model. By 
applying the proposed algorithm into occupant head detection 
application, this paper also proposes a body centerline 
segmentation method as well as a multi-resolution disparity 
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generation algorithm in order to deal with body occlusion and 
extra-near disparity calculation problems.  

In the remainder of this paper we will present a brief 
overview of traditional 3D parametric model fitting and our 
new approach based on grayscale correlation of range image 
(Section 2), a detail implementation of our approach (Section 
3), and experimental results in the purview of an occupant 
head detection system (Section 4). 

II. 3D PARAMETRIC MODEL FITTING ALGORITHM 

A. Problem Description 
Given an image frame (e.g. range image or edge image), the 

3D parametric model fitting problem is to find the 3D 
parameters (e.g. 3D position and orientation, scale factor, 
intrinsic parameters, etc.) of the model. Figure 1 shows an 
example of finding an ellipsoid in a range image. The total 
number of ellipsoid 3D parameters is 9 including 3 rotation 
and 3 translation parameters, as well as 3 scaling factors along 
X, Y and Z-axis.  

Research on 3D model fitting leveraged earlier work done 
in (Lowe[10], 1991) for generic 3D parametric model fitting. 
Image formation is modeled as a mapping of a 3D model into 
the image. Although the inverse mapping is non-linear due to 
the trigonometric functions of perspective projection, the 
resulting image changes smoothly as the parameters are 
changed. Therefore, local linearity can be assumed and 
several iterative methods can be employed for solving 
non-linear equations (e.g. Newton’s method). Upon finding 
the solution for one frame, the parameters are used as the 
initial values for the next frame and the fitting procedure is 
repeated. The traditional approach can be very computational 
and time consuming and is not adaptive to the real-time 
required occupant head detection application. 

B. Our Algorithm 
With the assumption of local linearity, we can prepare a 

lookup table of possible combination of all parameters except 
3D position (X, Y, Z), which will be determined by the later 
process of grayscale correlation. Rotation and scale 
parameters are used to generate the LUT in the case of 
ellipsoid detection. To simplify the process, only certain 
combination of rotation and scale parameters are adopted by 
the constraint of occupant physical position and posture. Here, 
3 rotation angles {0, +45°, -45°} along X and Z-axis are 
combined with 3 different ellipsoid shapes. Scale factors are 
defined by the possible movement range of the head. 

Equation of 3D ellipsoid is shown as follows: 
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where iii  are scale parameters and are the 3D 
world coordinates of ellipsoid center. 
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Perspective projection equation (2) is adapted to project 3D 
ellipsoid surface points to the 2D image coordinates. 
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where camera’s intrinsic parameters like lens focal  
and optical center coordinates are obtained through 
some preprocessing steps like camera calibration. Rotation 
matrix elements  are retrieved from the parameter 
LUT. 
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     To match with the disparity image, we use the following 
normalization equation to convert range data into intensity 
value. 

     )12(),( min −×= N
Z
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where min  is the minimum distance from ellipsoid surface 
points to camera. N is the bit-value of intensity image. 

Z

 Figure 2 shows some examples of models generated from 
the parameter LUT.  

Model

Figure 1. Searching a 3D model in a range image 

 
Figure 2. Parametric models of range data 

C. 3D Model Fitting 
Once the 3D parametric models are generated, we can 

simply adapt the traditional grayscale correlation algorithm to 
find a match between models and target range image. 

2D grayscale correlation algorithms are well studied for 
decades and many acceleration techniques like multi-level and 
pyramid sub-sampling technologies have been proposed. To 
add tolerance to intensity change, we use the normalized 
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grayscale correlation (NGC) equation to find the best 
matching from multiple models.  
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where  and  are intensity values of model 
image and normalized target image respectively. S is the 
effective pixel number. Matching score 
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1=r  refers to the 
perfect match and  means not match at all. 0=r
    The normalization process on the target image is a general 
histogram smoothing as described in equation (5). 
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where  is the original disparity value on pixel (x, y), 
maxmin  are the minimum and the maximum disparity value 

in the region. N is the bit-value of disparity map. 
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    Result of our grayscale correlation algorithm presents not 
only the position but also the best model, which indicates the 
rotation and scale parameters simultaneously.  

III. SYSTEM IMPLEMENTATION DETAILS 
The system is designed as a co-planar stereo camera with 

constructive infrared illumination light source. The stereo rig 
is mounted on the center roof console near the back mirror. 
Generally it should have few centimeters baseline and 
wide-angle lens that can overview the whole passenger’s 
cabinet.  

A. Constructive Illumination Lighting System 
A fast stereo algorithm [11] is adapted to generate disparity 

map with two synchronized video source input at 30 frames 
per second. To overcome the uneven illumination and shadow 
problem for real outdoor environment, an infrared pulsed 
illumination lighting system is installed, combining with 
band-pass filtered lens to cutoff all un- necessary wavelength 
light.  

A disadvantage of block matching based dense disparity 
algorithm is the aperture problem. The aperture problem arises 
as a consequence of the ambiguity of one-dimensional 
intensity on left and right image through out the horizontal 
Epipolar line. No disparity data can be derived for an even 
intensity region like dark or over lighted regions. 

We tested different kinds of light patterns, and the cross 
pattern of light-dark-light with an angle of ±45 degree showed 
the best performance. Figure 3 shows an example of disparity 
map result without/with constructive light. 

B. Background Subtraction 
To eliminate passenger’s seat, door and other interior 

regions from the range image, background subtraction is 
carried out for every new frame. Background range image 
were generated as an average of 30 frames’ range image for 
the empty seat. Automatic background generation will be 
further implemented according to the sensors’ output of seat 
lateral position and reclining angle.  

Post-processing includes binarizing, morphological process, 
and blob analysis. The biggest blob that satisfies the position 
and area constraints will be extracted as occupant body’s 
candidate region. Figure 4 shows the background subtraction 
results. 

(a) Without constructive light 

(b) With constructive light 

Figure 3. Disparity map result without/with constructive light 

      (a)Original disparity map       (b)Background disparity map 

(c)Binarized subtraction result       (d) Extracted ROI 
Figure 4. Background subtraction result 

 
 
 

C. Composition of Multi-resolution Disparity Maps for 
Near Distance Disparity  
Fast stereo processing algorithms [11] always use a fixed 

maximum disparity value to accelerate the matching process. 
For example, a maximum disparity of 32 pixels leads to the 
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maximum searching distance of 32 pixels. Disparities over the 
maximum disparity will be omitted. 

According to the basic equation of stereo disparity shown in 
(6), the maximum distance leads to the minimum detection 
distance, as the baseline b and lens focal f is unchanged. 

z
fbxxd rl =−=                                                               (6)  

Figure 5 shows an example of extra-near distance target 
that cannot obtain disparity data. 
     To enlarge the disparity range for extra-near target 
detection, we propose a composition algorithm of multiple 
resolution disparity maps. A lower resolution stereo image 
pair will generate a wider detection range disparity map since 
its pixel size is bigger than the general resolution image pair. 
Figure 6 shows the composition result of disparity maps 
generated from 160x120 and 320x240 stereo images. 

D. Foreground Segmentation with Body Center Line 
Extracted occupant body ROI may include multiple 

ellipsoid-liked regions which has similar size with the head, 
such as shoulders, waving arms, and other objects. Examples 
are shown in Figure 7. In this paper, we extended Russakoff’s 
concept [12] of body center line to 3D region segmentation to 
eliminate the ambiguities. 

Assuming passenger is always sitting on the seat, so that the 
lower part of body’s ROI is relatively stable and can be used 
as the reference part to segment the ROI. Detail steps are 
shown as follows: 

 
Figure 5. Near distance target 

    
(a)                          (b)                                         (c)  

(a)disparity map generated from 160x120 stereo images, (b) from 320x240 
stereo images, (c)Composition of above disparity maps 

Figure 6. Composition of multiple resolution disparity maps 

 
Figure 7. Examples of ellipsoid-liked objects extracted from body ROI 

 
Step 1. After the preprocessing steps described in the 

above sections, calculate the so-called horizontal 
median points on each row of the binary ROI image 
based on Russakoff’s algorithm. 

Step 2. Detect the upper center position C1 and lower 
center position C2 along the body center line, where 
C1 and C2 are on the rows of 1/5 and 4/5 of the ROI 
height respectively as shown in Figure 8(a). 

Step 3. If the slope angle of line C1C2 is less than 
threshold k (the occupant is in the normal seating 
position), then we can simply vertically cut off the 
regions that are further than a predefined distance to 
C1C2’s middle point C3. An example is shown in 
Figure 8(b). 

Step 4. If the slope angle is larger than threshold k (the 
occupant is in the leaning position), the cut-off lines 
will be parallel to line C1C2, while keeping the 
predefined distances.  

 
(a) Body Center Line 

   
(b)  Foreground segmentation result for waving arms 

    
(c) Filtering result by disparity constraint 

Figure 8. Foreground segmentation with body center line 
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Step 5. Segmented foreground region will be further 
filtered by the constraint of disparity. The ideal 
disparity data on each row i can be calculated through 
the following linear interpolation equation. 
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This constraint will eliminate most of the outliers and 
other objects in front of the body ROI. An example is 
shown in Figure 8(c). 

Step 6. The result image will be further normalized for 
the 3D model fitting process described in Section II. 

IV. EXPERIMENTAL RESULTS 
    The proposed algorithm was tested under various sizes of 
passengers and different postures that occupants may behave 
during the normal driving situations. The stereo vision system 
was equipped with two gen-locked CCD cameras. Stereo 
images were captured by a Matrox Meteor2/MC frame 
grabber board and all processing was done by a Pentium IV 
2.66GHz PC. The stereo baseline is 64 mm, and the lens focal 
is 2.8 mm. 320x240 disparity maps were generated at the 
speed about 25 ms/frame with the maximum disparity of 32 
pixels. 
   Totally 16 adults testers including 12 males and 4 females 
were chosen for the test. With their height distributed from 
153cm to 183cm and weight distributed from 50kg to 80kg, 
the testers were supposed to cover the main range of adult 
passenger sizes. They were asked to perform all kinds of 
postures that could be happened during the real driving 

situations, like readings, waving arms, drinking, etc. Each test 
was continuously captured for 1500 frames. Table 1 shows the 
test results of different situations. 

Tester 1 to 8, who were sitting straightly in the normal 
position, showed the best performance near 100% correct 
detection rate. Tester 9 to 16, who were asked to perform 
different kinds of movement and postures, still showed a very 
high detection rate about 97.5%. The overall correct detection 
rate is 98.7%. Some very difficult situations like partially 
occluded target, extra-near target and multiple ambiguities 
were also correctly detected. Figure 9 shows some examples. 

 

 

 

 
TABLE I 

TEST RESULTS OF DIFFERENT SITUATIONS 

Tester 
(Posture) 

CORRECT 
DETECTE

D 

False 
Detected 

Not 
Detected 

Rate of 
Correct(%)

 

 
(a)original image      (b)detection result 

Figure 9. Occupant Head Detection Results 
 
     False detection (<0.2%) were happened under the 
situations of occlusion and head was not detected (<1.2%) 
mostly due to the situation that occupant was out of position. 

1(N) 1500 0 0 100 
2(N) 1500 0 0 100 
3(N) 1500 0 0 100 
4(N) 1500 0 0 100 
5(N) 1500 0 0 100 
6(N) 1500 0 0 100 
7(N) 1500 0 0 100 
8(N) 1478 9 13 98.5 
9(A) 1500 0 0 100 
10(B) 1477 17 6 98.5 

1416 7 77 94.4 11(C) 

12(D) 1369 2 129 91.3 
13(E) 1500 0 0 100 
14(F) 1497 0 3 99.8 
15(G) 1460 0 40 97.3 
16(H) 1484 8 8 98.9 
TOTAL 23681 43 276 98.7 

Postures: N=Normal siting position, A=Reading book,   
 B=Playing basketball, C=Moving body in different direction,   
 D=Waving arms around head, E=Reading newspaper,   
 F=Talking with a mobile phone, G=Drinking water, H=Wearing a cap. 
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Figure 10 shows some false examples. 

 

 
 

Figure 10. Falsely Detected Examples 
 

    False detection and miss detection generally happen within 
very short period of time. Tracking of head position in both 
intensity image and disparity map will largely help to locate 
the head position even for fully occlusion case. Tracking can 
also reduce searching area by predicating head position. Some 
preliminary tests were carried out and showed very satisfied 
results.  

V. CONCLUSION 
Occupant head detection is sensitive to the variation of 

illumination, occupant posture and body size. To achieve 
real-time performance while keeping a high accuracy of 
occupant head detection, this paper presents a fast 3D 
parametric model fitting algorithm base on grayscale 
correlation of range data. Evaluation of the method shows 
over 98% correct head detection. Combining with head 
tracking algorithm on intensity image and disparity map, the 
proposed algorithm will perform near 100% correct detection. 
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