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Abstract— We propose a system for estimating driver atten-
tion levels using Visually Evoked Potentials (VEP), computed
from the EEG signals of the visual cortex. We investigate the
use of both Steady State VEP (SSVEP) and Pattern Onset VEP
(POVEP) for this purpose. The subject fixates on a flickering
stimulus, generating a Steady State VEP (SSVEP). Occasionally,
a random stimulus is flashed on the screen, and the subsequent
POVEP is also analyzed. It is seen that the SSVEP is related
to the attention levels of the subjects. The sudden stimulus
also generates local maxima/minima values for the POVEP, at
the P2 and N2 components. Entropy measures of the frequency
response of both the responses could also be used to characterize
the occurrence of stimuli. We also propose a system architecture
for a Driver Alertness system, which fuses the above process
and a vision based traffic analysis system, to alert the driver
well in advance of any decrease in attention.

Index Terms— Driver Attention, Visual Evoked Potential,
SSVEP, Brain Computing

I. INTRODUCTION

Driver fatigue has been identified as the major cause of

road accidents in recent years. According to the National

Sleep Foundation, around 51% of drivers have driven a

vehicle while feeling drowsy and 17% have fallen asleep

behind the wheel [1]. Fatigue and the resulting lack of

attention reduce the alertness levels of the driver and cause

a huge increase in reaction times, which might be critical in

tasks requiring immediate response.

Nowadays, the focus of road safety has shifted from colli-

sion protection to prevention. Many new accident avoidance

techniques have been proposed, ranging from lane detection

mechanisms [2], [3], traffic analysis vision systems [4],

vehicular networks [5], [6], and tiredness estimation systems

[7], [8]. Lane detection mechanisms rely on vision based

systems, where cameras mounted on the side of the car track

the separators painted on the road, to determine whether the

driver is committing errors [2]. Traffic analysis systems [4]

analyze the amount of traffic present on the highway. They

can also identify objects, like pedestrians, in front of the

car. Vehicular ad-hoc networks [6] rely on wireless sensors

installed in every car on the road. These sensors ‘talk’ to each

other, passing important information and avoiding collisions.

Other proposed techniques attempt to measure whether

the driver is drowsy or feeling tired. This is done using

either vision-based or physiological techniques. Vision based

B Srinath Reddy is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario N2J 4J1, Canada
bsreddy@engmail.uwaterloo.ca

Otman A. Basir is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario N2J 4J1, Canada
obasir@uwaterloo.ca

Susan J. Leat is with the Faculty of Optometry, University of Waterloo,
Waterloo, Ontario N2J 4J1, Canada leat@uwaterloo.ca

approaches rely on eye movements to estimate drowsiness

levels [7]. Video cameras mounted in the car track the eye

closure speed, saccadic eye movements, and the head move-

ments of the driver [7], [9]. However, these techniques suffer

from the limitation of varying light and driving conditions.

Physiological methods rely on heart rate, electro-

oculographic (EOG), and electroencephalographic (EEG)

signals [1], [10]–[12]. EOG studies have observed a decline

in saccadic frequencies, and an increase in eye blink duration,

with tiredness. EEG signals, especially the slow alpha waves,

are shown to have a positive correlation with sleep patterns

[1]. They have been shown to be more effective than eye-

activity based methods in tracking instantaneous fluctuations,

on shorter time windows.

EEG signals can help provide a reliable estimate of the

driver alertness levels. Daimler-Chrysler have developed a

driver alertness system, Distronic [19], which evaluates the

EEG patterns of the driver under stress. Lin et.al. [1] propose

a system using the EEG signals of the driver during a driving

simulation. They perform Independent Component Analysis

(ICA) on the various channels and correlate the alpha band

(8 - 13Hz) frequency components with the performance of

the driver, to show that these frequency bands have a high

positive correlation with the drowsiness level of the driver. A

possible drawback of this approach is that the driver may be

fully awake, but still may not be paying attention to the road

due to some other distractions, like cell-phones, passengers,

music etc. The above system is not able to identify such

cases, though these are also possible sources for driving

errors.

The first step towards solving these issues is to investigate

the relation between attention levels of a user and the EEG

signals generated in the visual cortex. In this paper we

propose a system for estimating the attention levels of the

subject. We make use of the Visual Evoked Potentials (VEPs)

generated in the visual cortex for our system. VEPs have

been used successfully in many Brain Computing devices

[13]–[15]. Kremlacek et.al. [23] have also developed a model

for VEP signals using three damped oscillators. Most Brain

Computer Interfaces (BCI) systems use either the Steady

State VEP (SSVEP) or the Flash VEPs (FVEP) for user

interaction. SSVEP is a periodic response generated in the

brain, at a presentation of a repetitive stimuli. The frequency

of the response matches that of the stimulus, and extends

over a very narrow bandwidth. SSVEP is a reliable measure

of the user response, and has been used in many BCI systems

for conveying commands or selecting options [13], [15]. The

user makes a selection from the options displayed on the

screen by concentrating on one of them, due to which the
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SSVEP shows a maxima at the target frequency. Flash-VEP

(FVEP), on the other hand, are short responses to flash or

OFF-to-ON stimuli, which occur only once. FVEPs are time

and phase locked to the flash onsets of the input stimulus, and

thus can be used to detect occurrence of stimuli. Lee et.al.

[14] use FVEPs to control the movement of a cursor on the

screen. Kramarenko [24] have also analyzed the validity of

spectral analysis for VEPs.

In our approach, we use a flickering stimulus display

to generate a SSVEP response from the subject, which is

analyzed over the duration of the experiment. It is seen that

the SSVEP is related to the attention levels of the subjects, At

random time instances, an instantaneous stimulus is flashed

on the screen, away from the central fixation point, and the

corresponding response is also measured. It is found that

the occurrence of the stimulus, causes a specific response

in the EEG signals within 200 msec of the event. This

response is also called the Pattern Onset VEP (POVEP), and

is identifiable when the subject is attentive. Shannon and

Renyi entropy measures of these frequency responses are

used as an evaluation measure.

The rest of the paper is divided as follows: Section 2

describes the proposed Driver Alertness System, while

Section 3 describes the experimental approach used in our

work. The results are discussed in Section 4, and Section 5

discusses the conclusions and future work in this area.

II. PROPOSED DRIVER ALERTNESS SYSTEM

The Driver Alertness System is a combined multimodal

system, utilizing vision based and physiological approaches

for evaluating the alertness of the driver. The proposed

system could be used in a Driving Test Simulator, under

simulated levels of traffic and stress, to investigate the VEP

response and feasibility of such a system in a near real-world

environment.

The vision system consists of sensor cameras mounted

outside the car, which analyze the traffic on the road,

and identify any necessary signs or stimuli, that should be

attended to by the driver. Yazdi [16] and Wang et.al. [2]

have already proposed systems which monitor the outside

traffic and lanes on the road for driver assistance. On similar

lines, the proposed system can detect important signboards,

another vehicle that suddenly cuts across the car, or the

amount of traffic on the road. Thus the vision system can

identify situations requiring driver attention, though such

situations may or may not be dangerous in themselves.

The Brain Computing Interface consists of a EEG neuro-

data acquisition sensor placed over the driver’s head. The

unit continuously measures the EEG signals of the driver

at different locations of the brain. Both the sensors convey

data to a central fusion system, which fuses the information

from the two and evaluates the performance of the driver. It

can estimate whether the driver is paying attention or not,

based on the combined information. To assist the system in

stimulating EEG responses, there is a light source installed

Fig. 1. The driver alertness system. It consists of the vision based traffic
analysis systems, a light source for generating POVEP in the driver, and the
EEG monitoring unit for collecting the brain response.

on top of the rear-view mirror targeted towards the driver’s

eyes. The whole setup is shown in Figure 1.

The system works as follows: the vision sensors continu-

ously analyze the traffic conditions and the road signs and

other driving cues. The system is able to classify various

scenes, and identify important cues. The EEG sensor, placed

over the visual cortex of the driver at occipital sites O1

and O2, monitors the EEG signals at all times to analyze

the steady-state VEP. Whenever the vision system identifies

a situation requiring driver attention, like heavy traffic or

pedestrians on the road, it sends a signal to the system, which

activates a low-brightness light source, placed over the rear-

view mirror. A flash of light is pointed towards the driver at a

suitable eccentricity. The resulting Visually Evoked Potential,

Pattern-Onset VEP (POVEP), is measured and averaged over

several successive instances.

The SSVEP can potentially be used to estimate the atten-

tion level of the driver. In addition, an alert driver would

show a definite response to the POVEP stimuli every time

such a flash is shown. Thus the presence of POVEP could

help indicate the driver alertness state. If the person is drowsy

or distracted due to some reason, the system would not

register any such response over time. The proposed system

is potentially more robust for a driving scenario, since a

driver may be awake, but might not be attentive to the road.

Since such a case may also be a potential cause of dangerous

driving, it is beneficial to identify such scenarios and give

feedback to the driver by way of a mild beep or jolt.

To test the feasibility of such a system, it is necessary

to first investigate the effect of steady state and flash

stimuli on a subject’s EEG response. In this paper, we have

explored the effects of such stimulus on the VEP response

of subjects in a dark-room laboratory environment. We

analyze the steady state response continuously. We also
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attempt to identify the POVEP in the presence of SSVEP. It

is seen that both the SSVEP and POVEP could be potential

measures for estimating the alertness levels of subjects. The

details of the experiment are given in the next section.

III. SETUP TO EVALUATE POVEP RESPONSE

The experimental setup was designed to evaluate the

response of a subject to Pattern-Onset VEP, in a laboratory

environment, to determine the suitability of such an approach

for further tests in driving simulators.

A. Experimental Setup

Subjects were seated about 56 cm from a CRT monitor.

The refresh rate of the monitor was fixed at 60 Hz. The

steady-state stimulus consisted of a rectangular grating, with

alternate white and black bars. This pattern was presented

for 5 frames, and the negative of this pattern (the bars

interchange their colors) was presented for 1 frame, giving

a flicker rate of 10 Hz. This frequency was chosen because

it showed a high signal-noise ratio [13]. At random time

instants, a visual stimulus, a letter between A-H, was shown

for 100 msec. The stimulus was situated at a random location

10◦ to the central fixation point, lying in the peripheral vision

of the subject. The width of the stimulus was kept at 1◦. This

visual stimulus generated a pattern-onset VEP in the visual

cortex. A screen-shot of the stimulus is shown in Figure 2.

Most Event Related Potential studies require target detec-

tion or spatial localization. The user responds to the target

stimuli by pressing a button [17], or has to concentrate on a

desired target out of a number of possible options [13]. In our

experiment, visual stimuli in the form of letters were used as

a measure of accuracy. The subjects were instructed to count

the number of times a stimulus was shown. This gave us an

approximate estimate of the alertness of the subject during

each session.

10 degrees

1 deg

Fig. 2. The stimuli used for measuring the response of the subjects to the
visual stimuli. The central pattern is flickering at a frequency of 10 Hz. The
visual stimulus (a letter between A-H) is shown for 100 msec. The duration
is thus chosen so as to reduce the effects of saccadic eye movements.

For recording the EEG signals, a Grass bio-potential

amplifier was used followed by a National Instruments DAQ

system to digitize the signal at sampling rate of 512 Hz. The

EEG signals were recorded using a Grass gold electrode from

the O1 or O2 positions on the primary visual cortex, based on

the international 10-20 system. The channel was referenced

to the frontal site Fz, with the ground on the left earlobe.

The measurement signal was amplified (50k), line filtered at

60 Hz to remove line noise, and then band-pass filtered over

1-100 Hz. This signal was then sampled by the DAQ unit

and saved for further processing.

B. Procedure

Four subjects aged between 22 and 27 participated in the

study. All had normal or corrected to normal vision. Each

subject underwent 12 experimental trials, each lasting about

2 min. The trials were all conducted with very little time

between them. This was done to induce monotony in the user,

causing lack of attention in the latter sessions. No pattern

onset visual stimulus was shown in the first 10 sec of every

trial, to allow the subject to get accustomed to the steady

state pattern, and to allow the SSVEP to stabilize. During the

remaining duration in each trial, a visual stimulus (between

A-H) was shown at random time instants at a distance of 10◦.

Each such presentation of stimulus lasted for 100 msec. This

was done to eliminate the effects of saccadic eye movements,

which have a latency of around 100-200 msec [18]. The

subject was required to count the number of times a visual

stimulus was shown in each trial. No feedback about the

subject’s performance was given in between trials, so as not

to bias or notify the subject.

C. Feature Extraction and analysis

The EEG signals are acquired over the 2 min trials, at

a sampling rate of 512 Hz. The signal is low pass filtered

at 60 Hz using a third order elliptic filter, to eliminate high

frequency line noise. The resulting time series data is divided

into 512 sample epochs with a 256 point overlap, denoting

contiguous 1 sec frames of EEG data. The Fast Fourier

Transform is computed for each frame and averaged over

a trial for analyzing the steady state frequency spectra over

the entire duration of the experiment. For the analysis of the

stimulus response, POVEP, the time response for 250 msec

after the occurrence of the each stimulus is extracted, and

the frequency spectra is also computed for that time frame.

The Shannon and Renyi Entropies [21] have also been

computed for the steady state response and the stimulus

response, to analyze the responses and as possible measures

for estimating attention. Entropy has also been used as a

measure to eliminate artifacts from EEG signals in Greco

et.al. [20]. In this paper we have used Shannon and Renyi

entropies for analysis of the signals.

The standard shannon entropy measure over an incomplete

probability distribution is defined as:

Hs(x) =
−1

w(p)

∑

i

pilog2pi (1)
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Fig. 3. Power Spectra plots for the steady state response for two trials. In
the left trial, the accuracy of the subject was 0.91, while it was 0.65 for the
right trial.
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Fig. 4. Plot of the entropy of the SSVEP vs. accuracy for subject 1. The
correlation between the two quantities is -0.67

where the total probabilities used in the entropy computation

sum up to: w(p) =
∑

i pi ≤ 1.

Renyi entropy was proposed by Renyi as an alternate

formula for computation of the entropy of incomplete prob-

ability mass distributions. The formula proposed by him for

denoting the entropy of a a distribution is:

HR
α (p) =

1

1 − α
log2

∑
i pα

i∑
i pi

(2)

The renyi entropy computation can be used in the same

form for incomplete distribution also. The value of α is

chosen as 3, since it has been shown to be an optimum

value for time frequency signals by Baranuik et al. [21].

IV. RESULTS AND DISCUSSION

A. Steady State Response

The power spectra of the steady state responses is shown

in Figure 3. As mentioned earlier, the subjects are asked

to count the number of times the visual stimulus is shown

during a session. This gives an estimate of the attentiveness

of the subject during a particular session. For an attentive

subject, shown in Figure 3, the power spectra is narrow and

is also characterized by a maxima at 10 Hz, the flicker rate of

the steady pattern. For an inattentive subject, the peak at 10

Hz is no longer prominent. Also the SSVEP is more spread

out over the spectrum.

This feature can also be observed in the comparison of the

shannon entropy of the frequency spectra and the accuracy

TABLE I

THE CLASSIFICATION RESULTS FOR THE 4 SUBJECTS

Classification Subject

1 2 3 4

Accuracy (%) 75 91 53 71

of the subjects. Since the SSVEP spectra is more spread

out for inattentive subjects, the entropy values tend to be

higher for trials with lower accuracy. The plot for entropy

values and accuracy levels is shown in Figure 4. We see

that increasing accuracy values correspond to lower entropy

values. The correlation value between entropy and accuracy

is −0.67. Thus the entropy of the SSVEP plots can be a

potential measure of the attentiveness of the subjects.

To investigate the feasibility of such an entropy-based

measure as a means to characterize the attention levels, a

basic classification model using feed forward neural net-

works was developed using a leave-one out cross-validation

scheme [22]. The leave-one-out cross validation scheme is

a simplified version of the popular k-fold cross validation

method used by many researchers. In this method, each

training case is omitted in turn and the network is trained on

the remaining test set. The network is then tested using the

omitted sample as the test case. This is repeated for all the

cases.

In our test, we set an empirical threshold of 0.8 as a

threshold attention level, resulting in a yes/no division of the

test cases. The input feature vector for each trial consisted

of the average Shannon entropy for that trial, averaged over

contiguous time epochs of 512 samples, or 1 sec each, that

constituted that particular trial. The classifier used was a

back-propagation feed-forward neural network consisting of

one hidden layer with 10 nodes in the hidden layer, with a

tan-sigmoid transfer function. The results of the classification

are shown in Table I.

The results are encouraging, though the classifier accuracy

varied a lot across subjects, especially for subject 2. This

could be due to the fact that the attention levels for subject

2 was very high across all trials, hence the test cases were not

diverse enough. While the results show a definite potential

for Entropy based characterization measures to be used for

estimating attention, further and more detailed tests should be

done using a larger subject base, to comprehensively estimate

the attention measures.

It is also observed in our results that though the shape

of the plots is similar, as can be seen from Figure 3, the

magnitude of the power spectra varies between experimental

sessions. This could be due to the different EEG activity

levels in the subjects’ visual cortex. This could be a further

area for research, especially for Brain Computer Interfaces.

B. POVEP response to flashing stimuli

The POVEP has been analyzed as an added measure

for estimating the attentiveness of the subjects. The EEG

signal immediately after the presentation of the each pattern
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Fig. 5. The stimulus response of an attentive and inattentive subject to the
pattern onset visual stimulus. The peaks P1, P2, and the valleys N1, N2 can
be clearly seen in the left, while they are no longer prominent in the right.

onset stimulus has been recorded and averaged over all

such occurrences of stimuli. Flash-VEP and POVEP induced

by flash of visual stimuli consist of two major peaks and

two corresponding valleys, within 200 msec of the onset

of the stimulus [14]. These are termed as P1, P2, N1 and

N2 respectively. Lee et.al. [14] have used the amplitude

difference between N2 and P2, Ampp−v, to identify target

LED from an array of flashing LED sources.

The stimuli response for POVEP for a time window of 1

sec following the occurrence of a visual stimulus is shown

in Figure 5. The major peaks and valleys can all be observed

within 200 msec of the stimulus. Thus, the first identifying

feature of pattern onset VEP is the presence of these peaks.

This approach has already been used in a few works in BCI

[14]. In the case of a subject not paying attention (accuracy

level of 0.65) to the visual stimulus, the extracted signal

does not contain the target N1, N2, P1, P2 peaks within

the 200 msec window, as seen in second plot of Figure 5.

However, this observation is not very consistent over the

various sessions, and in a few cases, subjects with very high

accuracy levels also did not register the desired peaks. This

is being investigated further, to improve its performance in

estimating attention.

However, a major observation about the POVEP stim-

ulus response is that it has predominantly low frequency

components. To investigate this, we analyze the segments

for 500 msec following the event. The fourier transform is

computed for these segments, and the average shannon and

renyi entropy values are computed for each session, over the

frequency range 0-50 Hz. The entropy values for the steady

state spectra are computed over the standard 1 sec windows

and averaged over each session.
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Fig. 6. Entropy plots for the a) Shannon and b) Renyi entropy values
of FFT of the steady state user EEG over the entire trial and the average
POVEP response on stimulus display.

The Entropy plots for all the 12 experiments for one

subject are shown in Figure 6. The plots show the entropy

levels over the entire session and the entropies for the

POVEP averaged over the number of stimulus occurrences.

It can be seen that in all the experimental sessions,

both the Renyi and Shannon entropies are higher for

the POVEP response, as compared to the steady state

frequency response. This is to be expected since the pattern

onset response has more power concentrated in the lower

frequencies, hence the entropy is expected to be higher for

the stimulus responses. This could be used as an added

feature for identifying the response to sudden stimulus, and

estimating the attention of the subject.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a system for estimating

attention levels of subjects in performance based tasks. Such

a system would be especially useful for alertness systems,

like the proposed Driver Alertness System, for assisting and

warning the driver well in advance. The Pattern Onset VEP

might be used to characterize response to a sudden visual

stimulus. The absence of such a stimulus response could

generate a first stage of warning levels, wherein it can give

a beep, or a mild jolt to the driver to ensure attention. The

contributions of our work can be summed up as:

- Description of a potential Driver Alertness System for

use in vehicles, especially during driving on highways.

- Development of a test bed for evaluating the subject

attention in laboratory environment, in presence of a

constant and monotonous flickering pattern.

- Analysis of steady state response and the stimulus re-

sponse using frequency spectra and Shannon and Renyi

entropy measures, to demonstrate the utility of these

response in estimating attention.

However, the above system is not completely robust, and

some inconsistencies, especially in POVEP response have

been observed. Also the current test bed uses a flickering

pattern to reinforce the subject’s attention towards the test

screen. For integration into an actual driver alertness system,

the current approach would also have to provide results in a

noisy environment. A few possible areas for future research

are:

- Investigate VEP and EEG responses under simulated

and near real-world conditions and using a large number

of test subjects under varying levels of stress.

- Test the system in a Driving Simulator for estimating

the efficiency of the approach for cluttered scenes and

simulated traffic conditions.

- Enhance the robustness of the system, for accurate

identification and characterization of stimuli responses.

This can be done by using multiple channels, placed at

different locations on the scalp, to gather more informa-

tion about the VEP response. Independent Component

Analysis (ICA) and Wavelet Decomposition are possible

techniques for better analysis of the time-frequency

characteristics of the signals.
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- Explore the effect of different stimulus sizes, and vary-

ing eccentricities on the strength of the response.
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