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Abstract— In this paper, we address the problem of joint
tracking of the direction of arrival (DOA) and range parameters
of moving sources in the near-field of an antenna array with
the Expectation-Maximization (EM) based recursive algorithm.
The main characteristic of the proposed recursive EM approach
is to include computation of the gradient of the log-likelihood
and some form of the complete-data Fisher information matrix.
The proposed recursive algorithm in this work assumes that
the parameters of interest are described by a linear polyno-
mial model. Simulation results of the suggested algorithm are
also presented in order to illustrate the performance of the
algorithms.

I. INTRODUCTION

The problem of source localization using passive sensor ar-

rays has various applications including radar, sonar, wireless

communications, seismology, and electronic surveillance.

However, the majority of the localization techniques deals

with the case in which the source is assumed to be in

the far-field of the array. If the sources are located close

to the array (i.e. near-field), the inherent curvature of the

waveforms needs to be taken into account. Therefore, the

location of each source has to be parameterized in terms

of the direction of arrival (DOA) and range parameters. In

recent years, there has been lots of research effort on the

near-field source localization techniques. Especially, due to

many attractive features suitable to the near-field scenario

such as consistency, asymptotic unbiasedness, and asymp-

totic minimum variance, ML approaches have been proposed

recently [1]. Moreover, several techniques have been studied

to reduce the complexity of the ML estimator including

Expectation-Maximization (EM) iterative technique [2], [3].

EM algorithms for estimating constant DOA parameters were

discussed in [4], [5], [6], [7]. Furthermore, recursive EM ap-

proaches are maintained because of the time consuming and

massy calculation characteristic of the EM algorithm. After

gathering only a little observation data, the recursive EM

algorithm is appropriate for on-line processes i.e. tracking,

while the conventional EM algorithm is more suitable for

off-line processes. In addition, the recursive version of the
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EM algorithms was also applied to the time-varying DOA

estimation problem [8],[9],[12].

In this paper, we primarily propose a recursive approach to

perform maximum likelihood estimation of the time-varying

parameters of moving sources in near-field of the antenna

array. The proposed approach is based on the recursive

form of the EM algorithm which is based on the stochastic

approximation procedure applied directly on the parameters

of interest. It involves computation of the gradient of the

log-likelihood and some form of the complete-data Fisher

information matrix [9].

II. SIGNAL MODEL

We will first describe the time-varying near-field signal

model in the sequel. In the near-field scenario under consid-

eration, it is assumed that the source signals are collected

by a uniform linear array. M narrow band signals from

time-varying directions θ(t) = [θ1(t), . . . , θM (t)]T at an

array of N sensors. r(t) = [r1(t), . . . , rM (t)]T represents

the unknown range parameters of the mobile sources with

non-linear movement. Moreover, Θ(t) = [θT (t), rT (t)]T

represents the parameter super-vector to be estimated cor-

responding to the moving sources. Thus, the signal model

for the data observed at the output of the sensors at time

instant t is x(t) ∈ C;

x(t) = H(Θ(t))s(t) + u(t), t = 1, 2, . . . (1)

where the steering matrix is

H(Θ(t)) = [d(Θ1(t), . . . ,d(ΘM (t))] ∈ C
N×M . (2)

Steering matrix consists of M steering vectors d(Θm(t)) ∈
C

N×1, m = 1, . . . ,M which is a function of unknown

parameter vector Θm(t) = [θT
m(t), rT

m(t)]T . For the mth

source with an array of N sensors, the steering vector can

be written as

d(µm(t), ζm(t)) =





ej(kminµm(t)+k2

min
ζm(t))

...

1
ej(µm(t)+ζm(t))

ej(2µm(t)+4ζm(t))

...

ej(kmaxµm(t)+k2

max
ζm(t))





. (3)

kmin and kmax denote −N/2th and N/2th sensors, re-

spectively. The steering vector parameters µm(t) and ζm(t)
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are functions of the DOA parameter θm(t) and the range

parameter rm(t) of the mth source as

µm(t) = −
2π∆

λ
sin θm(t),

ζm(t) =
π∆2

λrm(t)
cos2 θm(t) (4)

where λ is the wavelength of wavefronts, ∆ is the distance

between two successive sensors. We also assume that M <
N , the and waveforms of the M narrow band signals s(t) =
[s1(t) . . . sM (t)]T ∈ C

M×1 are unknown and deterministic.

Noise process u(t) ∈ C
N×1 is independent, identical white

complex Gaussian distributed with zero mean and covariance

matrix νI , where ν represents an unknown noise spectral

parameter and I is the identity matrix.

Before discussing the development of the proposed REM

approach, it is helpful to introduce the assumptions on the

signal model (1):

Assumption 1: Let x(1), x(2), . . . be independent obser-

vations with f(x; ϑ) the probability density function, where

ϑ denotes an unknown parameter vector.

Assumption 2: The augmented data associated with the

EM algorithm y(1),y(2), . . . is characterized by the pdf

f(y; ϑ) [9]. The augmented data y(t), M(y(t)) = x(t) is a

many to one mapping [2]. Let ϑt denote the estimate after

t observations.

The problem taken into consideration is the estimation

of the direction of arrivals θ(t) and range parameters r(t)
of the time-varying signals recursively from the observation

x(t) for a known number of sources. With this problem at

hand, we present a recursive ML solution based on the EM

algorithm in the sequel.

III. REM ALGORITHM

We will first introduce the general EM framework and then

develop the proposed recursive EM (REM) algorithm.

A. EM Framework

The EM algorithm provides ML estimation of parameters

when maximization of the likelihood function may not be

feasible directly. It is an iterative procedure which consist

of expectation and maximization steps. Although, the EM

algorithm is a batch oriented approach, it is desirable to

process the received data in a recursive form in order to elim-

inate the delay, reduce storage requirements and increase the

computational efficiency. We therefore consider tracking of

near-field parameters via recursive form of the EM algorithm

[8].

To be able to easily apply the EM algorithm, the signal

model must be formed in terms of the observed data (in-

complete data) and a hypothetical data set (complete data).

The complete data must be chosen in such a way that: the

complete data log likelihood function is easily maximized

and the complete data log likelihood function can be easily

estimated from the incomplete data [11]. The complete

data y(t) and the incomplete data are related by a linear

transformation.

Moreover, even for the application of the REM algorithm,

the augmented data would be chosen with the following rela-

tion between the augmented data ym(t) and the incomplete

data x(t)

x(t) =

M∑

m=1

ym(t) . (5)

The augmented data is obtained via separating the array

output y(t) into its components as given below,

y(t) = [yT
1 (t) . . . yT

m(t) . . .yT
M (t)]T (6)

The incomplete data consists of M independent Gaussian

vectors having mean d(Θm)sm(t) and each with identical

covariance νmI/M , thus the augmented data is given by

ym(t) = d(Θm)sm(t) + um(t), 1 ≤ m ≤ M . (7)

Motivation behind this choice is that if one could somehow

observe each of the incident waves separately, the estimation

of its near-field parameters would be straightforward by

performing M parallel maximization.

The logarithmic likelihood function of the augmented data

is given as below [9]

log f(y(θ);ϑ) = −

M∑

m=1

[
N log π + Nlog

( ν

M

)

+

{
M

ν

(
ym(t) − d(θm)sm(t)

)H

×
(
ym(t) − d(θm)sm(t)

)}]
. (8)

(.)H denotes the Hermitian transpose of a vector. The batch

EM algorithm makes use of the log-likelihood function of

the augmented data (8) to obtain ML estimates of the source

parameters.

B. Time-varying Parametric Model

In the development of the REM approach, it is assumed

that the parameters of interest are described by a linear

polynomial model as,

θ = θ0 + tθ1 (9)

r = r0 + tr1 (10)

where θ0 = [θ01, . . . , θ0M ]T , θ1 = [θ11, . . . , θ1M ]T ,

r0 = [r01, . . . , r0M ]T , r1 = [r11, . . . , r1M ]T . The di-

rection of arrivals and the ranges are shown together

in Θ = [ΘT
1 , . . . ,ΘT

m . . . ,ΘT
M ]T and here Θm =

[θ0m, θ1m, r0m, r1m]T . Since the recursive expectation max-

imization algorithm is only used for estimation of angle

and range parameters, we therefore consider only the un-

known parameter vector Θ in the development of REM

procedures rather than the complete unknown set ϑ =
[θ(t)T r(t)T s(t)T ν]. The problem we address in the sequel

is the recursive estimation of the time-varying near-field

parameters.
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C. REM Approach

The REM approach we propose here uses the stochastic

approximation approach which can be thought as a stochas-

tic generalization of an optimization procedure namely the

steepest descent method. In this approach,the true Hessian

matrix inverse provides an adaptive step in a recursion to

lead to an asymptotically optimal search direction.

This REM algorithm maximizes the augmented log likeli-

hood using a stochastic approximation recursion at iteration

t, given by

ϑt+1 = ϑt + εtℓEM (ϑt)−1γ(x(t), ϑt) (11)

where εt is a decreasing step size and

ℓEM (ϑt) = E[−∇ϑ∇
T
ϑ logf(y;ϑ)|x(t), ϑ]|ϑ=ϑt , (12)

γ(x(t), ϑt) = ∇ϑlogf(x(t);ϑ)|ϑ=ϑt (13)

represent the augmented information matrix and gradient

vector, respectively, both evaluated at point ϑt. Moreover,

∇ϑ is a column gradient operator with respect to ϑ.

Since the augmented data associated with the EM algo-

rithm is characterized by the hypotethical data (complete

data) assumed to arrive to the sensors separately instead

of observed data (incomplete data), the augmented data ym

therefore have a more simple form than the observed data x.

Therefore, the calculation of the augmented data information

matrix ℓEM (ϑt) can be performed in a more simple way [9].

Choosing a proper step size is a critical issue for the

algorithms tracking ability. However, the step size εt is

chosen as a small positive constant in this work assuming

the sources are moving slowly.

Moreover, the gradient vector γ(x(t);νt) corresponding

to the mth source DOAs θm is given as below;

∂

∂θ0m

logf(x(t);ϑ)|ϑ=ϑt =

2

νt
Re

[
(x(t)H(Θt)st)H(d′(Θt

m)st
m)

]

∂

∂θ1m

logf(x(t);ϑ)|ϑ=ϑt =

2

νt
Re

[
(x(t)H(Θt)st)H(d′(Θt

m)st
m)

]
.

Here the indices 0m and 1m refer to θ0 and θ1 in equation 9.

Similarly, the components of the gradient vector γ(x(t);νt)
corresponding to the mth source range parameters rmth are

∂

∂r0m

logf(x(t);ϑ)|ϑ=ϑt =

2

νt
Re

[
(x(t)H(Θt)st)H(d′(Θt

m)st
m)

]

∂

∂r1m

logf(x(t);ϑ)|ϑ=ϑt =

2

νt
Re

[
(x(t)H(Θt)st)H(d′(Θt

m)st
m)

]
.

Here the indices 0m and 1m refer to r0 and r1 in equation

10. Furthermore, the derivatives of the steering matrix with

respect to DOA parameter and the range parameter are given

as follows, respectively

d′(Θt
m) = ∂d(Θt

m)/∂θm|θm=θt

0m
+tθt

1m
(14)

=
∂ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

∂θm

∣∣∣∣
θm=θt

0m
+tθt

1m

= j(−k
2π∆

λ
cosθm − 2k2 π∆2

λrm

cosθm · sinθm)

× ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

d′(Θt
m) = ∂d(Θt

m)/∂rm|rm=rt

0m
+trt

1m
(15)

=
∂ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

∂rm

∣∣∣∣
rm=rt

0m
+trt

1m

=j(−2k2 π∆2

λr2
m

cos2θm) ×

ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

To prevent the singularity and simplify the iterations instead

of the whole block diagonal matrix, ℓ̃EM (ϑt) with only

diagonal components of ℓEM (ϑt) is used in Eq. (11). The

components of diagonal matrix ℓ̃EM (ϑt) corresponding to

the mth source, m = 1, . . . ,M , DOA parameters and range

parameters are given in (16) and (17) respectively:

diag[ℓ̃EM (ϑt)]|θ0
=

2

ϑt Re
[
(−d′′(Θt

m)st
m)H(x(t) − H(Θt)st

m)H

+ M‖d′(Θt
m)st

m)‖2
]

diag[ℓ̃EM (ϑt)]|θ1
=

2t2

ϑt
Re

[
(−d′′(Θt

m)st
m)H(x(t) − H(Θt)st

m)H

+ M‖d′(Θt
m)st

m)‖2
]

(16)

diag[ℓ̃EM (ϑt)]|r0
=

2

ϑt Re
[
(−d′′(Θt

m)st
m)H(x(t) − H(Θt)st

m)H

+ M‖d′(Θt
m)st

m)‖2
]

diag[ℓ̃EM (ϑt)]|r1
=

2t2

ϑt Re
[
(−d′′(Θt

m)st
m)H(x(t)H(Θt)st

m)H

+ M‖d′(Θt
m)st

m)‖2
]

(17)

where the second derivatives of the DOA parameters and the

range parameters are given as follows, respectively

d′′(Θt
m) = ∂2d(Θt

m)/∂θ2
m|θm=θt

0m
+tθt

1m

=
∂2ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

∂θ2
m

∣∣∣∣
θm=θt

0m
+tθt

1m

=j

(
k

2π∆

λ
sinθm− 2k2 π∆2

λrm

(cos2θm−sin2θm)

)

× ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)
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+

(
k

2π∆

λ
cosθm + 2k2 π∆2

λrm

(cosθm · sinθm)

)2

× ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm) (18)

d′′(Θt
m) = ∂2d(Θt

m)/∂r2
m|rm=rt

0m
+trt

1m

=
∂2ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm)

∂r2
m

∣∣∣∣
rm=rt

0m
+trt

1m

=

(
j(2k2 π∆2

λr3
m

cos2θm) − (k2 π∆2

λr2
m

cos2θm)

)

× ej(−k 2π∆

λ
sinθm+k2 π∆

2

λrm
cos2θm).

(19)

When the Θ
t+1 parameter is estimated, the signal and noise

parameters are calculated by means of maximum likelihood

estimation with respect to Θ
t+1 and x(t) given as follows;

st+1 = H(θt+1)#x(t)

νt+1 =
1

N
tr

[
P (θt+1)⊥Ĉx(t)

]
(20)

where H(θt+1)# is the pseudo inverse of H(θt+1) and

P (θt+1)⊥ = I − P (θt+1) denotes the orthogonal com-

plement of the following projection matrix: P (θt+1) =
H(θt+1)H(θt+1)# and Ĉx(t) = x(t)x(t)H .

The update equation then has the following form,

Θ
t+1 = Θ

t + εtℓEM (Θt)−1γ(x(t),Θt) (21)

The steps of the proposed algorithm are summarized as

follows;

Step1: Take initial values of DOA, θ0 and range r0 param-

eters.

Step2: Calculate the gradient vector for DOAs and range

parameters by (9) and (10).

Step3: Calculate the ℓ̃EM (ϑt) augmented data information

matrix for DOAs and range parameters by (16) and 17).

Step4: Update the parameters by using (21).

Step5: Update the signal and noise parameters st, νt by (20)

instead θt using Θ
t.

The proposed REM approach is convenient for slowly

moving sources, however it suffers from the value of the

step-size. The step-size must be chosen properly in order to

get more accurate parameter estimates. Moreover, the signal

and noise variance are also estimated together with azimuth

and range parameters due to structure of the algorithm.

IV. SIMULATIONS AND RESULTS

The near-field scenario is taken into consideration for

deterministic signals received from unitary line array con-

sisting of 5 sensors, and 2 sources in the simulation. The

moving sources emit signals at different locations, i.e., have

different directions of arrival and range parameter values. In

this scenario, the targets (sources) are followed by 10000
time steps and the experiments are repeated 100 times. The

azimuth angle is defined in degree and, the range is defined

in ∆/λ.

Received signals and process noise are updated by using

the observed data at every time instant, and then updated

values are used while updating the parameter vector to be

estimated. The augmented data matrix and the gradient vector

are calculated at each step of the algorithms. For the step size

an appropriate value is chosen to provide the stable operation.

The proposed algorithm is tested for a range of SNR values

which changes from 0 to 40 dB. The results obtained from

the simulations are presented in related figures. In all cases,

the following MSEs are used for the θ and r

MSEθm
=

1

N

N∑

n=1

(θm − θ̂mn
)2, m = 1, 2, . . . ,M

MSErm
=

1

N

N∑

n=1

(rm − r̂mn
)2, m = 1, 2, . . . ,M (22)

Considering the proposed approach, true movement trajecto-

ries and the estimated trajectories of two non-linear moving

sources are shown in the figure 1. The tracking of both DOA

and range parameter values of the sources are illustrated in

this figure. The tracking trajectory is calculated by virtue of

the real azimuth angles and range parameter values of the

both sources and the estimated values for the time instants.

The mean square error (MSE) of the estimated direction of

the arrival values and range parameter values of the non-

linear moving sources for SNR value change from 0 to

40 dB in the near-field are given in figure 2 and figure 3,

respectively.

V. CONCLUSION

In this study, the REM algorithm is proposed to estimate

the directions of arrival and the range parameters of the

near-field sources. The computer simulations expose that the

calculation load changes with the variable step size and the

calculation process takes less time by choosing an appro-

priate step size for the proposed approach. The number of

iteration steps affects the computation time for the proposed

algorithm. For time-varying parameters, the tracking ability
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Fig. 1. True movement trajectory and estimated trajectory of the non-
linear moving sources
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Fig. 3. MSE for range parameters of the non-linear moving sources

of a stochastic approximation procedure depends mainly on

the dynamics of the true parameters, the gain matrix, and

the step size [10]. Therefore, choosing suitable initial values

plays an important role for performance of the algorithm. The

DOAs and the range parameters both change at the same time

so the movement of the objects is non-linear. the estimated

trajectories follow the true movement trajectories at close

range. It can be inferred that the MSEs for the DOAs and

also the range parameters of the sources do not decrease

too much by the increasing SNR values. Besides, the MSE

values of the range parameters of both sources is very close

to each other with changing SNR values.
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