
 

 

 

  

Abstract—This paper introduces signal processing algorithms 

of single-sensor-multi-target-tracking, sensor data fusion, and 

multi-sensor-multi-target-tracking developed for designing a 

novel lateral collision warning function. In order to improve the 

perception of road vehicles, an experimental vehicle has been 

equipped with arrays of three short range radar sensors on both 

sides. With the aid of such sensor arrangements, lateral objects 

(e.g. cars, trucks, bicycles, guard rails) can be detected and 

tracked. Thus, imminent collisions in the lateral area may be 

prevented by warning the driver when the ego-vehicle 

inadvertently drifts towards another vehicle on the adjacent lane 

or towards the road boundary, or when another vehicle 

approaches the ego-vehicle in a dangerous manner. 

I. INTRODUCTION 

here is a strong believe that the improvement of 

preventive safety applications and the extension of their 

operative range will be achieved by the deployment of 

multiple sensors with wide fields of view [18]. This paper 

presents dedicated signal processing algorithms for the 

implementation of a lateral collision warning (LCW) function 

based on wide-angled short range radar (SRR) sensors as a 

contribution to the enhancement of active safety in road traffic 

scenarios. 

For state estimation and target tracking, the Kalman Filter 

[13, 14] is employed. Maybeck [17] provides a detailed 

insight into the subject of stochastic models, estimation, and 

control. Major contributions to tracking originate from 

Bar-Shalom and his associates [1, 2, 3, 4, 5, 6]. Blackman [7] 

covers multiple-target-tracking with radar applications, and 

Blackman and Popoli [8] address the design and analysis of 

modern tracking systems. Lerro and Bar-Shalom [16] present 

a comparison between tracking with debiased consistent 

converted measurements and the extended Kalman Filter. Hall 

and Llinas [10] edited an handbook of multi-sensor data 

fusion. As a new extension of the Kalman Filter to nonlinear 

systems, the unscented transform was introduced by Julier and 

Uhlmann [11, 12]. Lefebvre et al. [15] compare the 

performance of different Kalman Filters for nonlinear 

systems. 

The content of this paper is organized as follows. A short 

description of the employed SRR sensors is contained in 

Section II, and the development of a sensor model is explained 
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in Section III. The algorithms of single-sensor-multi-target-

tracking, sensor data fusion, and multi-sensor-multi-target-

tracking are established in Section IV, Section V, and Section 

VI. Experimental results are presented in Section VII, and a 

conclusion is provided in Section VIII. 

II. SHORT RANGE RADAR SENSOR 

SRR signal processing is based on sensor arrays installed on 

both sides of the vehicle. For this purpose, three sensors are 

placed at each side with distances of 0.5m, 2.0m, and 4.0m 

from the front of the car. The sensors are orientated 

perpendicular to the side of the car. Figure 1 shows the 

locations of the coordinate systems used for SRR signal 

processing. 
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Fig. 1.  Locations of the coordinate systems used for SRR signal processing 

 

An exploded view of the employed SRR sensor from 

M/A-COM / Tyco Electronics [9] is shown in Figure 2. 

 

 

 

Fig. 2.  M/A-COM / Tyco Electronics SRR sensor 
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Technical characteristics of the SRR sensor: 

Frequency: 24.125GHz (Bandwidth: 5GHz) 

Detection cycle time: 40ms 

Antenna Detection Characteristic (3db limit): 

±8° elevation, ±65° azimuth 

Number of detectable targets per sensor: 10 

Target parameter types: range, bearing, velocity 

Distance detection range: 0.2m – 30m 

Distance accuracy: 0.075m 

Distance resolution (target resolution): 0.15m 

Bearing detection range: ±40° 

Bearing accuracy (typical): 

±5° for bearing range 0° - ±5° 

±10° for bearing range ±5° - ±40° 

III. SENSOR MODELING 

A sensor model (see Figure 3 and Figure 4) has been 

developed which considers distance detection range, distance 

accuracy, bearing detection range, bearing accuracy (for 

different bearing ranges) of the employed sensors as well as 

reflection properties of radar waves. 

 

 

Fig. 3.  Sensor model with areas of different angular uncertainty 

 

 

Fig. 4.  Sensor model with observed targets and uncertainty ellipses 

IV. SINGLE-SENSOR-MULTI-TARGET-TRACKING 

The raw sensor data is filtered and single-sensor-

multi-target-tracking is realized for each sensor independently 

by applying a Mixed Coordinates Kalman Filter (MCKF) and 

a Converted Measurement Kalman Filter (CMKF) 

alternatively. 

The state and space model of the system is given in 

Subsection A. The required matrices and vectors for the 

MCKF and CMKF are provided in Subsection B and 

Subsection C. A comparison of the alternative Kalman Filter 

approaches follows in Subsection D. Data association is 

explained in Subsection E, and ego-motion-compensation is 

described in Subsection F. 

A. State and Space Model 

The state vector x contains the relative target position in 

Cartesian sensor coordinates ( x , y ) as well as the relative 

target velocities in x- and y-direction ( xv , yv ): 
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The process matrix F is used to calculate the predicted state 

vector at time k: 

 1|111|
ˆˆ

−−−− = kkkkk xFx               (2) 

As it is assumed that the speed remains unchanged within 

one time cycle, the process matrix F can be derived from the 

following equations: 

 1|1,1|11| −−−−− += kkxkkkk Tvxx            (3) 

 1|1,1|, −−− = kkxkkx vv                (4) 

 1|1,1|11| −−−−− += kkykkkk Tvyy            (5) 

 1|1,1|, −−− = kkykky vv                (6) 

With T being the sample time, this yields the process matrix 

F: 
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For the implementation of the Kalman Filter, a constant 

velocity model is chosen. To compensate for the negligence of 

velocity changes, a process noise is modeled, which is 

assumed to be zero-mean, white Gaussian with variance 2σ . 

The process noise covariance matrix Q expresses the 

influence of this noise on the overall error: 
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As the deceleration / acceleration of the tracked objects 

(e.g. other cars) ranges from approximately 2m/s10−  to 
2m/s5+ , the variance [ ]22 aEa =σ  can be estimated as 

follows: 
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The threefold radial standard deviation rσ3  can be 

estimated from the given distance accuracy of the sensors: 

 m30m20for             m07503 <≤= r..rσ       (10) 

Accordingly, the threefold angular standard deviation θσ3  

can be estimated from the given angular accuracy of the 

sensors: 
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B. Mixed Coordinates Kalman Filter (MCKF) 

Since the measurement vector z  is obtained in polar sensor 

coordinates and the state vector x  is defined in rectangular 

sensor coordinates, a Mixed Coordinates Kalman Filter can be 

applied. 

The measurement vector z  consists of r  and θ : 
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The measurement covariance matrix R expresses the 

inaccuracy of the sensor measurements in polar coordinates. 

The measurement noise is assumed to be zero-mean, white 

Gaussian with variance 2σ : 
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Since the angular uncertainty depends on the angular 

location of the target, the elements of R depend on the angular 

location of the target as well. 

The measurement matrix H relates between the 

measurement vector and the state vector: 
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C. Converted Measurement Kalman Filter (CMKF) 

In order to minimize errors due to the transformation from 

polar coordinates into rectangular coordinates, a Converted 

Measurement Kalman Filter as described in [16] can be used. 

The measurement vector z  consists of x and y: 
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The measurement covariance matrix R expresses the 

inaccuracy of the sensor measurements in rectangular 

coordinates. The measurement noise is assumed to be 

zero-mean, white Gaussian with variance 2σ : 
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The measurements can be transformed from polar sensor 

coordinates ( r , θ ) into rectangular sensor coordinates ( x , 

y ) by the standard conversion: 

 θcosrx =                  (18) 

 θsinry =                  (19) 

The variances in polar coordinates ( 2

rσ , 2

θσ ) may be 

transformed into variances and covariances in rectangular 

coordinates ( 2

xσ , 2

yσ , 2

xyσ ) by the following equations: 

 )(cos)(sin 222222 θσθσσ θ rx r +=          (20) 

 )(sin)(cos 222222 θσθσσ θ ry r +=          (21) 

 ( ) θθσσσ θ cossin2222 rrxy −=            (22) 

However, according to [16], these transformations only 

hold if the following conditions are satisfied: 
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In the case of the employed SRR sensors, the first condition 

is only fulfilled for small distances of m3<r . Thus, the 

following transformations from polar coordinates into 

Cartesian coordinates should be used [16]: 

 )1(cos crx −= θ                (25) 

 )1(sin cry −= θ                (26) 

with 
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The corresponding transformations of variances in polar 

coordinates into variances in rectangular coordinates are as 

follows: 
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2 sinh2sinh θθ σσ −=c             (32) 

 22

3 cosh2cosh2 θθ σσ −=c            (33) 

 22

4 sinh2sinh2 θθ σσ −=c             (34) 

Finally, the measurement matrix H, which relates between 

the measurement vector and the state vector, is given as: 
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D. Comparison of MCKF and CMKF 

Both the MCKF and the CMKF have been developed for 

tracking applications where the measurements are obtained in 

polar coordinates and the state vector is defined in rectangular 

coordinates. In the case of the MCKF an extended Kalman 

Filter is used which accommodates the nonlinear coordinate 

transforms within the measurement matrix, and in the case of 

the CMKF the nonlinear conversions of measurements and 

uncertainties are performed by dedicated transformation 

formulas and thereafter a linear Kalman Filter is employed. 

For the given sensor application, a comparison of both 

approaches shows that the CMKF performs slightly better 

than the MCKF, especially when the measured distance and 

bearing values are large while the angular measurement noise 

is high. Nevertheless, it has to be considered that data 

association and track management are highly important 

performance factors as well. 

E. Data Association 

A Global Nearest Neighbor approach is used to associate 

new measurements with the existing tracks in polar 

coordinates. All new measurements within a threshold of rσ  

and θσ  around the predicted relative position of a tracked 

target are considered to be associated with the track. With the 

predicted coordinates of the tracked target ( tr , tθ ) and the 

coordinates of the new measurement ( mr , mθ ) the 

Mahalanobis distance d can be calculated: 
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The new measurement with the smallest Mahalanobis 

distance d to the tracked target is finally associated with the 

track. 

F. Ego-Motion-Compensation 

The movement of the car is estimated assuming a constant 

circle movement model of the vehicle. Figure 5 shows a car 

moving on a circle with radius r. 

 

Fig. 5.  Car moving on a circle with radius r 

 

Given the car velocity cv , the car acceleration ca , and the 

yaw rate ω , the angle of rotation γ  of the vehicle around the 

center of its turning circle can be calculated: 
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with 

 
ω

cv
r =                    (38) 

This yields the shift of the coordinate systems x∆  and y∆ : 

 Left side of the car:   Right side of the car: 

 γcosrrx −=∆     ( )γcosrrx −−=∆     (39) 

 γsinry =∆       γsinry −=∆       (40) 

Considering the rotation of the coordinate system, the new 

relative position of a tracked target (in the Cartesian sensor 

coordinate system) can be calculated as: 

 γγ sin)(cos)( 11 yyxxx kkk ∆−+∆−= −−       (41) 

 γγ cos)(sin)( 11 yyxxy kkk ∆−+∆−−= −−      (42) 

 γγ sincos 1,1,, −− += kykxkx vvv           (43) 

 γγ cossin 1,1,, −− +−= kykxky vvv          (44) 

V. SENSOR DATA FUSION 

The single-sensor-tracked-targets obtained from all sensors 

belonging to the same array are integrated by homogeneous 

sensor data fusion. For this purpose, a gate is defined for each 

single-sensor-tracked-target. The gate is modeled as an ellipse 

around the relative position of the single-sensor-tracked-target 

( tx , ty ): 
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The values for xσ  and yσ  within the state covariance 

matrix P define the lengths of the major axis a  and the minor 

axis b  of the ellipse: 
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Whenever the gates of 2≥n  single-sensor-tracked-targets 

intersect, the n  single-sensor-tracked-targets are associated 

with each other and merged to an integrated target intx . The 

weighted average of relative position and relative velocity is 

calculated, using the accuracy as weighting factor: 
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The elements of the weighted state error covariance matrix 

( )lk,intP  are computed accordingly: 
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VI. MULTI-SENSOR-MULTI-TARGET-TRACKING 

Based on the integrated targets, multi-sensor-multi-target-

tracking is achieved by applying a linear Kalman Filter. For 

this purpose, the approach of single-sensor-multi-target-

tracking is adapted. 

A Global Nearest Neighbor approach is used to associate 

new integrated targets with the existing tracks in rectangular 

coordinates. All new integrated targets within a threshold of 

xσ  and yσ  around the predicted relative position of a tracked 

integrated target are considered to be associated with the 

track. With the predicted coordinates of the tracked integrated 

target ( tx , ty ) and the coordinates of the new integrated 

target ( intx , inty ) the statistical distance d is calculated: 
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The new integrated target with the smallest statistical 

distance d to the tracked integrated target is finally associated 

with the track. 

The ego-motion-compensation described in Section IV for 

single-sensor-multi-target-tracking is applied for multi-

sensor-multi-target-tracking accordingly. 

VII. EXPERIMENTAL RESULTS 

A typical LCW scenario is illustrated in Figure 6. The 

multi-sensor-tracked-targets (circles) obtained from a parallel 

driving vehicle in a corresponding real road traffic situation 

are shown in Figure 7. It should be noted that in this 

experiment the ego-vehicle was equipped with four SRR 

sensors on each side for test purposes. In Figure 7 it can be 

observed that the distances of the four nearest 

multi-sensor-tracked targets from the side of the ego-vehicle 

are approximately 0.5m. These targets represent tracked 

reflection points on the boundary of the parallel driving 

vehicle. The other multi-sensor-trackedtargets are either 

caused by further distant reflection points on the target-vehicle 

or by multiple reflections between the surface of the 

target-vehicle and the surface of the ego-vehicle. 

 

 

Fig. 6.  LCW scenario 

 

 

Fig. 7.  Multi-sensor-tracked-targets (circles) obtained in real road traffic 
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The multi-sensor-tracked-targets are parameterized by their 

relative positions, relative velocities, measures of quality, 

measurement covariance matrices, and target identifiers. The 

most relevant multi-sensor-tracked-targets on each side of the 

ego-vehicle are identified in order to be provided to the LCW 

function. For determining the relevance of tracked targets, 

their relative positions and relative velocities are considered 

and the time-to-collision is calculated. 

An optical and acoustical LCW signal is activated when 

either the calculated time to collision or the distance of a 

multi-sensor-tracked-target from the side of the ego-vehicle 

falls below a respective threshold, while the thresholds are 

adapted by the speed of the ego-vehicle. 

VIII. CONCLUSION 

Signal processing algorithms for the implementation of a 

lateral collision warning function have been developed. The 

raw sensor measurements are filtered and single-sensor-

multi-target-tracking is realized for each sensor independently 

by applying a Mixed Coordinates Kalman Filter (MCKF) and 

a Converted Measurement Kalman Filter (CMKF) 

alternatively. A comparison of both approaches shows that the 

CMKF performs slightly better than the MCKF, especially 

when the measured distance and bearing values are large while 

the angular measurement noise is high. 

The single-sensor-tracked-targets obtained from all sensors 

belonging to the same array are integrated by homogeneous 

sensor data fusion. This process involves gating according to 

the given uncertainties. Whenever the gates of single-sensor-

tracked-targets intersect, the single-sensor-tracked-targets are 

associated with each other and merged to an integrated target. 

The weighted average of relative position and relative velocity 

is calculated, using the accuracy as weighting factor. 

Based on the integrated targets, multi-sensor-multi-target-

tracking is achieved by applying a linear Kalman Filter. The 

Global Nearest Neighbor approach is used to associate new 

integrated targets with existing tracks. For the implementation 

of the Kalman Filter, a constant velocity model is chosen. 
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