
Situation based Data Distribution in a Distributed Environment Model

Andreas Hermann and Stefan Lutz
Institute for Applied Research

University of Applied Sciences Ingolstadt
85049 Ingolstadt, Germany

{hermanna,lutz}@fh-ingolstadt.de

Abstract— For Advanced Driver Assistance Systems (ADASs)
knowledge of the environment plays a fundamental role. This
also includes real-time data distribution and information about
the current driving situation.

A flexible situation model and a uniform situation analysis
method are proposed to enable situation dependent information
distribution, interpretation and fusion. This is a novel approach
in the scope of automotive software. Waning from the proposed
situation analysis an event-based programming model and a
situation dependent data distribution is introduced.

The introduction of driving situations to optimize data
distribution and interpretation enables the ADAS developer
to focus on their key algorithms. The proposed framework
provides the distribution of the data and the situation analysis.

I. INTRODUCTION

Comfort and safety applications rely on the knowledge of
the car’s environment and therefore environmental sensing
plays a fundamental role in this field [1]. For Advanced
Driver Assistance Systems (ADASs) not only the detection
of the environment but also gathering additional information
about the current driving situation of the vehicle is signif-
icant. Hence, Situation Awareness is a core part of future
ADASs. For example, Adaptive Cruise Control (ACC) sys-
tems [2] already take risky situations like cutting-in vehicles
into account [3]. In addition driver behaviour [4], collision
prevention [5], classification [6] and co-pilot [7] are used to
improve next generation of ADASs.

In the AUTOSAR consortium [8] leading automotive
manufacturers and suppliers are working together to develop
and establish an open industry standard for automotive
architectures. Common problems like hardware abstraction
and real-time communication environment are addressed by
this standard. However, fundamental parts like sensor data
distribution and the integration of driving situation awareness
are not covered in AUTOSAR. To handle these major parts
in ADASs development and deployment we propose the
Distributed Environment Model (DEM) as an addition to the
AUTOSAR specification. DEM meets ADASs requirements
with a distributed framework which is able to support a
Situation Model (SM), a Situation Analysis (SA) and hence
Situation Awareness. DEM will provide a uniform driving
situation for all ADASs and therefore allows the detachment
of SA and ADASs resulting in reduced ADAS development
complexity. Furthermore, this driving situation is used for
the internal data distribution in DEM, which leads to a
more efficient resource usage especially for communication
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Fig. 1. Layered architecture of DEM

capabilities. To improve the performance of data acquisition
from a remote host, a proactive data distribution for the most
likely next driving situation is proposed.

The remainder of this paper is organized as follows. In
section II the DEM architecture is presented. The possible
manoeuvres are described and ordered into two manoeuvre
groups for the description of a driving situation in section III.
The core part for the SM and the proposed flexible mapping
method follows in section IV. The SA based on this map
is described in section V. The event-based programming
model is introduced in section VI. Based on the model a
situation dependent data distribution is presented in section
VII, section VIII shows first experimental results. Summary
and conclusion can be found in section IX.

II. DISTRIBUTED ENVIRONMENT MODEL (DEM)

Middleware in automotive environments is a weakly re-
searched field. Common embedded object oriented architec-
tures like RT CORBA [9], TAO [10] and ROFES [11] are
based on ORB architectures. This is not suitable for automo-
tive environments because of strict hardware limitations in
this scope, although ORB architectures are built for remote
object calls. In the automotive environment, data transfer can
be considered the main requirement for a distributed system
because operations on this data are usually processed on local
machine to achieve hard real-time requirements. Therefore,
we propose Distributed Environment Model (DEM) architec-
ture to provide real-time driving situation recognition and a
subsequent adaptive sensor data distribution.

DEM is a distributed embedded framework for sensor data
fusion and interpretation in an automotive environment. As
shown in Figure 1 DEM is organized as a layered archi-
tecture. The Service Interface can be used by Applications
(e.g. ADASs) to access the internal functionality. Triggers are
event-triggered functions to acquire, store, or modify data in
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MR 1 MR 2 MR 3 MR 4 MR 5 MR 6 MR 7 MR 8 MR 9

MG I x x x x x x x

MG II x x x x

TABLE I
ASSOCIATION MATRIX FOR MANOEUVRES AND MANOEUVRE GROUPS

the DEM Object Space. Generic Services provide location
independent data access. Furthermore, the communication
with sensors and the wrapping of sensor data to DEM objects
is implemented by generic services. The Object Space is a
system wide container for sensor data. The objects stored
in that Object Space are indexed to allow efficient query
procession via the Query Interpreter Layer. This Layer is
based on a subset of the Object Query Language (OQL)
specification. The Persistent Layer is used for error logging
which enables subsequent error diagnostics and backtracking.

The DEM core consists of several mechanisms to ensure a
consistent representation of the current driving situation and
an event-based, driving situation dependent data distribution.

III. SITUATIONS

In Tölle, possible actions and interactions for an artificial
co-pilot are described [7]. The actions differ from the inter-
actions because they can be accomplished without another
traffic participant. Tölle identifies the following 9 distinct
manoeuvres (MRs):

MR1 running up MR2 follow
MR3 approach MR4 pass
MR5 cross MR6 lane change
MR7 turning off MR8 turning back
MR9 parking

The two manoeuvre groups (MGs) and the associated
actions (MG I) and interactions (MG II) from [7] are listed
in Table I. MR2 and MR9 are assigned to both groups.

Interactions (MG II) have the property 0 ≤ |Si
t | ≤ |Wt|

with Si
t as the set of interactions i (MG II) and Wt as

the set of vehicles in the environment at time t. The set of
actions a (MG I) at time t has to fulfill |Sa

t | ≤ 1. Hence
MR2 and MR9 could violate the latter equation because of
the duality which was made as a simplification in [7] to
reduce the number of manoeuvres. To define an accurate set
of actions and interactions the definitions of MR2 and MR9
have to be adapted for the situation scope. For MR2 [7]
introduces a virtual traffic object which would lead along
the lane. Hence, he does not differentiate between a lane
and a normal traffic participant. Therefore MR2 has to be
broken up again in the manoeuvres MR21 follow lane and
MR22 follow vehicle. The former can now be categorized
as an action and the latter as an interaction. For MR9 the
interpretation as an interaction can be avoided by considering
that a car can be parked while additionally interacting with
other active traffic participants.

Now hybrid manoeuvres are eliminated and two distinct
manoeuvre groups can be used for a situation model.

Aside from actions and interactions, the behaviour of the
driver depends on the current traffic regulations for inner

and outer city and on highways. In order to get a better
situational representation, this has to be taken into account.
As the vehicle can only be in one (composite) regulation at
a given time t, |Sr

t | = 1 holds with Sr
t as the regulation

Sr active at time t. This leads to an additional criterion.
Altogether, there are three different aspects of a situation in
an automotive environment from the driver’s point of view:

1) Action (MG I)
2) Interactions (MG II)
3) Regulation

Hence for the current situation St a tuple of sets
〈
Sa

t , Si
t , S

r
t

〉
is a feasible description, where Si

t may be composed of more
than one interaction (see above).

IV. SITUATION MODEL

The SA process relies on the integration of internal and
external representations of a situation. Internal represen-
tations model the awareness of the process about itself,
while external representations specify awareness about the
environment [12]. A complete situation model must take into
account the following tasks [13]:

1) Situation perception composed of Situation Element
Acquisition, Common Referencing, Perception Origin
Uncertainty Management, and Situation Element Per-
ception Refinement as subtasks.

2) Situation comprehension composed of Situation Ele-
ment Contextual Analysis, Situation Element Interpre-
tation, and Situation Assessment as subtasks.

3) Situation projection composed of Situation Element
Projection, Impact Assessment, Situation Monitoring,
Situation Watch, and Process Refinement as subtasks.

The situation element acquisition implies all the object
tracking and sensor data fusion procedures to acquire objects
in the environment. This is a complex task and essential for
the SA process.

In Table II the association with the DEM representation
levels and the general JDL [14] levels 0 to 4 is shown. The
first three DEM levels are single source data processing al-
gorithms and can associated with the Source Pre-Processing
level of the JDL Model. Object Refinement (level one) is
handled in the track fusion and in the classification step.
Situation Refinement (level two) is done in the mapping level
of DEM. The last two levels of the JDL model are addressed
in the strategy level. The DEM representation levels are a
specialization of the JDL model. Note that the last level of the
DEM representation represents the SA itself and the whole
information processing will be situation aware.

One of the most important DEM levels is level 5 (Map-
ping). Maps can be divided into four classes [15]:

1) grid based [1]
2) feature based
3) topologic [16]
4) sequential monte carlo methods

The map described below fits best into the category topologic
as it considers the logic links between the different map
elements.
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Level Description JDL 0 1 2 3 4

0 Sensor Data x

1 Ego Track x

2 Multi Target Tracking x

3 Track Fusion x

4 Classification x x

5 Mapping x

6 Strategy x x

TABLE II
DEM REPRESENTATION LEVELS AND ASSOCIATION WITH JDL LEVELS

AND ROY [13] SITUATION MODEL DEFINITION
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Fig. 2. ego vehicle with two interactions

To support the SA process the map has to represent the
elements with logic and a spatial scope. In order to minimize
the computational need of the mapping algorithm only the
minimal assignment essential for the SA will be computed.
For example, this means that only interactions with the ego
vehicle as a participant will be considered. In the way the
algorithm has a computational complexity of O(n) instead
of O(n2) for n traffic participants to acquire the relevant
interactions. Figure 2 shows a simplified overview of a traffic
configuration at time t with

• a road bordered by the thick horizontal lines,
• two lanes separated by the thin horizontal line,
• an ego vehicle with velocity ve,
• and vehicles A and B with velocities va and vb.
So |Wt| = 3 with Wt = {ego, A,B}. The vehicles are

arranged in such a way that A is passing the ego vehicle
and will pass B within a few seconds which means va > ve

and va > vb. Since an interaction requires two interacting
participants the elements of the interactive situation subset
Si

t are triples
〈
si, w1, w2

〉
with

• si ∈ Si = { follow vehicle, approach, pass }
• w1, w2 ∈ W
• and w1 6= w2.

The triples for the example in Figure 2 are 〈”pass”, A, ego〉
and 〈”approach”, ego,B〉. Note that a possible third triple
like 〈”pass”, A, B〉 will not be considered as the ego vehicle
is not part of this interaction.

For a reduction of complexity there is at most one si
t ∈ Si

t

that has the property π(si
t) = w for each w 6= ego ∈ W with

π(·) as a function that returns the interaction participant w′ 6=
ego. The problem with this statement is that the definition of
the possible interaction types in Si cannot take place exactly.
This uncertainty has to be taken into account. Hence, the
definition of an interaction has to be extended to represent
this additional ”information” of uncertainty. An interaction
si

t ∈ Si
t is now a 4-tuple with

〈
si, w1, w2, p

〉
with p as the

probability prob(si
t). Since there should be only one si

t with

follow 

vehicle

pass approach

none

1.
.
. n
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Fig. 3. state graph for interactions
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Fig. 4. scheme with critical distances

π(si
t) = w, so ∑

{si
t|π(si

t)=w}

prob(si
t) ≤ 1

holds. If an implicit interaction of type no interaction
is considered and the interaction set Si is extended to
{Si old, none} the inequation results in an equation. For the
given example, Figure 3 shows the state graph of possible
interaction types a single pair of participants can attend,
omitting start and end states for a better overview. Generally,
for n = |Wt| − 1 as the number of traffic participants
without the ego vehicle, there are n state graphs. The exact
current state/interaction of a vehicle for such a state graph
is uncertain.

Before determining the probabilities for the different in-
teraction types, the other participants (SA in section V) are
first assigned to the lanes of the road relative to the ego
vehicle. The current lane is l0. Lanes to the left/right get
a higher/lower index, respectively. In the configuration of
Figure 2 the vehicle set of l0 is L0

t = {ego, B} and for l1 it
is L1

t = {A}. If the configuration is not as clear as in Figure
2 and a vehicle is between two lanes the lane sets do not
have to be distinct and the association function a(Lx

t , w) for
the association value of w to Lx

t can be inside [0..1]. These
fuzzy lane sets have the additional property

∑
Lx

t
a(Lx

t , w) =
1, so a vehicle w cannot be over-associated.

After completion of the fuzzy lane sets, an additional
ordering is made depending on the position in the lane itself.
The mapping algorithm proposed here will cut the lanes into
three parts around the ego vehicle with the sets xP b

t , xP c
t

and xP f
t for the backward, centre, and forward parts of lane

x. The elements in the set for the centre section are ”too
near” vehicles. This property ”too near” can be calculated
from the vehicle positions and their current derivation(s) in
time. A classic attribute is the Time-To-Collision or some
recent approach like the Time-To-Break [5].

Figure 4 shows another scenario with three participants
driving at different velocities. The sets for the lane parts
with more than 0 elements are 1P c

t = {A} and 0P b
t = {B}.

Since A is faster than B, the minimum distance for the centre
section is bigger than referring to B. Hence participant A is
in the set 1P c

t despite its bigger distance to the ego vehicle
in comparison to participant B. The association to a section
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Fig. 5. decision trees for ”approach” and ”follow”

set is also fuzzy like the association to the lane set with an
analogue constraint:∑

kP e
t

a(kP e
t , w) = a(Lk

t , w)

with e ∈ {b, c, f} and k as the lane number.
Additionally the speed of the vehicles is taken into ac-

count. Like in the description with a natural language the
vehicles are ordered in three sets V −

t , V +
t and V 0

t for slower,
faster and equally fast vehicles.

Therefore, the map Mt is a set of lanes Lk
t which consists

of sets of parts kP e
t . The elements (the participants) can

belong more or less likely (fuzzy) to one of these sets with
the sum of all associations for one element being 1.

V. SITUATION ANALYSIS

Using the set Mt as the situation model the probabilities of
the interactions for each participant can be readily computed.
Bayesian Networks [17], [18] could be used to calculate the
interaction probabilities but these are computationally not
feasible. Therefore, an algorithm with less computational
need is proposed. The probability of each interaction si

t with
π(si

t) = w obeys a rule for each type contained in Si. For
the three elements of Si the rules are:

• follow(w) = a(L0
t , w) ∧ a(V 0

t , w) ∧ a(0P b
t , w)

• approach(w) = a(L0
t , w) ∧ a(V +

t , w) ∧ a(0P b
t , w)

• pass(w) = (1− a(L0
t , w)) ∧ a(V +

t , w) ∧ a(0P c
t , w)

• none(w) = 1−[follow(w) + approach(w) + pass(w)]
These rules exclude each other in a way that the constraints

follow(w) + approach(w) + pass(w) + none(w) = 1

and

follow(w) + approach(w) + pass(w) ≤ 1

hold. The first constraint is obviously always fulfilled be-
cause of the definition of none(w). The second constraint
can be explained with a decision tree (Figure 5). If the sum
of all edges to the child nodes is 1 and the traversal from a
parent to a child node means a conjunction of the possibilities
the sum of all possible leaves in the tree is 1. If the rules
above are interpreted as traversals in such a tree and they do
not include each other and are not identical the sum of the
possibilities is less than or equal to 1.

It is not feasible for DEM to support ambiguous situations
because its triggers can only be activated and deactivated.
Thus the most probable interaction will enter the situation
set Si

t except for the artificial ”none” interaction. As all
the observed targets are modelled with physical parameters,
the probabilities of the interactions cannot change from one
extreme to another. To prevent oscillation of the system a
threshold is introduced.

The current action Sa
t can be determined according to

similar rules using the attributes velocity, steering angle, and
GPS information.

The regulation aspect of the current situation Sr
t can also

be determined from GPS data. Knowing the current road type
is usually sufficient for this purpose.

VI. EVENT-BASED PROGRAMMING MODEL

DEM uses an event-based programming model. Data con-
sumers (e.g. trigger or applications) register their subscrip-
tions b = 〈d, e〉, with d representing a unique data type and
e as an event raised on this data type, at DEM. Hence for a
trigger g a set Bg with bg

i ∈ Bg describes all i subscriptions
of this trigger. Data producers (e.g. generic services which
act as sensor drivers) register a set O of data types, which
they are producing at runtime.

During initialization state g is inserted into a DEM in-
stance. Afterwards its set Bg is distributed to all connected
DEM instances. DEM instances parse the incoming set Bg

whether events fulfilling bg
i ∈ Bg occur on local host, by re-

viewing every Oj of the j local data producers. Accordance’s
are stored in a local distribution table and result in a callback
of g when bg

i performed at runtime.
The DEM event-based programming model implements

the observer pattern [19] in the context of a distributed
system. Comparable work was done in Edwards et al. [20]
by integrating Publisher/Subscriber Services into CORBA
Component Model (CCM). Because DEM uses a different
architecture as CORBA ORB this work could only be seen
as proof of feasibility and initial point for future research.

Due to its programming model, DEM provides location in-
dependent data access over the network of ECUs in a vehicle.
Hence, DEM supports reuse of ADASs software because of
an explicit data distribution interface. Therefore, a location
independent trigger deployment is possible. In addition, the
event-based programming model is significantly more user
friendly than commonly used interrupt-based programming
techniques. Furthermore, event-based programming outper-
forms commonly used polling algorithms in the field of data
acquisition by latency and CPU usage.

VII. SITUATION DEPENDENT DATA DISTRIBUTION

A main intention in automotive software engineering is to
reduce the load of the bus system. To address this issue DEM
proposes a combination of the event-based programming
model (section VI) with the SA (section IV) to provide a
situation dependent data distribution. Referring to section III
the driving situation detected by SA could be interpreted
as a cube with regulation as abscissa, action as ordinate
and interaction as depth of the cube. This representation
is mapped to a 32bit unsigned integer number to achieve
a straightforward processing of the current driving situation
in DEM.

To enable situation dependent data distribution, the event-
based programming model is extended with driving situation
information. So Bg ′ with bg

i
′∈ Bg ′ and b′ = 〈d, e, c〉

describe all subscriptions of g with corresponding driving
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situation c. At the moment g is inserted into a DEM Bg ′

instead of Bg will be distributed among connected DEM
instances. After initialization state every host maintains a
distribution table T which contains all subscriptions (local
or remote) for local produced data types and the assigned
driving situations for these subscriptions.

With this situation dependent data distribution the amount
of data which has to be transferred e.g. to a trigger can
be reduced. Let h be the amount of data g receives in
shorter cycles than driving situations change. In this case
a continuous data stream to g is established. Therefore tp is
defined as the period g receives h.

In a system insensitive to driving situations N , g receives h
over time span tpN = t with t is the uptime of N . Therefore
the amount of transmitted data is defined as∫ t

0

h dtpN ≈ h · t.

In a driving situation sensitive system D with uptime t the
amount of transmitted data is defined as∫

h dtpD, with tpD =
n∑

i=0

tpiD,

with tpiD as the period a driving situation i is active in t
and n as the number of active situations of g in t. So the
amount of transmitted data to g in t can be approximated with
h · tpD. From tpN = t and tpD ≤ t follows that tpN ≥ tpD.
So in common case the aggregated data amount for g could
be reduced by situation dependent data distribution. Due to
this, network bandwidth could be saved to meet real-time
requirements of automotive applications.

In SA, driving situations were changed based on prob-
abilities. To avoid the system hunt between two situations
a threshold for switching to a new driving situation is
introduced. Hence, the driving situation change and the next
driving situation can be predicted with a certain probability.
This information can be utilized by DEM to start a proactive
distribution of data, which trigger and applications will be
needed for processing in the upcoming driving situation. The
predicted driving situation is referred to as shadow situation.

In driving situation c a host H computes its distribution
table Tc. If the situation recognition trigger inserts shadow
situation c′ into DEM, H calculates the proactive distribution
table T ′

c′ for predicted driving situation c′. T ′
c′ is defined as

T ′
c′ := {bi|bi ∈ Tc′ ∧ bi /∈ Tc}.

After the preparation of T ′
c′ , H starts to compute bi ∈ T ′

c′

with low priority to not affect real-time requirements of
current driving situation tasks. Subscriptions in T ′

c′ are not
handled the same way as subscriptions in Tc. If timeliness
can be assured DEM will start distributing data which is
assigned to these situations, in the cycles before a situation
change c to c′ occurs. Proactive data distribution does not
cause callbacks of trigger or applications, so external tasks
are not influenced by this.

Therefore, after a situation change, this data is already
available on local host and transmission time can be saved.

ego B

A

DEM 1
ACCDEM 2

LCA

DEM 4
SRRF

DEM 3
SRRB

(12)no interactionslane changehighway

(11)no interactionsfollow streethighway

(10)passfollow streethighway

(9)approach & passfollow streethighway

(8)approach & passlane changehighway

(7)approachfollow streethighway

(6)no interactionsfollow streethighway

(5)no interactionslane changehighway

(4)passfollow streethighway

(3)passlane changehighway

(2)approachfollow streethighway

(1)no interactionsfollow streethighway

IDinterationsactionsregulations

Fig. 6. experimental setup of situation dependent data distribution

This reduces latency after situation change and saves
computing power respectively network usage during the
sensitive period of a driving situation change.

VIII. EXPERIMENTAL RESULTS

Figure 6 shows the ego vehicle with four DEM instances.
These DEMs control the ACC, the Lane Change Assistant
(LCA) and convert the measurements of the short-range
radars, in the front (SRRF ) and back (SRRB) of the ego
vehicle, to DEM objects. According to the definition of
a driving situation, given in section III, typical driving
situations on a highway were simulated and the transferred
data volume between the DEM instances was measured. The
simulated situations are listed in the table of Figure 6. The
chart in Figure 7 shows the amount of data which has to be
transferred between the DEMs in this scenario. It is shown
that with driving situation dependent data distribution the
transferred data volume was decreased significantly. In this
scenario to about 47% of the amount without using situation
dependent data distribution. Due to this, network bandwidth
could be saved which assists to meet real-time requirements
of automotive applications.
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Fig. 7. Transmitted data in highway scenario of Figure 6

Table III shows measurements belonging to experimental
setup in Figure 8, taken on a Intel Pentium 4 D 3,00 GHz
with 1 GB RAM, Windows XP SP2 and Ethernet LAN
connection. Real-Time environment was approached by as-
signing corresponding priorities to the threads used for DEM
implementation. For example in the scenario below, real-
time priority was assigned to trigger g, service u and DEM
data distribution service. The proactive data distribution was
handled in idle priority.
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scenario mean time DEMs PCs
(1) without PDD 1.04122 ms 2 1
(2) with PDD 0.00950 ms 2 1
(3) without PDD 1.93763 ms 2 2
(4) with PDD 0.00951 ms 2 2

TABLE III
ACCESS TIME ON HISTORIES OF AN OBJECT USING/NON USING

PROACTIVE DATA DISTRIBUTION (PDD)

instance E1

instance E2

trigger g

UDP ((3),(4))

localhost
((1),(2))

service u

Fig. 8. experimental setup of proactive data distribution measurements

As shown in Figure 8, g was located on DEM instance E1

and u on DEM instance E2. g subscribes for tracks oi and
requires histories of oi in active state. u produces oi and E2

take care for histories of this objects. For this benchmark,
the time was taken which elapses until g receives history
of a given oi. For (1) and (3) in Table III proactive data
distribution was turned off, for (2) and (4) turned on. The
measured times represent average access times for the history
of oi. To avoid measurement errors the acquisition of oi

was repeated 1000 times and the determined mean times
are shown in Table III. Workload was simulated by inserting
other subscriptions and trigger into DEM instances to take
care that measurements were taken under real life terms and
conditions.

In case of localhost communication proactive distribution
speeds up the traditional way of data acquisition by factor
109, in case of LAN communication by factor 203. These
results show that proactive data distribution can reduce ac-
cess times to histories of objects significantly. The results of
this benchmark could be applied to automotive environments
because

• the ratio network bandwidth
computing power is similar

• prioritization of threads were made in a similar way
• concepts of DEM are independent from underlying

hardware
By changing hardware configuration for this scenario only
the factor between non-proactive data distribution and proac-
tive data distribution will diversify. For example, when
network bandwidth is increased significant, the factor will
decrease. On the other hand, the factor will increase when
computer power increases.

IX. CONCLUSION

In this paper, the problems of situation analysis and
situation specific data distribution are addressed. First, the
situations are defined and a situation model is developed.
Based on this model a suitable situation analysis methodol-
ogy is introduced. With the results of this analysis, an event
based programming model for a situation dependent data
distribution is proposed. Furthermore concepts for a shadow
distribution which lowers latency and saves computing power

and network load during the sensitive period of a driving situ-
ation change is presented. First experimental results show the
potential of these novel concepts in automotive environment.

Future work will detail situation prediction and improve-
ment of situation specific data distribution. This will include
the results of ongoing tests performed on mobile robots with
extensive sensor equipment and on a test vehicle in real
traffic situations.
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