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Abstract— This paper explores the possibility to use a single
low-resolution FIR camera for detection of pedestrians in the
near zone in front of a vehicle. A low resolution sensor reduces
the cost of the system, as well as the amount of data that needs to
be processed in each frame. We present a system that makes use
of hot-spots and image positions of a near constant bearing to
detect potential pedestrians. These detections provide seeds for
an energy minimization algorithm that fits a pedestrian model
to the detection. Since false alarms are hard to tolerate, the
pedestrian model is then tracked, and the distance-to-collision
(DTC) is measured by integrating size change measurements
at sub-pixel accuracy, and the car velocity. The system should
only engage braking for detections on a collision course, with a
reliably measured DTC. Preliminary experiments on a number
of recorded near collision sequences indicate that our method
may be useful for ranges up to about 10m using an 80 × 60

sensor, and somewhat more using a 160 × 120 sensor. We also
analyze the robustness of the evaluated algorithm with respect
to dead pixels, a potential problem for low-resolution sensors.

I. INTRODUCTION

In recent years much effort has been devoted to pedestrian

detection using car mounted cameras, see e.g. [1] for a

review. The purpose of these systems is typically either

early warning to alert the driver, or injury mitigation when

a collision with the pedestrian cannot be avoided. In early

warning systems the car alerts the driver, who can then decide

on an appropriate evasive action. Such systems are already

available on the consumer market, e.g. the Intelligent Night

Vision System from Honda, but improvement of sensors and

detection algorithms for early warning systems [2], [3], [4],

[5] are still active research topics. Injury mitigation systems

on the other hand, are still research only. They aim for

pedestrian detection at a closer range, where a collision is

deemed imminent, and the car should autonomously invoke

countermeasures. The injury mitigation approach is moti-

vated by studies that show that even a moderate reduction

in impact speed significantly reduces the risk of fatal injury.
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For instance, fatal injury at a speed of 50 km/h is 5 times

more likely than at 30 km/h [6].

One popular approach to pedestrian injury mitigation is the

development of time-of-flight sensors that directly measure

distance to objects in the scene. Examples of such sensors

are the PMD by Audi Electronics [7], the EPT by Canesta

Inc. [8], and the 3D Sensor by Siemens AG [9]. Another

approach, advocated in [10] and pursued by BMW [11], is to

integrate the evidence from multiple sensors such as radars,

far IR, grey-scale cameras, and laser scanners.

In this paper we will investigate an alternative approach

to pedestrian injury mitigation, that deploys a single low-

resolution (between 80×60 and 160×120 pixel) FIR sensor.

The key insight that makes this setup viable is that it allows

estimation of distance-to-collision (DTC), using depth from

size change and car velocity. Allowing the car to brake

autonomously is a last resort, which should be invoked only

when collision is inevitable. In such situations, the car will

be quite close to the pedestrian (typically 5 to 15 meters

away), and consequently the pedestrian will change size

considerably in-between consecutive frames. The relatively

large size change in-between frames is what allows us to

use a low-resolution sensor. Our choice of sensor lowers the

total cost of the system, and reduces the amount of data that

needs to be processed in each frame.

The DTC estimation is closely related to time-to-collision

(TTC) estimation [12]. Conversion of TTC to DTC requires

measurements of the vehicle speed. Such measures from

speedometer or ABS can be made available at low cost;

in our system they are obtained through the CAN1-bus.

The advantage with using DTC instead of TTC is that we

no longer need to make the assumption that the vehicle is

moving with constant speed or acceleration when integrating

estimates over time, as was done in [12].

We would like to point out the differences between our

system and the MobileEye one in [12]. Their scenario is to

detect TTC for a car driving in front of the vehicle driving

in the same direction, and suddenly braking. This problem is

easier than ours (pedestrian collision-risk detection) for two

reasons:

1) A car is physically larger than a pedestrian (and thus

occupies a larger image area at a given distance).

2) Since the cars drive in the same direction, the actual

distance for a given TTC is much shorter than for

our system, and thus their car occupies an even larger

sensor area than what is suggested by the TTC.

1Controller Area Network bus, ISO 11898.
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This means that the accuracy measures given in the Mobile-

Eye paper cannot be directly compared to ours.

A. Organization

This paper is organized as follows: We start by giving

an overview of the system components in section II. We

then describe the geometry of our setup, and the principles

of depth from size-change in sections III and IV. This is

followed by an experimental evaluation of the accuracy of the

described algorithm, and the number of dead sensor-pixels

that can be tolerated, in section V. Finally, some concluding

remarks and outlooks for the future are given in section VI.

II. SYSTEM OVERVIEW

In brief, our system consists of a detection unit that detects

image regions of interest and keeps track of the horizon

for image stabilization purposes, and an estimation unit that

measures distance-to-collision (DTC) using size change and

known velocity, see figure 1.

Fig. 1. System overview

The detection unit employs a hot-spot detector and a

constant bearing detector for selecting interesting regions

for further analysis. The hot-spot detector is motivated by the

well known, and often used fact that pedestrians are typically

warmer than their surroundings in IR images [13], [2]. The

constant bearing detector makes use of the sailor principle

that objects on a collision course are at a near constant

bearing and decreasing range. The interesting regions found

by these detectors provide seeds to the pedestrian model

fitting box, which in the evaluated algorithm contains an

energy minimization algorithm that fits a pedestrian model

to the image neighborhood. The estimation unit integrates

sub-pixel size-change measurements from the STK-tracker,

a gradient based sub-pixel precision tracker, and from con-

secutive outputs of the energy-minimization algorithm, and

combines these with car velocity readings to obtain reliable

DTC estimates.

III. GEOMETRY

A. Camera geometry

We are currently using a camera with 55◦ FoV, which is

well within the requirements from road geometry. We intend

to base the final camera specifications on accident statistics,

e.g. from the GIDAS data base [14]. This analysis will be

described in a separate paper, currently under preparation.

The current camera has a 320×240 sensor, which is down-

sampled to give another two resolutions in our experiments:

80× 60, 160× 120. In our final setup we plan to reduce the

vertical resolution even further.

B. DTC estimation

In a monocular image sequence with axial motion, one of

the strongest cues to distance is size change over time. If

an object increases its size in the image, its relative distance

is decreasing. We can however not distinguish between size

change due to car motion, and size change due to pedestrian

motion, and any mix of the two. Thus, instead of estimating

the current distance to the pedestrian, we choose to estimate

the distance to the point of collision, i.e. the distance-to-

collision (DTC).

Fig. 2. Illustration of the distance-to-collision, ZTC.

A 3D object which is parallel to the image plane has a

length L, which is projected into the image as a length l,
depending on distance Z, and focal length f :

l = fL/Z . (1)

At two time instances, T1 and T2, we have the object

distances Z1 and Z2 (see figure 2) and get the observations:

l1 = fL/Z1 and l2 = fL/Z2. (2)

The image scaling s = l2/l1 becomes

s = l2/l1 = Z1/Z2 = (Z2 + ∆Z1 + ∆Z2)/Z2 . (3)

We now solve for the distance Z2, and get

Z2 = (∆Z1 + ∆Z2)/(s− 1) . (4)

The time-to-collision (in number of frames) at time T2 is

given by TTC = Z2/(∆Z1 + ∆Z2), and the distance-to-

collision is the TTC times the car speed ∆Z1

ZTC = TTC ·∆Z1 =
Z2

∆Z1 + ∆Z2
·∆Z1 . (5)

If now insert the expression for Z2, see (4), we get:

ZTC = ∆Z1
s− 1 , (6)

see also figure 2 for an illustration.
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C. Horizon detection and stabilization

An accurate estimate of the horizon position in the image

serves two purposes. First of all, changes in the horizon

position allows us to improve the prediction of pedestrian

locations across frames, and this improves tracking perfor-

mance on uneven roads. Secondly, the horizon estimate is

used for verification of pedestrian hypotheses, by requiring

that the horizon line must intersect each pedestrian outline.

A combination of image data and pitch rate from the CAN-

bus is used to estimate the horizon. We need the image data,

since the pitch rate only contains information to estimate the

change in position of the horizon, not the absolute position.

Fig. 3. Example of projected horizontal edges. Left: Original image.
Middle: Derivative in the vertical direction (white indicates positive and
black negative). Right: Projected negative and positive vertical derivative.

By intrinsic horizon we mean the position of the horizon

in the image when the vehicle is moving parallel to a

flat ground. We propose that the intrinsic horizon, h0, be

estimated from image data using projected horizontal edges,

see rightmost image in figure 3. The projected edges are

accumulated over a longer period of time, and the largest

peak after smoothing is detected as the intrinsic horizon.

The change in horizon, dh(t), depends on both the trans-

lation in the z-direction and the pitch rotation α. However,

we will neglect translation (and acceleration) here, since the

translation is small relative to the distance to the surround-

ings. The change in horizon will thus be approximated by a

rescaling of the pitch rate.

The instantaneous horizon is the sum of the intrinsic

horizon, h0, and the change in horizon, dh(t). However, the

pitch rate sensor may contain a bias which when accumulated

over time gives a very large error in the estimation of

the horizon change. Furthermore, it is not always desirable

to use the accumulated change from the pitch rate as the

estimate. Rather, it is the accumulated change relative to

the ground that should be used. For example, the estimated

horizon should adapt to a sloping road, i.e. resume to the

“resting position” h0. Therefore, the instantaneous horizon

is estimated as

h(t) = h0 + dh(t, c) , (7)

where

dh(t, c) = c ·

(

dh(t− T, c) +
H

FOV
·
dα

dt
· T

)

, (8)

where H is the vertical resolution, FOV the vertical field of

view, and T the sampling rate. This relationship is basically

a recursive filter, with a built-in conversion of pitch rotation

measurements to image displacements. The scalar c < 1
controls the adaptation rate, e.g. the difference between a

momentary bump and a lasting slope.

The change in horizon is used in the experiments below

to improve the prediction to the tracker. A better prediction

gives a better initial box position in the optimization, and the

algorithm is less likely to get stuck in a local optima. The

horizon position is attached to each image in the sequence,

and is used as an adaptive point of origin in the tracker. This

is much more computationally efficient than to resample the

image.

IV. MODEL FITTING AND TRACKING

The system makes use of two units for size and size-

change estimation. These are a pedestrian model fitting unit

and a STK-tracker unit. Detection and tracking of pedestrians

are implemented through interaction of these two units,

which are described in this section.

A. Pedestrian model fitting

At the available resolutions, any approach to shape model

fitting, see e.g. [15], has to use as few parameters as possible

in order to obtain reliable estimates. To create such a minimal

model, we start from the following assumptions:

1) The pedestrian is warmer than the environment at most

parts of its contour.

2) The pedestrian is roughly shaped as in figure 4 with

variable height and width; we have a rough idea about

the aspect ratio though.

Fig. 4. Example of static shape model of the pedestrian at different sizes.

From the first assumption we conclude that the model

area should have a higher average intensity than the rest

of the image or at least that the model boundary is mostly

brighter than the background. From the second assumption

we obtain the model area Ω(x0, y0, b, h) = Ω(p), where

(x0, y0) indicates the position of the model and b and h its

width and height, respectively. We combine the assumptions

in mathematical terms by the following energy functional:

E(p) =fN|Ω(p)| − λDF

∑

(x,y)∈Ω(p)

f(x, y)+

+ λAR

(

h

b
− r

) (

1

r
−

b

h

)

bh (9)

where f(x, y) indicates a linear feature of the image (e.g.

its intensity or the response of the Laplace operator), fN

indicates a normalization feature level, r is the model aspect

ratio (here: 4), and the λs are meta-parameters that balance
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the three terms in the functional. (here: λDF = 3/2 and

λAR = 1/4). The choice of an energy functional for

the model fitting step was made since it has shown good

performance on related problems [16].

The last term in (9) can be rewritten as

λAR

r
(h− rb)2

and we know that this term is greater than or equal to 0, i.e.,

it penalizes deviations from our predefined aspect ratio.

We minimize (9) formally by setting the partial derivatives

to zero:

∇pE = 0 . (10)

In practice, we re-parameterize the model to use left, right,

upper, and lower boundary:

p̃ = (x0 − b/2, x0 + b/2, y0 − h/2, y0 + h/2)T (11)

and we compute discrete approximation of the derivatives

w.r.t. to these bounds by finite differences. Using these

derivatives, we perform a greedy-type of subspace gradient

descent by moving only that boundary which has the largest

effect on (9). Just like in the balloon model [15], we move the

boundaries with a fixed, successively decreasing step length.

This results in a very efficient implementation as we avoid

interpolation until we enter the sub-pixel accuracy range. The

method is iterated until the model energy cannot be further

reduced with the current step-length. Finally, we recover the

original parameter vector p such that we get the estimated

center and size of the model. We can estimate the scale

change from either width or height or both.

B. STK tracker

To estimate image scaling measures required by the DTC

estimation described in section III-B, we employ a sub-

pixel precision region tracker. The tracker is based on

the assumption that the image region in one frame, I(x),
is locally identical to the one in the next frame, J(x),
after applying an unknown translation, d, and scaling, s,

i.e. J(x) = I(sx + d). The method is a modification of

the one described in [17]. The original paper [17] defined

tracking using a full affine model, but during the experiments

the authors used tracking with a translation-only model for

stability reasons. The full affine model was then used for

verification of the tracked region. In our system it makes

sense to instead use a scale+translation model (both for

tracking and verification) since we do not expect much image

rotation, and we know that most things will change size in-

between frames when the car is moving.

To estimate translation and scaling, we minimize the least-

squares error between the image regions:

ǫ =
1

N

∑

x

(J(x)− I(sx + d))
2

, (12)

where N is the number of pixels in the local image region.

The solution (s,d) that minimizes ǫ is found iteratively by

repeating three steps:

1) Replace (s,d) by (s + ∆s,d + ∆d) in (12).

2) Linearize I around the point sx + d using a Taylor

expansion, and find the optimal (∆s,∆d) by solving

the equation system ∂ǫ
∂∆s

= 0, ∂ǫ
∂∆d

= 0.

3) Update (s,d)← (s + ∆s,d + ∆d).

The Taylor expansion of I in step 2 becomes

I(sx + d + ∆sx + ∆d) ≈ I(sx + d) +∇IT (∆sx + ∆d)

= I(sx + d) + M

(

∆s
∆d

)

, (13)

where M =
(

xIx + yIy Ix Iy

)

and (Ix Iy)T = ∇I =
∇I(sx + d). Hence, (12) is in each step approximated by

ǫ ≈
1

N

∑

x

(

J(x)− I(sx + d)−M

(

∆s
∆d

))2

. (14)

It is straightforward to show that the solution (∆s,∆d) that

minimizes (14) is

(

∆s
∆d

)

= G−1e , (15)

where

G =
∑

x

MT M and e =
∑

x

(J(x)− I(sx + d))MT .

(16)

The transformed image I(sx + d) and its derivatives

Ix(sx + d), Iy(sx + d) are in each iteration computed by

linear interpolation. A scale pyramid is also utilized in the

implementation, starting at a coarse scale and subsequently

passing the optimum to finer scales.

The iterations are stopped either when the update (∆s,∆d)
is below a given threshold, or when G is poorly conditioned.

We use the third eigenvalue of G as a measure of how well

conditioned (15) is. This is a generalization of the check of

whether the aperture problem is present in a plain translation

based tracker, such as [17].

C. Interaction between model fitting and tracking

In each frame, the pedestrian model fitting is used to ini-

tiate the STK tracker, and the resultant size change estimate

from the STK tracker is then used to update the starting

hypothesis for the pedestrian model fitting. In principle, both

methods are able to track pedestrians and estimate their size

changes independently. However, the STK tracker uses an

image region larger than the pedestrian, which makes the

tracking sensitive to drift. The accuracy of the size change

estimates from the STK tracker are however often higher than

those from the pedestrian model fitting. Hence, we have used

the model fitting to define the tracked boxes, and the STK

tracker to estimate their size change.

D. Temporal Integration

There is a great deal of accuracy to be gained by tem-

porally integrating the size change measurements. A very

simple way to do this is to multiply the size changes across
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an interval of frames until the product reaches above a certain

threshold. That is, we replace (6) with

ZTC(t) =

t
∑

k=t−N+1

∆Z1(k)

t
∏

k=t−N+1

s(k)− 1

=
. . . + ∆Z1(t− 1) + ∆Z1(t)

. . . s(t− 1)s(t)− 1

(17)

for some number of frames N . We will refer to this as

product integration (PI). The criterion for choosing N is that

it should be the smallest value that satisfies

t
∏

k=t−N+1

s(k) > smin . (18)

V. EXPERIMENTS

Test, validation and performance measurements have been

performed using three types of image sequences; synthetic,

stop-motion, and from a moving car, see figure 5.

A. Sensor simulation

The actual physical sensor has a resolution of 320× 240.

In order to simulate sensors of lower resolution, the frames

in the sequences are downsampled to either 80 × 60, or

160× 120, before further processing.

Fig. 5. Example of sequences used in the experiments. Top left (sequence
1) is a synthetically generated sequence. Top right (sequence 20) is a
stop motion sequence, i.e. ground truth is known for each frame. Bottom
(sequence 26) contains a pedestrian behind a speed bump. The car velocity
(here around 30km/h) and pitch rate are available via the CAN bus.

Since we are using a low-resolution sensor, the effect of

dead pixels is potentially more harmful than on a high reso-

lution sensor. To demonstrate that our evaluated algorithms

have a graceful degradation when the amount of dead pixels

in the sensor increases, we also simulate dead pixels:

A random binary mask with a certain frequency of ones

is generated. This mask is then used to set these pixels to

zero, see figure 6. The mask is kept constant throughout the

sequence. As a constraint, the mask is designed such that no

two neighboring pixels are simultaneously dead.

Fig. 6. Left: Original image. Center top: Pixel drop-out mask. Center bot-
tom: Simulated raw image containing pixel drop-outs. Right: Reconstructed
image. The example contains 10% drop-outs.

Dead pixels are then dealt with by interpolating them

using their known locations (the mask), and their neighbors.

Note that the assumption that no two neighboring pixels are

simultaneously dead gives a simple reconstruction. Clusters

of several neighboring dead pixels will require a more

advanced reconstruction method and give larger errors.

B. Generation of ground truth

To be able to determine the DTC estimation accuracy,

a reference data-set that contains the correct distance to

collision in each frame, is needed. These reference data are

computed by integrating car velocity data, and offsetting this

by a known pedestrian distance in one of the frames. This

kind of ground truth is only valid when the pedestrian stands

still, or is moving in a direction perpendicular to the car

motion.

Sequences generated in this way will tend to have their

samples differently aligned in the DTC domain. When we

later plot curves of mean DTC error and standard devi-

ation, these measures are computed by first interpolating

both ground truth and measurements to use the same DTC

coordinates, and then computing the sought measures at these

new points.

C. DTC accuracy and dead pixel tolerance

Several experiments with and without preprocessing

(Laplace filtering) and with different parameter settings were

performed to come up with a good set of parameters. During

this parameter tuning, the settings were evaluated on the

lowest resolution only. There may thus be a slight bias toward

this resolution. The parameter tuning also made us decide on

the interactive behavior of the pedestrian model fitting and

tracking units described in section IV-C.

Since the results, like any set of results from less than a

full scale application test, are based upon a limited set of

available test data, they can only indicate trends rather than

hard performance measures. Some results on the distance-to-

collision accuracy are shown in figures 7, 8, 9. The individual

curves are runs for 100 different simulated sensors with a

0.4% dead-pixel frequency. As can be seen, increasing the
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resolution increases the range for which distance estimation

is stable. The effect of higher dead-pixel frequencies is

demonstrated in figures 10, 11 and 12. As can be seen, the

mean error stays approximately constant as the dead-pixel

frequency is increased, but the variance increases.
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Fig. 7. The error measurements for sequence 1, with 80× 60, 160× 120

and 320 × 240 resolutions at a 0.4% dead pixel frequency.
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Fig. 8. The error measurements for sequence 20, with 80×60, 160×120

and 320 × 240 resolutions at a 0.4% dead pixel frequency.
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Fig. 9. The error measurements for sequence 26, with 80×60, 160×120

and 320 × 240 resolutions at a 0.4% dead pixel frequency.

The reason for the relatively poor results in sequence 20

is that the size change is consistently being underestimated,

compare figures 13 and 14. There are several possible causes

for this:

• Defocus may cause the image of the pedestrian to lose

its perimeter, and this results in an offset in the size.

• The background is high-contrast, and the tracker may

partly lock on to structures in the background. This will

give a size-change in-between that of the pedestrian and

the background.

Figure 15 shows the results of more quantitative experi-

ment using simulated data. Here we have by-passed the size

and size change estimations, and instead supplied the system

with simulated pedestrian sizes in the image for a stationary

pedestrian with height 1.8m and width 0.5m. The correct

sizes have been corrupted with Gaussian noise with standard

deviation σ = 0.2 pixels, which corresponds roughly to the

noise levels in figures 13 and 14. The plots in figure 15 show

the mean error and ±3σ (i.e. 99.7% interval) curves for 100
runs. As can be seen, the error measurements from the test

sequences fall well within the interval curves in figure 15.
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Fig. 10. Comparison of error measurements for sequence 1, having 0.1%
and 1.5% dead pixels, respectively. The mean error is about the same, but
the variance increases when increasing the percentage of dead pixels. See
also first plot in figure 7 for result at 0.4% dead pixels.
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Fig. 11. Comparison of error measurements for sequence 20, also having
0.1% and 1.5% dead pixels, respectively. The main difference is that the
variance increases when the percentage of dead pixels is increased. See also
first plot in figure 8 for result at 0.4% dead pixels.

20 18 16 14 12 10  8  6  4  2  0
−5

0

5

10

15

Distance to collision (m)

E
rr

o
r 

(m
)

Seq:26  Res:80  Dead−pixels:0.1%

20 18 16 14 12 10  8  6  4  2  0
−5

0

5

10

15

Distance to collision (m)

E
rr

o
r 

(m
)

Seq:26  Res:80  Dead−pixels:1.5%

Fig. 12. The same comparison for sequence 26. Again, the mean error
is about the same, but the variance increases with the frequency of pixel
drop-outs. See also first plot in figure 9 for result at 0.4% dead pixels.
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Fig. 13. Sequence 1, size-change estimate, and error.
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Fig. 14. Sequence 20, size-change estimate, and error.
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Fig. 15. Accuracy from simulation.

VI. CONCLUDING REMARKS

The reason for having a low resolution sensor is that such

a system could be produced at a lower cost. This type of

system is also intended to detect objects at a close range,

which should permit a lower resolution.

Since the focus of this work was to determine the re-

quired sensor resolution, our experiments have focused on

scenes with only one pedestrian. The detection and tracking

subsystems have no problem dealing with more than one

pedestrian as long as they do not occlude each other. If they

do occlude each other, the system risks confusing them with

one large pedestrian with variable size. This would result in

an unstable size-change estimation. To avoid this potential

problem, more elaborate procedures will be needed.

We have tested our method for estimation of the distance-

to-collision (DTC) on a number of sequences, some results

have been shown here. The preliminary tests indicate that

our method may be useful for ranges up to about 10m using

an 80 × 60 sensor, and somewhat more using a 160 × 120
sensor. This should be compared with the 15m detection

distance reported for the PMD sensor [7], and the (at least)

16m distance reported for the 3D sensor when both car and

pedestrian were stationary [9]. Both of these sensors are

developed specifically for the task of pedestrian detection.

The amount of test data presented in this study is still too

limited to give a reliable conclusion, and further evaluation,

using a laser range sensor mounted in the front of the car is

under way.
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