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ABSTRACT 

 
The paper describes a method to compute the minimal-time 
trajectory for an autonomous vehicle driving at the force 
contact limit. It is proven that the optimal trajectory consists 
piecewise of logarithmic spirals and not of cothoids as is often 
thought. Simulation results are given for the interesting special 
case of a needle turn. These results are compared to normal 
polynomial interpolation. 
 

1. INTRODUCTION 
 

Most autonomous vehicles are not able to drive at 
speeds higher than 120 km/h. Thus, up to now the question 
how a high speed trajectory can be planned and executed 
has only been asked occasionally. In the context of driver 
assistance systems and autonomous high speed driving, this 
question becomes substantial. A possible answer could be 
helpful for efficient high speed driving, obstacle avoidance 
or stabilisation after an emergency [1, 2, 3]. The answer 
might also be of interest for line routeing or the design of 
racing tracks and speedways. 

Minimal time trajectory planning for mobile robots has 
become a widespread field. One class of approaches uses a 
local description of state transitions in spatial- or 
configuration-space combined with exhaustive or intelligent 
search methods [e.g. 4, 5, 6, 7, 8]. Mostly holonomous 
systems are investigated. [9] employs exhaustive search. In 
[10] the search is optimized by a heuristics that is combined 
with an A* Algorithm. The local approach even with 
different optimisations is very computationally intensive, 
especially if high precision is required. Thus, flexible multi 
grid approaches have been investigated [11, 12, 13]. 

Variational methods have been applied to the question 
of minimal time trajectory for a very long period. For some 
special cases closed form solutions can be found [e.g. 
Brachiochrone], but with realistic constraints the resulting 
differential equations can be solved only numerically [e.g. 
14, 15, 16]. This might be computationally expensive. Small 
changes in boundary conditions might heavily influence the 
solution and constraining conditions cannot always be 
included easily. 

A third and widely used class of algorithms 
concatenates predefined curves. The different approaches 
propose the usage of circles, clothoids, polynoms of 3rd, 4th 

and 5th order (Bloss-curve) or sinoids [17]. In line routeing 
for high speed trains further curves are tested. 

The advantage of piecewise approximation of the 
trajectory is the small number of parameters to be 
computed. Because we aim at a real-time suited method our 
approach will follow this last paradigm. 
 In the course of the paper the problem will be first 
defined in a more formal manner. The results for constant 
speed will be repeated briefly in Chapter 3. In Chapter 4 we 
will prove that the time-optimal curve for constant 
accelaration is a logarithmic spiral. Finally some simulation 
results will be illustrated and compared with polynomial 
trajectory computation in Chapter 5.  
 

2. THE PROBLEM  
 

We want to plan a trajectory from a point 
),( 1111 yx xxxx vv =  at speed ),( 1111 yx vvvv vv =  to a point 

),( 2222 yx xxxx vv =  at speed ),( 2222 yx vvvv vv = . The 

transfer should be performed in minimal time. We assume 
to be on a plane with constant friction coefficient value µ. 
The motion should fulfil several constraining conditions to 
be more realistic: 
 
v  <   vmax      maximum speed is limited 
-al max  < al < +al max longitudinal acceleration/breaking 

is limited 
-an max < an <an max       normal acceleration is limited 
 

Further the curvature r/1=ρ  has an upper limit i.e. 
the vehicle is non holonomous and has a limit turning circle 
radius of rmin. 

In this first approach the relation between longitudinal 
acceleration and speed caused by air resistance is neglected. 
Also the relation between longitudinal acceleration na and 

lateral acceleration la  given by 
 

22
1max naaa +=      (1) 

 
(Kamm’s-circle), and tire dynamics like slip angle are 
ignored.  
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 If we can compute this trajectory a complex path can be 
composed out of several of them. If further constraints have 
to be included e.g. a µ changing in space ),( yxµµ =  this 
solution could be at least locally used where µ is 
approximately constant. 
 

3. MINIMAL TIME TRAJECTORIES FOR CONSTANT 
LONGITUDINAL OR NORMAL ACCELERATION 

 
First we want to recall some common results for 

piecewise constal =  or constan =  along the path. 
If start and target velocities are placed on a line the 

straight line with piecewise constant longitudinal 
acceleration results in the minimal-time transfer. Beside the 
minimal turning circle minr  another circle maxr  exists, 
which is driven if the maximal normal force is reached. This 
circle limits the turning dynamic. 

If there is at least one path between 1xr and 2xr which 
meets this requirements, a minimal time as well exists, to 
which several trajectories may correspond. 

The function of minimal time mint ( 1xr , 2xr , 21 , xx &r&v ) is 
not steady for all starting conditions. 
Example: 

 
 

Fig. 1: Upper limit trajectory of start and goal have a common tangent 
 
 

 
 

Fig. 2: Upper limit trajectory of start and goal have no common tangent 
 

A slight change in start conditions obviously leads to a 
completely different solution (see Fig.1 and Fig. 2), even if 
large regions of mint ( 1xr , 2xr , 21 , xx &r&v ) are steady and 
differentiable. 

Because of this it is not possible to find the minimal-
time just by local planning. So, a combination of local and 
global planning is necessary in the general case.  

Because this type of planning produces jumps along the 
path, often clothoids are fitted between regions of different 
ρ to reach a smooth run of the steering. 
 
Special case: piecewise constant acceleration with 
 

max21 vvv ≤=
rr

 
 

Acceleration takes only place on straight lines while 
turning is executed with a maximal positive maxna .  
 
Three basic cases exist (Fig. 3) : 

 Minimal turning circle  minr  followed by a straight line 

  Circle maxmin rrr ≤≤  followed by a straight line 

  Limiting circle maxr  (eventually followed by a straight 
 line) 
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Fig. 3: cases of global planning with vl = const 

 
 
 
Path length of the given cases: 
 

)(sin)( max rrrllrl sc −⋅+⋅=+= αα    (2) 

with  cl : Length of circle 
section  

sl : Length of straight 
part 

 
)(rl is strictly monotonic increasing because: 

 

0sin)(
≥−= αα

dr
rdl

      (3) 

 

for the complete interval maxmin rrr ≤≤ and 

°≤≤ 900 α . 
Thus,  is the time-optimal path for the above conditions. 
The time needed for the path is determined by the maximal 
normal acceleration maxna   and longitudinal acceleration 

maxla . 

With: 2
max cn var =⋅  

 

maxnc

c
c ar

r
v
lt

⋅
⋅

==
α

     (4) 

 

scsls tvtarrl ⋅+⋅=−⋅= 2
maxmax 2

1)(sinα    (5) 

 

))(sin2(1
max

2

max

rrvv
a

t cc
l

s −+±−= α    (6) 

 

sc ttrt +=)(       (7) 

0=
dr
dt

⇒Minimum     (8) 

 

This leads to a form, for which the solution for mint  

depends on α , maxla , maxna and maxv .  Thus, all of the 
cases above can possibly be the minimal-time trajectory, 
depending on the actual parameter set. 
 

4. MINIMAL TIME TRAJECTORIES GENERATED BY 
LONGITUDINAL AND NORMAL ACCELERATION 

 
The same (as Fig. 3) important special cases exist, 

assuming that we are starting at (0, 0) with )0,( 0vv =v  (in 
local coordinates) and that the curvature changes of the 
trajectories are monotonous.  

The upper limit trajectory is driven by maxla and maxna  

and the lower limit trajectory by minla and minna . Below a 

certain speed lsv only the non holonomy of the vehicle 
determines its behaviour in the turning circle. Drifting is not 
allowed. 

 
Fig. 4: cases for arbitrary acceleration 

 
Analogously to Fig. 3 three cases exist for the starting 
condition: 
 
1.) Upper limit trajectory of start and goal have a common 

tangent with the right direction (see case 1 Fig. 3). In 
this case the minimal time will be reached by 
accelerating along the upper limit tangent and part of the 
tangent of the start point and decelerating along the rest 
of the tangent and upper limit tangent of the goal. 

2.) The upper limit trajectories of start and goal have no 
appropriate tangent but the lower limit trajectories have 
(see case 2 Fig. 3). This is the case of a steep turn which 
will be investigated in the sequel. 
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3.) There is no appropriate tangent either for the lower limit 
trajectories. This will lead to a detour (as in Fig. 2). We 
will not further investigate this case here.   

 
For an optimal turn the vehicle must drive the minimal 

curvature radius  minρ , which is determined by maxla .  

maxF = m⋅ maxa ≤m⋅g⋅ Hµ     (9) 

 

maxa ≤ g⋅ Hµ      (10) 
 

By neglecting banking of the curve:  
 

lv& =
dt
dvl << na  ⇒   maxa  = maxna    (11) 

 
Otherwise the vehicle will drift. It is not clear if it is 

possible to minimize further the time to drive the curve by 
drifting, but a lot of clues from motor sports indicate that 
only without drift minimal times can be reached. In this 
paper we will consider only this case. 

With lv (t) being the longitudinal speed in direction of 
the tangent of the curve (i.e. in local coordinates): 

 

Curvature:     ρ (t) =
n

l F
mtv ⋅)(2      (12) 

 
Because of driving at the limit normal acceleration: 
 

1
2

max

2 )()()( ctv
F

mtvt l
n

l ⋅=⋅=ρ    (13) 

 
The speed is given by: 
 

lv (t)=
dt

tds )(
      (14) 

Thus 
 

11

2 )()(2))(()( c
dt

tdvtvc
dt

tvd
dt

td l
l

l ⋅⋅⋅=⋅=
ρ

 (15) 

 
 
With (14) 
 

)(
)(

)()(2
)(

1 tv
tds

tvtvc
tddt

lll

=
⋅⋅⋅

=
&

ρ
   (16) 

 
 
By rearranging:  

)(2
)(

)()(2
1

1 tvc
tv

tvtvc
ds
d

l
l

ll &
&

⋅=
⋅⋅⋅

=
ρ

  (17) 

 
The shortest time will be reached if  
 

   .)( max constatv ll ==&      (18) 
 
because the vehicle is driving at contact limit. The result is  
 

.2 maxmax constaa
ds
d

ln =⋅⋅=
ρ

   (19)  

 
 
This is the characteristic equation of a logarithmic spiral 

ϕ⋅⋅= kear        (20) 
with r :   Radius parameter 
  a :  Base radius 
parameter 

k :   Angle parameter 
ϕ :   Angle 

 
For the logarithmic spiral: 
 

rk
k

rs ⋅+= 211)(     (21) 

 
with  )(rs : Arc length 
 

rkr ⋅+= 21)(ρ       (22) 
 
with  )(rρ : Curvature 

 
Thus 
 

211)( k
kdr

rds
+=     (23) 

21)( k
dr

rd
+=

ρ
     (24) 

 
With (23): 
 

22 1
)(

11
)(

k
rd

k
k

rdsdr
+

=
+

=
ρ

   (25) 

 
By rearranging: 
 

k
k

k

k
ds
d

=
+

+
=

2

2

11
1ρ

    (26) 

 
These ratios could also be used for the local description of 
the general case 
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constaaa nl =+= 2
max

2
maxmax      (27) 

 
Because locally it implies after inserting (19) into (27) and 
considering (26): 
 

       
kconstvav

aaa

ll

ll

==−⋅=

−⋅
2
max

2
maxmax

2
max

2
maxmax

2

2

&&
          (28) 

 
The characteristic parameter of the curve can be locally 

determined directly by the speed. 
 

)2exp( 2
max

2
maxmax ll vavr && −=    (29) 

 
In the case of maximum speed change the resulting path 

is a logarithmic spiral. The positions that can be reached in 
equal time (isotime -line) are placed on  a cycloid. 
 

To understand the behaviour of the logarithmic spiral, 
speed and transition time for local coordinates were 
computed. 
  1ρ  is given by 1v  at the starting point 1x . It is 

interesting to note, that for a given 1v  and maxna the spiral 
is unambiguously given. I.e. the parameter a has no 
influence. Thus, it can be set to 1. This also means that one 
goal point can only be reached with a certain direction at 
minimal time. 

To compare this solution with clothoides which are 
utilised in most approaches it can be said: clothoids are 
intended for turning the steering steadily at constant 
velocity lv . This is most convenient for a human driver. 
But an automatic system does not rely on simple handling or 
simple control functions. The proposed manoeuvre is 
optimised for minimal time and not for driving comfort i.e 
by exhausting the acceleration limits of the vehicle. 
 

5. EXAMPLES AND COMPARISON WITH HEMITESCH’ 
INTERPOLATION 

 
To illustrate the results of the preceding chapter, we 

computed an example of a turning manoeuvre with the 
starting point )0,0(11 xx vv =  at speed )0,3(11 −= vv vv

 

to a point )2,1(22 −= xx vv
 at speed 

)0,9.1(22 vv vv = with 1max =a .  
The given example was selected of the second type 

mentioned in chapter 3. Because of the invariance to 
parameter a, two logarithmic spirals are necessary. The 
computed osculation point of the two spirals has an identic 
velocity vector. This point was found with the method of 
iterative gradient descend. It is not clear if such a point exits 
for all configurations, but it was found in all our numerical 
experiments. The resulting trajectory is shown in Fig. 5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: minimal-time trajectory with logarithmic spirals and with 

Hermitesch Interpolation of 3rd order 
 
 

Velocity and curvature are steady along the trajectory. 
Longitudinal and normal acceleration are steady and have a 
jump in their first derivative at the meeting point. The 
acceleration to this point is 43.01 −=a and after the 

meeting point 89.02 −=a . The constraints are fulfilled 
and the course will be passed in minimal time. Additionally 
a circle has to be fitted between the two spirals if a given 
acceleration constraint for anmax has to be met. 

 

 
Fig. 6: Longitudinal speed over time 

 
 

 
 
To compare these results with a conventional numerical 

3rd order method, Hermitesch Interpolation was employed. 
The same boundary conditions and contraints were applied. 
With the polynom   
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0
1

1
2

2
3

3)( ctctctctP +⋅+⋅+⋅=     (30) 

with ic  being 2-dimensional vectors: 

)4.0,8.1(3 −=c  

)8.2,6.1(2 −=c  

)4.2,2.1(1 =c  

)0,0(0 =c  
 

We get the solution also shown in fig. 5. 
 

 
Fig. 7: Longitudinal acceleration of Hermitesch Interpolation 

 
The resulting time tmin = 3,35 is the same (with 1 %  

numerical approximation errors) for the logarithmic spiral 
and the Hermitesch Interpolation (see fig. 6), but the 
Hermitesch Interpolation is exceeding the accelerations 
limits (see fig. 7). 
 

6. CONCLUSION 
 

We propose a new approach for planning extreme 
trajectories for high speed autonomous driving. It is shown 
that minimal time trajectories piecewise consist of  
logarithmic spirals (and circles, respective straight lines, 
which are special cases of the spiral). An example how to 
compute such a manoeuvre is shown and compared to a 
polynomial approach. Of course the actual model contains a 
lot of simplifications. E.g. the finite change time of normal 
acceleration should be included as well as the connection 
between normal and longitudinal acceleration, especially at 
limit trajectories. Most probably such influences can only be 
integrated in the model by numerical methods which will be 
investigated next. 
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