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Abstract— Driver assistance functions on marked innercity
intersections require a reliable detection of intersection lanes.
Due to the high complexity of intersection scenarios and the
large amount of clutter that is usually encountered in urban
areas, existing highway lane detectors are not applicable for
this task. In order to detect the lanes on marked innercity
intersections, we adopt a two step process of first detecting
individual lane marking segments and then aggregating these
segments to appropriate lanes. We assume that a lane detector
for innercity scenarios should be capable of handling lanes with
arbitrary orientation and curvature and thus may not rely on
simple geometric models. In order to achieve this, in the paper
we first derive a set of features from the lane marking segment
data. These features are fed into a support vector machine. The
support vector machine determines whether the lane marking
segments belong to the same lane or not.

I. INTRODUCTION

Driver assistance functions on marked intersections may

increase traffic safety by guiding drivers through complex

intersections and by issuing warnings of potential hazards.

However, while the detection of lanes on highways as in [1],

[2], [3] has already been brought to market, the detection

of lanes on marked intersections is still an area of active

research and one that will possibly play a key role in

the DARPA Urban Challenge 2007. The fact that so far

there is no flexible, general solution to the detection of

lanes on marked intersections may be due to the complexity

of intersections with arbitrary lane orientations, high lane

curvature and overlapping lanes.

Although research on intersection recognition is still in an

early stage, some relevant work has already been presented

in the literature: [4] detects lanes on innercity intersections

through the use of prior knowledge. A digital map is used to

obtain structural information about topology and geometry

of the whole intersection. Expert knowledge is then used

to refine the information and arrive at a set of intersection

hypotheses which are then compared to the image. [5] pro-

poses an approach which also uses a digital map and derives

intersection geometry hypotheses, though the approach is not

as flexible and powerful as [4]. [6] proposes an approach to

detect the presence of intersections and the lanes connected

to them. The intersections themselves are not marked, thus,

[6] does not strictly focus on detecting lanes on marked

intersections.

Since digital maps may be out of date or not available,

there is the need for researching detecting lanes on marked

intersections without the use of digital map information.
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Without any prior information about the present scene, we

therefore lack the possibility to generate geometry hypothe-

ses as in [4].

[7] is a work similar in spirit to ours. What [7] and

our work have in common is that single lane marking

segments are detected and then aggregated into lane boun-

daries. A key difference is that Enkelmann et al. employ

a geometrical model for the lane boundaries while we do

not. Lane geometry on intersections may be designed to fit

innercity constraints like buildings and infrastructure rather

than a typical shape, therefore we aim to achieve a higher

applicability by refraining from using a geometrical model.

In addition, an extension to support vector machines is

capable of determining a measure of probability with which

the classification is correct [8]. Furthermore, in our work

we test for parallel lane boundaries in order to construct

complete lanes rather than deliver lane boundaries.

We approach the task of detecting lanes on marked inter-

sections in a two step procedure. The first step consists of de-

tecting individual lane marking segments on the intersection.

This may be accomplished with the use of the Canny [9] edge

detector or other approaches [7] and will not be discussed in

this paper. We have used the lane marking segment detector

described in [10]. The second step is the focus of this

paper and consists of detecting lanes in the set of detected

lane marking segments. The single lane marking segment

hypotheses are described with the properties width W , length

L, orientation α and position X = [Y, Z]T . In addition to

these geometrical properties, there are three measures which

describe the quality of a lane marking segment hypotheses.

∆g = go − gi is the difference between the average grey

value inside the lane marking segment gi and the area outside

the lane marking segment go. σi is the standard deviation of

the grey value inside the lane marking segment and σo is the

standard deviation of the grey value outside the lane marking

segment. These values are provided by the lane marking

segment detector. For a good lane marking segment, we

expect a high ∆g and small σi and small σo. An illustration

of an example set of single lane marking segment hypotheses

lying in the ground plane X = 0 is given in Fig. 1. Our

task is to determine which of these lane marking segments

belong to the same lane and which lane marking segment

hypotheses are clutter. The desired aggregation result for the

data visualized in Fig. 1 is shown in Fig. 2. The lane has been

detected while the clutter has been ignored. Due to space

constraints, this example does not show the more interesting

case where there are at least two curved, overlapping lanes

in the scene. Even in this simple case, the detection of the

correct left lane boundary requires picking only the four
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Fig. 1. An example set of single lane marking segment hypotheses.

Fig. 2. The aggregation result recognizes the lane while rejecting the
clutter.

correct lane markings while suppressing eight other lane

marking segments.

Section II first describes the formation of triplets of

individual lane marking segments. A lane marking segment

may belong to several triplets. We then compute features

describing the triplets. The features are then fed into a

support vector machine which determines whether the lane

marking segments in the triplet belong to the same lane

boundary or not. Section II gives a detailed description of the

features that we use for the classification. We then describe

how the triplets are combined into lane boundaries. Section

III shows results obtained with real imagery.

II. DETECTION OF LANES

A. Preprocessing

A detection of lanes on innercity intersections must be

capable of handling curved lanes and should not be restricted

to any particular geometrical form. Thus, the important

question arises how to determine whether some lane marking

segments form a lane without matching the segments to a

geometrical model. Another, related issue is how to select

exactly the correct lane marking segments and successfully

ignore all the others while detecting each single lane boun-

dary. Clearly, when considering a single lane boundary on an

intersection, the lane marking segments belonging to other

lane boundaries must be treated as outliers. Consequently,

an approach to solve this issue must be focused on the local

neighborhood of the lane marking segments in question.

In our approach, this local neighborhood is established

by forming triplets of single lane marking segments. The

segments in a triplet are always positioned close to each other

and are evaluated according to the features described in the

following subsections. The evaluation determines whether

the segments in the triplet may belong to the same lane. This

preprocessing is very optimistic about the lane membership,

i.e., the thresholds in feature space are set such that we retain

all correct triplets of lane marking segments. On the other

hand, we also obtain a lot of false positive triplets of lane

marking segments, though this number is still considerably

lower than the number of all possible triplets in the set. For

example, for a test set consisting of 908 correct triplets of

lane marking segments detected in 295 video images, this

preprocessing step finds 891 correct triplets and misses 17

correct triplets. It also produces 1789 wrong triplets. These

results are satisfactory for the subsequent classification and

lane detection steps. The decision whether a candidate triplet

is accepted or rejected at this stage is based upon simple

thresholds in each feature dimension. We have chosen to

form triplets because with three segments we are able to

derive information about the lane curvature. To consider

more than three segments, i.e. form quadruples could be

asking too much because in some images there may only

be three segments available.

B. Classification

This subsection describes the feature space which we use

to evaluate the triplets that were formed and not rejected

during preprocessing. The triplets serve as an intermediate

stage between single lane marking segments and the final

lane boundary. The triplet features are fed into a support

vector machine which determines whether the individual lane

markings in that triplet belong to the same lane boundary

or not. This classification is more sophisticated than the

preprocessing described in subsection II-A and eliminates

most false positives.

We have found twelve feature types that have proven to be

meaningful in determining lane boundary membership. In the

following, a description of each of these feature types will

be given. There are features that are properties of individual
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lane marking segments in each triplet (subsection II-C).

Furthermore, there are features that are derived from two

of the three individual lane marking segments (subsection

II-D). Finally, there are features that are derived from all

three lane marking segments in a triplet (subsection II-E).

C. Singleton features

The length L of each of the three lane marking segments

in the triplet is characteristic for lane boundaries. Thus, there

are the features L1, L2, L3.

From the properties ∆g, σi and σo we form a combined

measure of quality q = ∆g

σi+σo

. For each of the three lane

marking segments, we evaluate this measure and thus obtain

the features q1, q2, q3.

D. Double features

Single lane marking segments which belong to the same

lane should have the same lengths. We therefore compute

the difference of length between two single lane marking

segments, normalized to their average length:

|∆Lij | =
|Lj − Li|

1

2
(Lj + Li)

. (1)

This gives the features |∆L12| and |∆L23|.
The orientations of successive single lane marking seg-

ments should be similar, even for curved lane markings. The

difference of orientation is therefore a meaningful quantity

and leads to the features |∆α12| and |∆α23|. It is computed

as

|∆αij | =







|αi − αj | αi − αj ∈ (−π/2, π/2]
|π + αi − αj | αi − αj ≤ −π/2
| − π + αi − αj | αi − αj > π/2

(2)

The distance between two single lane marking segments

normalized to their lengths is another property which gives

the features |∆X12| and |∆X23|. These are computed as

|∆Xij | =
2

Li + Lj

√

(Yi − Yj)2 + (Zi − Zj)2 (3)

Lane marking segments which belong to the same lane

never overlap, however, segments that are actually clutter

sometimes overlap. In order to reflect this, the features o12

and o23 are given by

oij =

√

(Yi − Yj)2 + (Zi − Zj)2 −
1

2
Li −

1

2
Lj

√

(Yi − Yj)2 + (Zi − Zj)2
. (4)

oij is negative if the lane marking segments overlap, zero if

they touch and positive otherwise. The last double feature

considers the relation between the lane marking segment

orientation and the orientation of a line connecting the

lane marking segment to the successive lane marking seg-

ment. This orientation difference is denoted by |∆βα
ij |. The

superscript α refers to the orientation of the lane marking

segment and β refers to the orientation of the connecting

line. |∆βα
ij | is small if the segments belong to the same lane.

An illustration is given in Fig. 3. This gives the features

|∆βα
12 | and |∆βα

23 |.

Fig. 3. An illustration of the feature |∆βα
ij

|.

Fig. 4. An illustration of the feature |∆β|.

E. Triplet features

For lanes with constant curvature, the difference of orien-

tation differences is zero. For lanes with a change of curva-

ture, the difference of orientation differences is approxima-

tely zero. A significant difference of orientation differences

should not occur for a valid lane boundary. The difference

of orientation differences is |∆∆α| = |∆α23 − ∆α12|.
Let a line l12 connect the middle segment and the first

segment and let a line l23 connect the middle segment and the

third segment in the triplet. Then the difference in orientation

|∆β| between these two lines is a feature and small if the

triplet is part of a lane. An illustration is given in Fig. 4.

Another feature compares the two differences in segment

orientation with ∆β. This is given by

|αminβ| = ∆α12 + ∆α23 − ∆β . (5)

The normalized difference between the two distances |∆X23|
and |∆X12| is a further feature:

∆nD|∆X| =
2

|∆X23| + |∆X12|
(|∆X23| − |∆X12|) , (6)

The superscript nD denotes the normalization with respect

to the distances. Depending on the type of lane marking, a

normalization with respect to the segment lengths rather than

the sum of the distances may also be informative which leads

to a similar feature

∆nL|∆X| =
3

L1 + L2 + L3

(|∆X23| − |∆X12|) . (7)
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Fig. 5. An illustration of the feature |∆midαSecβ |.

The final triplet feature is the difference between the

orientation of the middle segment and the orientation of the

line connecting the first and last segment

|∆midαSecβ| =







|α2 − β13| |α2 − β13| < π/2
|π + α2 − β13| α2 − β13 ≤ −π/2
| − π + α2 − β13| α2 − β13 > π/2

(8)

as shown in Fig. 5

Thus, the feature vector consists of 22 elements which

are given by L1, L2, L3, q1, q2, q3, |∆L12|, |∆L23|, |∆α12|,
|∆α23|, |∆X12|, |∆X23|, o12, o23, |∆

βα
12 |, |∆

βα
23 |, |∆∆α|,

|∆β|, |αminβ|, ∆nD|∆X|, ∆nL|∆X| and |∆midαSecβ | .
These features describe some of the data that one would

expect to be relevant like length, orientation, position and

orientation change.

Apart from these features, we evaluated other features

like e.g. the segment width. However, these other features

have not proven to be meaningful. During preprocessing,

we already discard segments with an inappropriate width,

thus, the segment width did not vary much throughout the

data at the classification stage and therefore provided no

additional information. The variation that did exist within the

width data was actually mainly due to the quantization error

from the image acquisition process and therefore useless for

determining lane boundary membership.

The computation of the feature values from the lane

marking segment data is computationally inexpensive. For

classification, we use a support vector machine [11] with a

radial basis function kernel [12]. We scale each feature to the

range [−1, 1]. In order to perform this research, we created

an intersection data base consisting of 13 different innercity

intersection scenes with corresponding video images and the

output of the lane marking segment detector. The overall

number of video images is 501 within this data base. On

average, the lane marking segment detector found 32.4 lane

marking segment hypotheses per image. In the output of

the lane marking segment detector, we have labeled 758

lane boundaries consisting of 1642 triplets of single lane

Fig. 6. Combination of three triplets into a sequence of five lane marking
segments.

marking segments. We have then split the data base into a

training set and a test set for the support vector machine. The

intersection scenes in the training set and the test set were

not the same. The training set consists of 734 triplets in 206

images and the test set consists of 908 triplets in 295 images.

We have trained the support vector machine on the scaled

feature space from the training set using grid search and cross

validation and have thus determined the parameters (C, γ)
for the support vector machine to be (C, γ) = (8, 0.5). On

testing this final support vector machine on the test data, we

found that from the 908 labeled correct triplets, 840 were

classified as correct and 68 were classified as negative. The

test set also contained 1789 triplets labeled as negative, 52

of which were wrongly classified as positive. Overall, our

classifier shows a good performance.

The computationally most expensive part about the support

vector machine is the trainig stage. Once the support vector

machine has been trained, the application of the support

vector machine to the classification is computationally in-

expensive.

F. Combination to lanes

The detected and as positive classified triplets are com-

bined to form complete lane boundaries. An example is

shown in Fig. 6. In case the three triplets T1, T2, T3 have

all been found, we obtain the lane boundary consisting of

the segments Si, i = 1 . . . 5. If one of the triplets has not

been classified correctly, the segments will not be combined.

We have found that the triplet classification gives such good

results that the combination of existing triplets almost always

results in valid lane boundaries, without any additional

evaluation concerning the combination.

The desired final output is the set of lanes visible on

the intersection. Thus, we need to establish which of the

lane boundaries are parallel and possibly form a lane. As

we do not use a geometrical model, this question cannot

be answered by simply comparing parameters of curvature,

direction or position. In the following, we give a brief outline

of our approach to detect parallel lane boundaries.

Fig. 7 depicts two lane boundaries. We interpolate points

between the lane marking segments of each lane boundary,

shown in green for the left lane boundary. At each such

interpolated point, we take the direction perpendicular to the

line connecting the two lane marking segments and form a

search area along a distance which corresponds to a typical

lane width. At points corresponding to the exact position of

lane marking segments, we use the direction perpendicular

to the lane marking segment. The search areas are shown as

green rectangles. The second lane boundary is also interpola-
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Fig. 7. Test for parallel lanes.

ted, shown in red. It is checked whether a sufficient number

of interpolation points from the second lane boundary lies

inside the search areas. The test is then applied the other way

around. The two lane boundaries are considered to belong to

the same lane if a sufficient number of interpolation points

of each lane boundary have been found in the search areas

coming from the other lane boundary. This approach to test

for parallel lane boundaries is applicable to curved lanes

independently of any geometrical model. In order to evaluate

this detection of parallel lane boundaries, we have manually

labeled 96 parallel lane boundaries in our test set. Of these

96 lane boundaries, 90 were determined to be parallel by the

test run. The missing six lanes were not discovered because

the region of overlap between the boundaries in the direction

of the lane was too small. We have not found a single false

positive set of parallel lane boundaries in our test set.

III. RESULTS

We have already described the classification performance

of the support vector machine trained and tested with our data

base. We have also commented on the performance of the test

for parallel lanes. We would now like to give some exemplary

detection results based on data obtained from real imagery.

The upper portion of Fig. 8 provides a bird’s eye view and

depicts individual lane marking segments as detected in the

grey value image shown in the lower portion. In the bird’s

eye view, each segment is shown as a white rectangle. Note

the segments describing the crossing bicycle lane and the

ego lane going to the left. The grey value image contains

some snow flakes which result in false positive lane marking

Fig. 8. Detection result. The upper image shows the set of lane marking
segments while the lower portion shows the detected lanes.

Fig. 9. Detection result. The upper image shows the set of lane marking
segments while the lower portion shows the detected lanes.

segments. Our approach successfully detects the crossing

bicycle lane and the own lane going to the left. This result

is visualized in the lower portion of Fig. 8. Segments that

were recognized as belonging to the bicycle lane are painted

green and segments that were recognized as belonging to the

own lane are painted red.

Fig. 9 shows the lane marking segment data in the upper

portion and the corresponding grey value image in the lower

portion. The detected pedestrian lane is shown in green and

the detected own lane is shown in red.

IV. CONCLUSION AND OUTLOOK

We have described an approach that detects arbitrarily

oriented and curved lanes in a set of lane marking segment

ThB1.33

726



hypotheses. The approach is capable of handling a significant

amount of clutter in the data through the formation of

lane marking segment triplets. These triplets are classified

using a support vector machine. We have successfully tested

our approach on data obtained from real imagery depicting

complex intersection scenarios.

A possible extension of our research is to integrate the

information over time and track the aggregation results.
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