
 
 

 

  

Abstract—The control strategy of human operator is 
naturally dynamic, stochastic and nonlinear. It also changes 
gradually through the time. Therefore, human driver modeling 
is a very difficult task. The driver model must be accurate and 
robust enough to give valid human behaviours under varying 
conditions, otherwise the model will most probably fail. This 
means the model has to have some intelligence similar to the 
human driver. In this paper, human driver modeling was 
analyzed from an intelligent control perspective.  

I.  INTRODUCTION 
HERE are many reasons for human driver modeling 
such as vehicle following [1]-[3], road following, 

collision avoidance [2], lane keeping on a curving road [4]-
[6], etc. Also, human driver model can be used in closed 
loop simulations interacting with the vehicle as a controller 
to test the engine (Fig. 1). A human driver has two major 
functions while controlling the vehicle [7]. These are;  

• Longitudinal control  
• Lateral control  
In longitudinal control, the setting of the accelerator pedal 

and the brake pedal are determined and suitable gears are 
chosen. Decisions are based on the distance between the 
leading vehicle and the approaching velocity. In lateral 
control case, steering wheel angle is manipulated. The 
curvature of the road and the planned trajectory are the 
components that affect the lateral control of the vehicle [8].  

In the literature, the lateral and longitudinal controls of 
vehicle have been generally studied separately as given in 
the reference [9], [10]. However, human driver model that 
carries out both lateral control and longitudinal control tasks 
synchronously is more natural and appealing [9].  

The complexity of human driver modeling is caused by 
the human operator’s dynamics involving a variable, random 
and biased structure. It is almost impossible to obtain the 
same action from a human operator even if all conditions are 
identical. Due to all these complications, modeling is 
difficult and time consuming. Several organizations having 
different establishment reasons, such as Prometheus 
(PROgraMme for a European Traffic with Highest 
Efficiency and Unprecedented Safety) in Europe, PATH 
Research (Partners for Advanced Transit and Highways), 
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ALVIN (Autonomous Land Vehicle In a Neural Network) 
in the USA and ARTS, ASV in Japan have been working on 
human driver modeling. For instance, the objectives of 
Prometheus are;  

• Traffic safety (Preventing crashes)  
• Diminishing environmental pollution (Noise and fuel 

control)  
• Diminishing human driver load (Intelligent warning 

systems)  
• The arrangement of the traffic flow (Road capacity 

optimization) [11], [12].  
The major purpose of these human driver modeling 

studies is to decrease the number of accidents. Fenton [13] 
stated that the cost of the accidents per year is about 70 
billion dollars. It has also been estimated in the same study 
that the traffic would have doubled from 1992 to 2010. 
According to the statistics, generally drivers are responsible 
for the accidents. However, by the existence of a virtual 
driver who drives simultaneously with the human driver, 
unexpected situations could be detected earlier and the 
human driver could be warned accordingly to prevent 
probable accidents. In the near future, it is expected that the 
virtual driver will drive the car alone, without a need for a 
human driver.  

II.  HUMAN DRIVER MODEL  
Shim et al. [5] developed a visual data processing method 

for the road ahead of the vehicle by using Neural Networks 
(NNs). According to this method, neural network extracts 
the radius of the road from the visual data and provides it to 
the human driver model as an input. Curve radius is the 
main variable affecting the steering wheel action which is an 
output component of the human driver model. It is necessary 
to get the correct description of road in order to apply the 
human driver model to different types of roads.  

Macadam and Johnson [6] obtained steering wheel angle 
by using time delays of sensor data as inputs. In order to 
attain the time dependent derivation data, time delayed 
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Fig. 1.  Closed-loop block diagram of human driver.  
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sensor information was fed to NN and the training was 
realized. The important point here is that the road 
information, which is approximately same as the driver’s 
perception, was given to the model. Since the driver model 
is highly complex and not linear, a feed-forward type neural 
network was used for modeling in [6].  

However, the model was constituted as single input-single 
output which are sensor data and steering wheel angle 
respectively. Steering wheel angle data were obtained from 
both simulator and the real road driving. In the same study, 
Fujioka and Takubo [14], Kornhausser [15], Lubin et al. 
[16] mentioned about obtaining neural network models by 
using simulator data in order to constitute a human driver 
model. By following the same method, Neusser et al. [17] 
used optical sensor data as input and they constituted a 
neural network model by using real road data.  

Existing studies in the literature until today have focused 
on only one type of mission such as lane-keeping, driving on 
a road with a certain radius at constant speed, etc [5], [6]. 
One of these scenarios was double lane changing with 
constant velocity and another one was driving on an S-curve 
with same radius at both sides. Since there is no effect of 
velocity in the human driver model, the vehicle velocity was 
kept constant in order to have successful simulations. 
Therefore, the model was far from reality and extremely 
limited.  

Hess and Modjtahedzadeh [4] developed a human driver 
model for predicting the driver steering response. Their 
driver-vehicle model has low frequency driver compensation 
and high frequency driver compensation which is called as 
“structural model of human operator”. Since human sensing 
has some limitations on processing its actions, an effective 
time delay was added on their model. It is important to 
realize that driver-vehicle model should exhibit three 
notions:  

• The bandwidth of aggressive steering tasks  
• Neuromuscular system model  
• The desirable open-loop return ratio  
Desirable open-loop return ratio indicates that large 

magnitudes in low frequencies for good tracking and small 
magnitudes at high frequencies for low sensitivity to 
uncertainty. Detailed information about the human driver’s 
lead in low frequency can be found in [18] and low 
amplitude high frequency component information which can 
be attributed as the driver remnant can be found in [19], 
[20]. Cross over frequency was chosen as 1 Hertz for open-
loop return ratio [4].  

Human operator’s band width does not exceed a few 
Hertz as stated in many studies in the literature [18]-[21]. 
The input-output data, obtained from real human driver in a 
research project by the authors, do not include any 
frequencies over 2 Hz as seen in Fig. 2, except some 
maneuvers, and it is consistent with the human driver 
modeling literature [22]. Based on this information, it is 
adequate to choose the sampling frequency of 10 Hz in order 

to preserve the highest-frequency component [12], [23].  
Huang et al. [3] designed an automated driving system 

and a human driver model. They simulated the automated 
and manual vehicles in ambient traffic together. For this 
reason, human driver model was developed for pure 
longitudinal and pure lateral control. Lateral control focuses 
on lane changing while longitudinal control focuses on 
velocity keeping, velocity tracking, weak spacing and strong 
spacing control. To construct an automated driving system, 
some mixed longitudinal and lateral control actions were 
also considered in emergency situations such as hard 
braking, sudden lane change or trajectory planning. 
Proposed human driver model must obviously be capable of 
predicting actual human driver attitudes in order to handle 
all possible conditions and must manage vehicle following, 
lane change and driver aggressiveness. Driver 
aggressiveness indicates the frequency of lane changes.  

One of the most important inputs in human driver 
modeling is the road data. But, the way of giving the road 
data to the model is an important point. Two different 
suggested solutions are giving either the look-down or the 
look-ahead. While the look-down is related to the 
measurement between the front of the vehicle and the lane, 
the look-ahead is about giving some forward points within 
the human driver’s sight. The most important criterion here 
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Fig. 2.  Frequency band of human driver input-output data.  
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is providing the information to the model about the human 
driver’s lead depending on the velocity of the vehicle.  

Pilutti and Ulsoy [18] showed in their study that in reality 
a human driver has a lead of 40 dB/dec. When the speed is 
low, the “look-down” method is adequate to provide the 
human driver’s lead. The look-ahead distance increases as 
vehicle speed increases and decreases as vehicle speed 
decreases like the actual human driver [21]. If certain 
constant distances are taken as look-ahead distance, the 
above adaptation can not be done. In look-ahead, if “time 
data” is given to the model as input instead of “distance”, 
more accurate human driver models can be obtained.  

Riedel and Wurster [24] stated that the data needed for 
modeling should be obtained from driving sessions of test 
drivers, i.e. professional drivers. Human drivers’ faults 
should be kept out of modeling. They also suggested that 
shape of the road, steering wheel angle, engine speed 
(RPM), steering wheel moment, tire pattern could be used as 
inputs and steering wheel angle or moment, accelerator 
pedal position, the clutch pedal position, and the actual gear 
could be used as outputs. Input and output components 
related to various situations can be chosen depending on the 
problem and simplifications can be made whenever 
appropriate (Table I). Apel [25] also gave all possible 
physical variables that can be used for the human driver 
model. For example, if the simulated driving course is flat, it 
is not necessary to take the slope as an input.  

Three different research areas about human driver were 
studied in [2] namely vehicle following, road following, and 
collision avoidance. They designed two separate Neural 
Network controllers which can be transportable to any 
vehicle regardless of its dynamics for vehicle following. 
Nonlinear model descriptions, e.g., NNs do not need the 
characterization of nonlinear vehicle dynamics. The first NN 
controller’s aim was speed control consisting of seven input 
variables: the normalized current speed and the normalized 
current and five past samples of range errors. The second 
NN controller was trained for steering control consisting of 
four variables: the normalized current range and the 
normalized current and two past samples of heading angles. 
They also tested their controller performance with different 
data collected from different runs. Practically speaking, 
experimental verification shows NN is feasible to drive the 
vehicle.  

Nechyba and Xu [26] used Cascaded Neural Networks to 
model human driver. Initially, there are no hidden units in 
the network, only direct input-output connections. Firstly, 
these weights are trained to capture any linear relationship. 
They fed to previous state information, previous control 
information and a description of road as input to cascade 
networks. For a stochastic process, a static error criterion, 
based on the difference between the trained data and 
predicted model outputs may be inappropriate. So, human 
driver model must be verified by the data that is not used in 
the training stage [27], [28].  

Multiple mental human driver model was studied and 
analyzed on adaptive cruise control system in [1]. Mental 
model is an internal mechanism that predicts and computes 
future responses based on current state within the dynamic 
environment. Obviously, this model uses the human operator 
as a template for automation. For this reason, they tried to 
understand how operators manage tasks and switch from one 
skill (operator activities) domain to another skill domain. 
For example, when cruise control must be activated or 
disabled and how the transition must be. Since the human 
driver feels the dynamical forces, cruise control which 
emulates human driver behaviour should be as smooth as 
human driver.  

Many of the human driver models are getting closer to the 
human driver’s performance. However, none of them is 
expected to reflect the exact human driver [29]. A model 
consisting of “if-then” expressions in Fuzzy Logic 
Controller (FLC) that would include all parameters of a 
human driver would contain approximately 10000-50000 
rules that should be identified [30]. Therefore, it will be 
more useful and easier to constitute a model that 
accomplishes only the given specific mission, than a model 
performing every operation that a human driver could. 
However, intelligent controller techniques, e.g., NN, FLC 
are the best candidates to the multiple tasks such as both 
longitudinal and lateral control synchronously.  

III.  CONCLUSIONS AND FUTURE WORKS  
Although the human driver has access to information 

from many different channels, the constituted model has 
only the information which is included in the data. 
Therefore, if a model is extracted from straight course data, 
it drives and finishes straight courses successfully, but it 
may not succeed in other scenarios, for instance, parking. To 
be successful in different scenarios, modules and/or subparts 
for every different mission need to be prepared and the 

TABLE I  
INPUT-OUTPUT COMPONENTS AND SOME FUNCTIONS USED FOR DRIVER 

MODELING  [24]  

Inputs Functions Outputs 

Description of the 
road Path Accelerator 

or Brake Pedal 

Engine RPM Velocity Choice Steering Wheel Angle 

Vehicle Velocity Driving Gear 

Steering Wheel Accelerator 
or Brake Pedal  

Moment Clutch  

 Speed Limit  
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required module will be called according to the situation.  
The interaction of the driver and the vehicle is very 

complicated due to the human operator characteristics. 
Because of human’s randomness and bias, defining a human 
operator model with a deterministic model is very difficult. 
Especially in vehicle driver modeling, the most important 
stage is determining the input-output components. The 
advantage that NN or FLC provides is, without changing 
input-output components, different dynamics can be hidden 
in the internal mechanism of intelligent controllers.  

The models that were constituted until now, were mostly 
with one output, they had restrictions and were very far from 
the reality. The driver models in the future studies should 
combine lateral and longitudinal control and have some 
specifications in order to be practical. First of all, model 
should adapt to the driving conditions, it should keep 
learning while it is running. Model parameters should be 
changed and made suitable for all conditions. Secondly, 
model should be independent of training road and 
maneuvers; so that driving can be achieved easily on any 
other roads.  
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